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On d-paracompactness and related properties
by

J. Chaber (Warszawa)

Abstract. We give a simple definition of d-paracompact spaces and use it in order to prove
that the following classes of spaces are preserved by perfect mappings: the class of perfect preimages
of metacompact (metalindelsf) Moore spaces and the class of spaces which, for an arbitrary open
cover %, admit a perfect % -mapping onto a Moore space. These results were announced in [Ché]
and it was shown there that the class of perfect preimages of Moore spaces is not preserved by
perfect mappings. ’

A method of constructing mappings onto developable spaces has been in-
troduced in [P]. This method uses the concept of d-paracompact spaces. The
definition of d-paracompactness in [P] is very technical. A simpler but still technical
concept of a kernel-normal sequence of open covers has been introduced in [Br].

In the first section of this paper we give a simple definition of d-paracompactness
which is analogous to certain characterizations of paracompactness and sub-
paracompactness. We also define related concepts of d-regularity, d-normality
and collectionwise d-normality. All these properties are weaker than developability
(= d-metrizability). We prove that our definition of d-paracompactness is equiv-
alent to the one given in [P] and show some simple facts about related concepts
which are useful in further investigations of d-paracompactness.

In the second section we prove that, in the class of metacompact (metalindeldf)
spaces, d-paracompactness shows some analogies with the weaker concept of
subparacompactness. In particular, it is preserved (in both directions) by perfect
mappings and, consequently, the class of perfect preimages of metacompact
(metalindelsf) Moore spaces is preserved by perfect mappings (this solves Prob-
lem 3.1 of [Ch5]).

The third section is devoted to the investigation of the preservation of
d-paracompactness by perfect mappings. We give a method of constructing perfect
mappings from spaces which are not d-normal (d-normal but not d-paracompact)
onto Moore spaces. According to the results of the second section, such Moore
spaces cannot be metalindelof. We prove that perfect images of d-paracompact
p-spaces are d-paracompact p-spaces. This shows that the property of having,
for an arbitrary open cover %, a perfect % -mapping onto a Moore space is an
invariant of perfect mappings.
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In the third section we are forced to use methods of the base of countable
order theory. The fourth section contains some other applications of this theory
in the investigation of covering properties.

The terminology and notation is from [El]. In the last two sections we use
the methods of the base of countable order theory of H. H. Wicke and J. M. Wor-
rell, Jr. as presented in [ChCNJ. All mappings are assumed to be continuous and
onto. All spaces which are not explicitly said to be T'-spaces are assumed to be
Hausdorfl, but p-spaces and Moore spaces are regular.

- The symbol & always denotes a countable collection of open covers of a given
space X and, for a subset V of X,

int;¥V = {xeV: St(x, @)=V for a Ded}.
If " is a collection of subsets of X, then int;#" = {int,V: ¥e ¥} [Br].

If % is an open cover of X and g maps X onto S, then g is said to be a % -mapp-
ing if, for an open cover # of S, {g~'(H): H e #) refines %. If g is 2 closed mapp-
ing, then g is a %-mapping iff the fibers of g refine 4.

A cover % of X is said to be d-normal if there exists a % -mapping of X onto
a developable T,-space.

A space X is said to be metalindelof ((o-) paralindeldf) if each open cover
of X has a point-countable ((g-) locally countable) open refinement ([FR]).

1. Preliminaries. Pareck in [P] defined d-paracompactness and proved that

a space X is d-paracompact iff for each open cover % of X there exists a % -mapping

of X onto a developable T,-space. The definition in [P] is very technical. In order

to investigate d-paracompactness, it is convinient to start with a simpler definition.

- 1.1. DEFINITION. A space X is said to be subparacompact (d-paracompact)

if for each open cover ¥ of X there exist a collection § and an (open) cover %"
refining int;¥".

We establish the equivalence of the two definitions of d-paracompactness
by proving

1.2. PROPOSITION. 4 space X is d-paracompact ifft for each open cover U of X
there exists a U-mapping of X onto a developable T, -space.

Proof. The “if” part is obvious. In order to prove the “only if” part assume
that 4 is an.open cover of a d-paracompact space X. By inductively applying 1.1
we can find a countable collection § such that # e § and, for each ¥ e §, there
exists a # e & refining int;%". Thus % is a member of the kernel-normal (in the
terminology of [Br]) collection § and, consequently, % is a d-normal cover [Br,
Proposition 1].

Since both concepts of d-paracompactness are equivalent, we have

1.3. THEOREM [P]. A4 space X is a d-paracompact p-space iff for each open
cover % of X there exists a perfect U -mapping of X onto a Moore space,

On the analogy of paracompactness and subparacompactness (see [Ch2]),

we introduce the classes of d-regular, d-normal and collectionwise d-normal spaces.
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1.4. DEFINITION. A space X is said to be d-normal (d-regular [He]) if for
each closed (one-point) set K and open set V' containing K- there exist an F,-set L
and an open set W such that K WeLcV.

1.5. Remark. By inductively applying the definition of d-normality we can
obtain, for .a closed set K and its neighbourhood V, an open F,-set W such that
KcWcV. Thus d-normality is equivalent to D-normality introduced in [Br].

Observe that the set L can, ‘equivalenﬂy, be replaced by int; ¥ for a certain &
(f L = | L, then § = {{V, X\L,}: n>1}). This suggests

a nZ 1

1.6. DEFINITION. A space X is collectionwise d-normal if for each discrete
collection # of closed sets and its open expansion {V(K): Ke XA} there exist a d
and an open cxpansion {W(K): Ke X'} of A such that K= W(K)cint,V(K)
for- Ke A

1.7. Remark. If inty¥ is replaced by Int,¥ = U {W<V: W is open and
St(W, @)V for a @ e}, then 1.1 gives a characterization of paracompactnc?ss
form [A], the concept of kernel-normality (see the proof of 1.2) gives a characteriz-
ation of normal covers, 1.4 gives a characterization of normal spaces [E1, 1.5.14]
and 1.6, a characterization of collectionwise normality (see [El, p. 410]).

The following diagram describes the situation (see [Ch2]).

metrizable => paracompact = collectionwise normal = normal = regular

4 4 ¢ ¢ 4
developable = d-paracompact = collectionwise d-normal = normal = d-regular
4 4 4

subparacompact = collectionwise subnormal = subnormal

A metacompact subparacompact space which is not d-normal can be obtained
by removing the pair of non-isolated points from Axg) x A(N;) [El, 2.3.36].
This shows that the properties of the third row are essentially weaker than

the properties of the second row. _ . )
We end this section by giving some results showing the analogies between

the properties of the second and the first row. :

1.8. PROPOSITION. A space X is d-paracompact iff X is a submetacompact
(= 0-refinable) collectionwise d-normal space (see [El, 5.3.3]).

From 1.8 and 1.3, it follows that the assumption that Y is perfect in Theorem 2.2
of [Ch5] can be replaced by the assumption that ¥ is a collectionwise d-normal
space, which makes this result parallel to Theorem 1.2. B of [Ch5].

Another version of 1.8 is

1.9. PROPOSITION. If #" is a point-finite open cover of a collectionwise d-normal
space X, then there exist a collection 8 consisting of point-finite open covers and
a point-finite open cover W refining ints¥".
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Proof. Standard methods allow us to construct an. open cover
W= {W¥V): Ve¥}

and a collection 8’ = {@: n3>1} such that W(V)cinty V for Ve ¥ [El, 53.3].
Clearly, # is a point-finite cover. Thus, it is sufficient to replace each 2, by a point-
finite open cover 9, such that St(x, 2,) = ¥V implies St(x, 2,)=V for Ve ¥

Fix an n>1 and put E(V) = {x: St(x, P, <V} = X\St(X\V, 2,). Then
{E(V): Ve ¥} is a locally finite collection of closed subsets of X.

Let 2, = {D(x): xe X}, where D, x)={V: xeEF)NU{EW):
x¢ E(V)). Tt is easy to seethat 9, is a point-finite open cover of X and that
xo € E,(V,) implies that St(xo, D)<V, (see [El, 5.1.13]).

Using 1.9 and the proof of 1.2, we obtain (see [Br, Theorem 2])

1.10. PROPOSITION. If % is a point-finite open cover of a collectionwise d-normal
space X, then there exists a U-mapping of X onto a metacompact developable
Ty-space. .

From 1.10, it follows that the assumption that ¥ is perfect in Theorem 2.2.B
of [Ch4] can be replaced by the assumption that Y is a collectionwise d-normal
space, which makes this result parallel to Theorem 1.2.B of [Ch4].

2. d-paracompact metalindelof spaces. In the class of metalindeldf spaces,
d-paracompactness behaves as subparacompactness.

2.1. PROPOSITION. For a space X the following conditions are equivalent:

(i) X is a d-paracompact metalindelf space, .

(il) X is subparacompact and, for each open cover ¥ of X, there exist an open
cover W of X and, for nz1, collections {E(W): We W} of closed subsets of X which
are locally countable as indexed collections and satisfy :

) Sor each We W', W= U B(W)cV(W) for a V(W)e ¥,
nz1 e

(iii) for each open cover ¥ of X, there exist an open cover W and collections
{EW): We W} of closed subsets of X which are discrete as indexed collections
and satisfy (¥),-

(iv) same as (iii) with “discrete” replaced by “locally finite”,

(v) ‘each open cover ¥ of X has an open o-discretely decomposable refinement
(this means that one can require that W = ylE,,(W) in (iii)).

Proof. (i) = (i). We can assume that ¥ is a point-countable open cover
of X, take a § and an open shrinking # of int,%" and define E,(W) as in the proof
of 1.9.

(ii) = (iii). This implication follows from [M, 3.5]. We give the proof for the
sake of completeness.

Consider a collection {E(W): We %} of closed subsets of the subparacompact
space X and assume that it is locally countable as an indexed collection. Take

a cover & =1U &, such that each &, is a discrete collection of closed subsets
Z1
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of X and W(L)={WeWw: EW)nL+#@} is countable for Le . If
{wil):j= 1} is an enumeration of #'(L) for L € Z, then the sets E; (W) = E(W) N
A U{Le & W= WL)} form, for i, j>1, discrete collections indexed by #" and
satisfy E(W) = U E,(W). This shows that (i) implies (iid).

Liz1

The equivalence of (iii) and (v) can be proved by induction as in 1.5.

The remaining implications can be proved either by observing that (jii) =
(iv) = (ii) = (iii) = (i) or, more directly, by using a method from [E1, 5.1.13]
(as in the proof of 1.9) in order to show that (iv) = (1).

The characterizations given in 2.1 allow to use standard methods in order to
prove the following two theorems: ’

2.2, TueoreM. If f: X — Y is a closed mapping and X is a d-paracompact
metalindeldf space, then Y is a d-paracompact metalindeléf space (%). .

Proof. From [Bul], it follows that Y is subparacompact. Thus, in order‘ to
prove that Y satisfies (i) of 2.1, it suffices to show that for any discrete collecm?n
oA of closed subsets of ¥ and its open expansion % = {U(K): Ke &’ 1 there exist
an open expansion # = {H(K): Ke A’} of ‘o4 and collections {F(K): Ke .9? 1
of closed subsets of ¥ which are locally countable as indexed collections and satisfy
KcH(K)e U FK)cU(K) for Ke X

nzl

We can assume that % is a point-countable expansion of A and that
UK)n U AKX} = for KeA. Let v ={f"'U): Ue %}u{).f\U Jf} a:nd
let # and &, satisfy (i) with respect to #” in X. Assume that ¥ is a shrmkm_g
of ¥. Then H(K) = INF(AW(K)) and F(K) = f(E, (W(K))), where W(K) is
the element of # corresponding to f ~1(U(K)), satisfy our requirements.

2.3. TuporeM. If f: X = Y is a perfect mapping and Y is a d-paracompact
metalindeldf space, then X is a d-paracompact metalindeldf space.

Proof. Let % be an open cover of X. The space X is d-regular [He, 5..10]
(see [E1, 3.7.23]). Thus, there exist an open cover 4 of X and, for n>1, collections
{L.(G): G & %} of closed subsets of ¥’ such that, for each Ge ¥, G= "K;Jan(G) <U(G)

for a U(G)e%. S '

Since X is the perfect preimage of the space Y satisfying (iv) of 2.1, there e)flst

an open cover # of X and collections {F,(H): He o} of closed subsets of X’ which

are locally finite as indexed collections and satisfy Hc UlF"(H)C U ¢(H) for
nz

a finite subcollection ¥(H) of 4.

For He # and G e ¥(H) put F, ,(H, G)= F,(H) A L,(G). For every n,mz>1,
the collection of such F, . (H, G) is locally finite as an indexed collection. Moreover,
HnGe U F,(H,G)=U(G). This proves that X satisfies (iv) of 2.1.

nmz1

(*) One can prove that in the class of orthocompact spaces d -paracompactness can be char.ac-
terized by a condition obtained from (iii) of 2.1 by replacing discrete collections by closurc-preSfalvzlrlzg
collections and deduce that the metalindeldf property can be replaced by orthocompactness m 2.2.
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From 2.2, 2.3 and 1.3, we obtain

2.4. COROLLARY. The property of being a perfect preimage of a4 metacompact
(metalindelif) Moore space is an invariant of perfect mappings.

Corollary 2.4 solves Problem 3.1 from [ChS].

From 1.8, 2.3 and 1.3, we obtain (see [Ch5, Theorem 2.2]).

2.5. COROLLARY. If a regular space Y is an open and compact image of « perfect
preimage of a metric space, then Y is o perfect preimage of a metacompact Moore
space iff 'Y is a collectionwise d-normal space.

3. d-paracompact spaces. We start with two theorems showing that a perfect
preimage of a d-paracompact space need not be d-paracompact.

3.1. THEOREM. Let S be a separable Moore space containing a discrete closed
subset of cardinality c. If every open subset of Z is the union of no more than ¢ closed
subsets, then SXZ is d-normal iff Z is perfect. ) :

Proof. The “if” part is obvious (see [E2, 2.4.7]). Assume that X = SxZ is
d-normal and let Q = {g,,: m=>1} be a countable dense subset of S and R a dis-
crete closed subset of cardinality ¢ disjoint from Q.

Let U be an open subset of Z, then U = {J {K,: re R}, where X, is closed
in Z for re R. We shall show that U is an F,-set,

Put K = U {{r}xK,: reR} and ¥V = Sx U. Clearly, K is closed in X and V
is an open set containing K. Thus, there exist an open set I and closed sets L,,
nz1, satisfying KeWe {) L,=V.

w1

Let L,, = {zeZ: (¢, 2) € L,}. The sets L,,, are closed subsets of Z con-

tained in U. If z € U, then z € K, for a certain r € R and, consequently, (r, z) e K< W.

Hence, there exist n,m>1 such that (g,,z)eL, and. it follows that zeL,,.

3.2. THEOREM. Let S be a separable Moore space containing a discrete closed
subset of cardinality c. If Z has a collection y of no more than ¢ open covers such that
ze U and U open in Z implies ze St(z, 9)c U for a G ey, then SXZ is d-para-
compact iff Z is developable.

Proof. The “if” part is obvious. Assume that X = SxZ is d-paracompact
and choose Q and R in S as in the preceding proof.

By imitating the proof of the metrizability of collectionwise normal developable
spaces [El, 5.4.1], we can construct discrete collections &, of closed subsets of Z
and their open expansions {G(E): Ee &,}, for re R, such that ze U and U open
in Z implies that there exist 1 e R and Ee &, satisfying ze EcG(E)=U.

Put # = {{r}xE: reRand Eed,} and ¥ = {((SNR)U {r})x G(E): re R
and Ee6,}. Clearly, % is a discrete collection of closed subsets of Z and ¥ is its
open expansion. Thus, there exist an open expansion #” of 4 and a § = {@,:n >}
such that Kc W(K)<int; V(K) for Ke A

Let 2,, be the collection of the projections onto Z of the elements of
{Dn({q,}xZ): De,}. Weshall prove that {@,,: n,m>1} is a development
of Z. Suppose that ze U and U is open in Z. Then there exist r & R and E e &, such
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that ze EcGJ(E)=U. For K = {ryx Ee A" we have (r, z) € K and, consequently,
there exists an m> | such that (q,,, 2) € W(K). Since W(K)<int;V(K), there exists
an n>1 satisfying St((g,.2), @,)cV(K) and from the definition of V(K) we
obtain St(z, Z,,)=G(E)=U. ) ‘

3.3, ExAMPLE. Let S be a locally compact Moore space obtained by adding
to a countable set O of isolated points a set R of ¢ almost disjoint infinite subsets
of Q [El, 3.6.1]. If Z = A(,), then X = SxZ is not d-normal and the projection
of X onto S is a perfect mapping. If Z is the two arrows space [El, 3.10.C], then
X = SxZ is a perfect (therefore d-normal) space which is not d-paracompact
and is a perfect preimage of S. Moreover, X is a d-normal first countable space
which is not collectionwise d-normal.

Example 3.3 shows that the conjecture in [P, p. 1041] that perfect preimages
of Moore spaces are d-paracompact is false. In [Ch6] we use this example in the
construction of examples showing that the property of being a perfect preimage
of a Moore space is not an invariant of perfect mappings (see 2.4 and 3.5).

We do not know whether d-paracompactness is an invariant of perfect mapp-
ings. However, in the class of p-spaces we have

3.4, THEOREM. [f f: X — Y is a perfect mapping and X is a d-paracompact
p-space, then Y is a d-paracompact p-space.
From 3.4 and 1.3 we obtain

3.5. COROLLARY. .The property of having, for each openj cover U, a perfect
U -mapping onto a Moore space is an invariant of perfect mappings.

Proof of 3.4. Let fi X — Y be a perfect mapping of a d-paracompact
p-space X. We know [ChCN, 4.1] that Y is a subparacompact p-space. By virtue
of 1.8 it suffices to show that Y is collectionwise d-normal. Our proof is similar
to the proof of 4.1 in [ChCN].

Assume that 2 is a discrete collection of closed subsets of Y and
% = {U(K): Ke #} an open expansion of %", Then, in X, for f~'(A") and its
open expansion ¥’y = f~1(4) there exist an open expansion #"y = {W,(K): Ke A}
and §, such that

FMK) e W(K) cint,, fTHUK)).

Since f is a closed mapping, we can shrink #, to an expansion ¥, of f~1(A)
consisting of inverse images of open subsets of ¥ Again, there exist an open ex-
pansion #", of f71(A’) and &, such that

FHK)Ye Wy(K)cints, Va(K) .

Take J; to be a countable collection of covers of X witnessing the fact that
X is a p-space. ,

Put § = 8, U §, U 8, represent & as {D,},, and let %, be a base of X re-
fining 2, for nz 1.
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From our construction it follows that each sequence {B,},{ such that
B,e%, and B,,,cB, for n>1, satisfies (B denotes () B,)

nzl

(1) if Wy(K)n B # @, then B,cf ' (U(K)) for a certain n21,

(2) if W,(K)n B # @, then f~Yf(B,)c W, (K) for a certain n>1,

(3) if B # O, then B is compact and each open set containing B contains
a B, for a certain n>1.

Let H(K) be an open subset of Y containing K such that f ~* (H(K))< W(K).
We shall show that there exists a countable collection y of open covers of Y such
that K= H(K)<int,U(K) for Ke A"

From [ChCN, 1.1, 2.8] it follows that it is sufficient to construct a sequence
(a sieve) ¢ = {(%,, 4,, T,D},>, such that &, = {G(a): we 4,} is an open cover
of ¥, m: Ay = A, for n21, Gle,) = U {G@): aen; (o)} for «, & 4, and cach
sequence (thread of %) {G(«,)},>1 such that o, €4, and m,(a,,,) = a, for n>1
satisfies

@ fHE)n ) G(a,) # B, then G(a,)cU(K) for a certain n>1.

nz1

~ We construct ¢ by induction on n>1 in such a way that 4, Y" and =, is
the restriction of the projection of Y"*! onto Y" to A,.,.

Starting with 4y = &, G(@) = Y and #,(D) = X we can construct, by
induction on n>>1, 4, Y* and, for a.€ 4,,, G(e) open in ¥ and a finite subcollection
B() of B, in such a way that for &' = (yy, ..., pp-;) € 4,~, and ye G(') the
sequence & = (¥4, ..., Yu-1,¥) € 4, and the following conditions are satisfied:

(5) 6@ = IN(Xn U B,(),

(6) ye G(@),

(7) the elements of 4,(a) intersect f~(y),

(8) the closures of the elements of %,() refine &,_,(x").

Clearly, our construction ensures that % is a sieve of Y. Let (4, s, ...) be
a sequence of elements of ¥ such that o, = (yy, ..., »,) € 4, for n=1. It remains
to check that {G(«,)},», satisfies (4).

Suppose that this sequence does not satisfy (4). Then there exist a Ke & and
ye H(K)n () G(x,), such that G(x,)#£U(K) for n>1. Thus (5), (8) and Konig's

nx1
lemma [ChCN, 1.4] imply that there exist sequences {Butnz1 and {D,},5, such
that, for n>1, B,, D,e4%,®,), B,.;<=B,, Dy;cD,, B,Anf ) # & and
Dn¢f—1(U(K)).
From the compactness of f~*(y)= W,(K) it follows that B = [} B, intersects

nxl

WZ(K_). Thus (2) ensures the existence of an n>1 such that f~f(B,)= W;(K).
Consider Z = Bu L}J (B0 fX(3,). By virtue of (3), Z is compact. Therefore
m>n

f “HZ) s -a compact subset of f~'f(B,) = W,(K). But (7) implies that each D,
intersects f~1f(Z) and we obtain a contradiction with ( 1), because no D, is con-
tained in £ ~(U(K)). :
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4, Monotonic generalizations. The proof of 3.4 suggests the possibility of
defining monotonic generalizations of d-paracompactness and subparacompactness.

‘We shall define such generalizations and use them in order to prove the follow-
ing three theorems:

4.1, THEOREM. Let X be a d-regular submetacompact space. If X is o-para-
lindeléf, then X is d-paracompact. If X has a o-locally countable base, then X is
developable.

4.2, THEOREM. Let X be a semistratifiable space (see 4.8). If X is metalindeldf,
then X is d-paracompact, If X has a point-countable base, then X is developable.

4.3, THEOREM. Let % be a well-ordered open cover of a submetacompact space X
and let P(U) = UNU {U'e%U: U'<U}. Then every P(U) is a Gs-set iff there
exists a & such that P(U)<ints U for Ue . :

Theorem 4.1 is a slight generalization of some results in [Bu2]. The second
part of 4.2 follows from [H] and [C]. Both parts of 4.2 follow directly from

44, LEMMA. If ¥ is a point-countable open cover of « semistratifiable space X,
then there exists ¢ § such that V = intsV for Ve ¥ (or, equivalently (see the proof
of 2.1), ¥ is o-discretely decomposable).

Theorem 4.3 is equivalent to [J, 1.16] (see [ChZ]). Observe that the second
example constructed in 3.3 gives a perfectly subparacompact space X which is
not d-paracompact.

In what follows, by a refinement of an open collection ¥" we always mean
a collection # refining ¥~ together with a correspondence W — V(W) such that
We V(W) for WeW'. ”

" If ¥ is a refinement of ¥, then a sequence {4}, of bases of X is said to
be a (4, ¥")-sequence if each decreasing sequence {B,},»; such that B, €4, for
nz1 satisfies

W, if W N B, # @, then B,cV (W) for a certain n>1.
LEDS

4.5, DeriNITION. A space X is said to be monotonically subparacompact
(d-paracompact) if for each open cover #" of X there exist an (open) cover ¥~ refin-
ing ¥ and a (¥, ¥)-sequence of bases of X.

Since (#°,¥") is a monotonic property in the sense of [ChCN], it follows
that the existence of a (%, ¥")-sequence of bases is equivalent to the existence
of a (#,¥)-sieve and, in the class of submetacompact spaces, it is equivalent
to the existence of a & such that Waint, V(W) (see [ChEN, 2.8] or [WW2]). In
particular, we have : .

4.6. PROPOSITION. A space X is subparacompact (d-paracompact or developable)
iff X is submetacompact and monotonically subparacompact (d-paracompact  or
developable).

From 4.6 it follows that 4.1 is a consequence of

47, THEOREM. Let X be a d-regular space. If X is o-parolindeldf, then X is
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monotonically d-paracompact. If X has ¢ a-locally counicble base, then X is monotoni-
cally developable.

Proof. Let ¥ be an open cover of a d-regular ¢-paralindeldf space X. Then

there exists a refinement % = |J #; of ¥ such that each #, is a locally count-
iz1

able collection and each We #" is contained in an F,-set contained in V(W).
Thus, for each We ¥, there exists a collection 6(W) such that Weinty g V(W)

If H is an open set intersecting countably many clements of %";, then we can
use § = U {8(W): Wew,and Wn H # @} in order to construct a (#",, ¥)-sieve
on H. Since X can be covered by such sets A, it follows that, for each i1, X has
a (W;,¥")-sieve and consequently a (#",, ¥")-sequence of bases. The canonical
function from @ onto wxw orders these bases into a (%", ¥)-sequence.

Suppose now that ¥" = [J ¥7; is a base of X such that ", is locally countable
izt
for j=1. Since X is a d-regular space with a o-locally countable base, each Ve ¥

can be covered by a collection #' (V) = |J # (V) of open sets such that each
i1

W (V) is locally countable and each We % (V) is contained in an F_-set

contained in V.

Let #7;= U{#(V): Ve¥}} and # = {J #",;. Then each Wi
iJjz1

a locally countable (in a strong sense; each We '%/']"7' ;is indexed by a ¥V = V(W)
such that We % (V) and may occur in #';,; many times) refinement of ¥, Thus,
we can repeat the reasoning from the first part of the proof in order to construct
a (W, ¥")-sequence of bases. This sequence will be, by virtue of our construction,
a monotonic development of X.

Let us now turn to the proof of 4.2. As we have observed, it suffices to prove 4.4.
We shall use the following definition of semistratifiability:

4.8. DermITION [C]. A space X is said to be semistratifiable if each point
x e X has a sequence of neighbourhoods {H,(x)},» such that x e N H,(x,) implies
nzl

that {x,},5,; converges to x.

Since semistratifiable spaces are subparacompact [C], it follows that 4.4 is
a consequence of

4.9. PROPOSITION. If' ¥ is a point-countable open cover of a semistratifiable
space X, then X has a (¥, ¥)-sieve.

Proof. We shall apply the method of proof of Theorem 2.8 in [Chl] (we
cannot apply this theorem because ¥ need not be a (%', ¥")-cover in the sense
of 2.7 in [Chl]).

Let {H,(x)},»: be a sequence of neighbourhoods of x for x e X as in 4.8 and
let {Vy(x): i1} be a fixed enumeration of {Vev: xe V} for xe X. As in the
proof of 3.4, we construct the sieve ¢ so that A, X", m, is the restriction of the
projection and, for o’ = (x, ..., x,_) €d,_; and x, e G('), o = (X15 vos Xyogs Xy)
e A, and G () satisfies

icm
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(1) x, & Gl@)=H,(x,),

(2) Gly=  {Filxi): xe Vi(x,) and 7, k<n}.

‘In order to prove that & is a (¥", ¥")-sieve suppose that (X1, X3,...) is a se-
quence of elements of X such that «, = (x;,...x,)e 4, and N G(a,) intersects

nz1

an element V¥ of #". We have to prove that G(«,)= ¥ for a certain n3>1.
Let xe V'n () Gla,). From (1) it follows that {x,},», converges to x. Take
1

a kz1 such that x,e V and i=1 such that V = V(x,). If n2i+k is such that
x, €V, then (2) gives Gla)=V.

Before formulating the monotonic version of 4.3 we shall recall the definition
of a monotonic Gy-set (= a set of interior condensation [WWI] or, shortly,
a Wj-set [ChCN).

4.10. DEFINITION. A subset P of X is a monotonic G,-set if there exists a se-
quence {#4,},5; of bases of P in X such that the intersection of cach decreasing
sequence {B,},5 such that B, € 4, is contained in P. Such a sequence will be called
a (W)~sequence of bases for P. A space X is said to be monotonically perfect if the
closed subsets of X are monotonic (y-sets.

4.11. PrOPOSITION, Let % be a well-ordered open cover of X and let P(U)
= U\U{U'e¥: U'<U}. Then every P(U) is a monotonic Gy-set iff there exists
a (P, U)-sequence of bases of X, where @ = {P(U): Ue).

Proof. The “if” part is easy: if {#,},5, is a (2, %)-sequence of bases of X,
then {#,(U)},5., where #,(U) = {Be#,: BnP(U) # @ and B<=U}, is a (W)-
sequence of bases for P(U).

Suppose that cach P(U) has a (W)-sequence of bases {#,(U)},»;. In order
to construct a (£, %)-sequence of bases which makes all the sets £(U) monotonic
G;-sets in a uniform way, we proceed as in the proof of Proposition 1 in [Ch3].

We can assume that, for each Ue %, {#,(U)},, is a decreasing sequence and
Be# (U) implies that Bn P(U) # & and B U.

Let 4, = U {#,U): Ue%}. Clearly, each 4, is a base of X. We shall prove
that {#,},», is a (#, %)-sequence of bases.

Take P = P(U)e# and a decreasing sequence {B,},»; such that B,e%,
and P B, 3 @. For each n>1 there exists (exactly one) U, such that B, € £,(U,).

1

ngz

Since B, < B,, it follows that U,,;<U, and consequently there exist a U'e %

‘and m21 such that U, = U’ for nzm. Then () B,<=P(U’), which implies that

nzm
U’ = U and, in particular, B,=U.

Proposition 4,11 can be used in the proofs that the existence of primitive
structures implies the existence of the corresponding monotonic structures in
monotonically perfect spaces [WWI1] (see [Ch3, Remark 1]). -

Another interesting application of 4.11, besides 4.3 and its consequences, is

4,12, COROLLARY. Monotonically perfect spaces are monotonically subpara-
compact.
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