

Forms and mappings. I: Generalities

hv

Andrzej Prószyński (Bydgoszcz)

Abstract. This paper continues the problems of [4], [5] and [6]. The main question is the difference between homogeneous polynomial mappings and so called m-applications. This is investigated with the aid of the homomorphism h between the respective representing modules. Most of the results form a general tool for the subsequent parts of the paper. Section 5 yields some ideal theory and an explicit computation (for $m \le 5$) of the modules $\tilde{I}^m(R^n)$ defined in [4].

In this paper all rings and algebras are assumed to be commutative with 1. The symbol of a ring will in general be omitted, for example at \otimes and Hom. We will also assume that the degree m is positive.

1. Preliminaries. The following definitions are contained in [7], [3] and [4].

A polynomial law on the pair (M, N) of R-modules is a natural transformation $F = (F_A)$ of the functors $M \otimes -$, $N \otimes -$: R-Alg \to Sets. It is called a form of degree m if $F_A(\underline{x}a) = F_A(\underline{x})a^m$ for any R-algebra A, $a \in A$ and $\underline{x} \in M \otimes A$. All such forms constitute an R-module denoted by $\mathcal{P}_R^m(M, N)$. This gives us, in a natural way, a functor \mathcal{P}_R^m : R-Mod $^0 \times R$ -Mod $^- \times R$ -Mod.

It is proved in [7] that $\mathscr{P}_R^m(R^n,R) \approx R[T_1,\ldots,T_n]_m$. In general, any form $F \in \mathscr{P}_R^m(M,N)$ has the shape

$$F_{A}(x_{1} \otimes a_{1} + ... + x_{n} \otimes a_{n}) = \sum_{m_{1} + ... + m_{n} = m} F_{m_{1}, ..., m_{n}}(x_{1}, ..., x_{n}) \otimes a_{1}^{m_{1}} ... a_{n}^{m_{n}},$$

where $F_{m_1,...,m_n}$. $M^n \to N$ are uniquely determined by F. In particular $F_m = F_R$ and $F_{1,...,1} = PF$ is m-linear and symmetric.

For any mapping $f: M \to N$ define the *n*th defect $\Delta''f: M'' \to N$ in the following way

(1.1)
$$(\Delta^n f)(x_1, \dots, x_n) = \sum_{H \subset [1, n]} (-1)^{n-|H|} f(\sum_{i \in H} x_i).$$

It can also be defined inductively as an (n-1)-fold iteration of Δ^2 (see [4], p. 221). Moreover, it follows from [4] that $PF = \Delta^m F_R$ for any form F of degree m. This gives us the natural transformation

$$T_R^m: \mathscr{D}_R^m(M, N) \to \operatorname{Appl}_R^m(M, N), \quad T_R^m(F) = F_R,$$

where $\operatorname{Appl}_R^m(M, N)$ denotes the module of all m-applications $f: M \to N$, i.e., mappings satisfying the conditions:

(A1) $f(rx) = r^m f(x)$ for any $r \in R$ and $x \in M$,

(A2) The associated symmetric mapping $\Delta^m f$ is m-linear.

(As a consequence, f(0) = 0 and $\Delta^k f = 0$ for any k > m.) In the free case T_R^m gives us the following well-known mapping:

$$T^m: R[T_1, ..., T_n]_m \to \text{Appl}_R^m(R^n, R), \quad T^m(F)(x_1, ..., x_n) = F(x_1, ..., x_n).$$

It is known from [3] that T_R^m is an isomorphism if $m \le 2$ or M = R or m! is invertible in R. In general, it is neither injective nor surjective. Write $\text{Ker}(T_R^m) = \mathcal{O}_R^m(M, N)$ and $\text{Im}(T_R^m) = \text{Hom}_R^m(M, N) \subset \text{Appl}_R^m(M, N)$. The kernel is studied in [4] and [5], and the cokernel will be investigated in the present cycle of papers.

It follows from [7] that $\mathscr{P}^m(M, -)$ is represented by $\Gamma^m(M)$, the *m*th divided power of M. Moreover, it is evident that $\operatorname{Appl}^m(M, -)$ is represented by the module $\Delta^m(M)$ defined by the set of generators $\{\delta^m(x); x \in M\}$ and the relations

 $1^{\circ} \delta^{m}(rx) = r^{m}\delta^{m}(x)$ for any $r \in R$ and $x \in M$,

 $2^{\circ} \Delta^m \delta^m$ is m-linear,

and the correspondence is given by the following diagram:

(In [3], the module $\Delta^m(M)$ is denoted by $\Gamma_m(M)$ and has another presentation.) T^m induces the natural homomorphism $h=h^m\colon \Delta^m(M)\to \Gamma^m(M)$ given by $h(\delta^m(x))=x^{(m)}$ (see [3]). Write $\overline{\Gamma}^m(M)=\operatorname{Im}(h^m)=R\{x^{(m)};x\in M\}$. Since Hom is left exact it follows that $\widetilde{\mathscr{D}}^m(M,-)=\operatorname{Ker}(T^m)$ is represented by $\widetilde{\Gamma}^m(M)=\operatorname{Coker}(h^m)=\Gamma^m(M)/\overline{\Gamma}^m(M)$. On the other hand, $\operatorname{Hom}^m(M,-)=\operatorname{Im}(T^m)$ is representable if and only if the exact sequence

$$0 \to \overline{\varGamma}^m(M) \to \varGamma^m(M) \to \widetilde{\varGamma}^m(M) \to 0$$

splits (see [4], Corollary 4.2). Moreover

Lemma 1.1. $\operatorname{Hom}(\overline{\Gamma}^m(M), -)$ is the smallest representable functor containing $\operatorname{Hom}^m(M, -)$.

Proof. A representable functor $F = \operatorname{Hom}(X, -)$ contains (isomorphically) $\operatorname{Hom}^m(M, -)$ if and only if there exists an exact sequence $0 \to \widetilde{\mathscr{P}}^m(M, -) \hookrightarrow \mathscr{P}^m(M, -) \to F$, or, equivalently, an exact sequence $X \to \Gamma^m(M) \to \widetilde{\Gamma}^m(M) \to 0$. In particular, $\operatorname{Hom}^m(M, -) \hookrightarrow \operatorname{Hom}(\overline{\Gamma}^m(M), -)$. In general, the image of X is $\overline{\Gamma}^m(M)$, and this gives us the unique monomorphism $\operatorname{Hom}(\overline{\Gamma}^m(M), -) \hookrightarrow F$ over $\operatorname{Hom}^m(M, -)$.

COROLLARY 1.2. $\operatorname{Hom}(\overline{\Gamma}^m(M), N)$ is isomorphic to the following submodule of $\operatorname{Appl}^m(M, N)$:

$$\overline{\operatorname{Hom}}^{m}(M,N) = \{g \colon M \xrightarrow{\delta^{m}} \Delta^{m}(M) \xrightarrow{h^{m}} \overline{\Gamma}^{m}(M) \xrightarrow{f} N; f \in \operatorname{Hom}(\overline{\Gamma}^{m}(M), N) \}.$$

Moreover, $g \in \operatorname{Hom}^m(M, N)$ if and only if f can be extended to $\Gamma^m(M)$. In particular, $\operatorname{Hom}^m(M, N) = \overline{\operatorname{Hom}}^m(M, N)$ for any injective N.

Let us consider the following extensions:

$$\operatorname{Hom}^m(M, N) \subset \operatorname{Hom}^m(M, N) \subset \operatorname{Appl}^m(M, N)$$
.

The first of them can be embedded in the long exact sequence

$$0 \to \operatorname{Hom}^m(M,N) \to \overline{\operatorname{Hom}^m}(M,N) \to \operatorname{Ext}^1(\widetilde{\Gamma}^m(M),N) \to \operatorname{Ext}^1(\Gamma^m(M),N) \to \dots$$

(see [4], Corollary 4.3). Similarly, for the second extension:

$$0 \to \overline{\operatorname{Hom}}^{m}(M, N) \to \operatorname{Appl}^{m}(M, N) \to \operatorname{Hom}(\operatorname{Ker}(n^{m}(M)), N) \to \operatorname{Ext}^{1}(\overline{\Gamma}^{m}(M), N) \to \\ \to \operatorname{Ext}^{1}(\Delta^{m}(M), N) \to \dots$$

Since Γ^m preserves projectives (see [7]), it follows that the first (the second) sequence reduces to the short sequence if M is projective (and gl. $\dim(R) \leq 1$). Then the question of the cokernel reduces to the computation of $\tilde{\Gamma}^m(M)$ or $\operatorname{Ker}(h^m(M))$. The value of $\Gamma^m(M)$ is found in [4] and [5], finding the value of $\operatorname{Ker}(h^m(M))$ is much more complicated.

The most interesting case is described in

COROLLARY 1.3. The following conditions are equivalent:

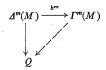
(1) Ker $(h^m: \Delta^m(M) \to \Gamma^m(M)) = 0$,

(2) $\overline{\mathrm{Hom}}^m(M,-) = \mathrm{Appl}^m(M,-),$

(2') Appl^m(M, -) is the smallest representable functor containing $Hom^m(M, -)$,

(3) $\operatorname{Hom}^m(M, Q) = \operatorname{Appl}^m(M, Q)$ for any injective Q,

(3') For any injective Q, one can complete any diagram of the form



Proof. Evidently (1) \Leftrightarrow (2) \Leftrightarrow (2') \Rightarrow (3) \Leftrightarrow (3'). For the proof of (3') \Rightarrow (1) use an injective module Q containing $A^m(M)$.

EXAMPLE 1.4. Let K be an algebraic extension of \mathbb{Z}_p . It follows from [6] (Theorems 2.7 and 4.1) that the above conditions are satisfied for any K-module M if and only if $K = \mathbb{Z}_p$ or $m \leq 2p$.

Example 1.5. Let m = 3. It will be proved in Part II that the above conditions are satisfied for any flat R-module if R is a Dedekind domain, and for any R-module if R = Z or no quotient field of R is isomorphic to Z_2 .

In the next sections we state the results which will be used to determine $Ker(h^m)$ in some cases, or, in particular, to prove theorems as in the above examples.

2. Fundamental properties. Let $X = \Gamma^m$, $\tilde{\Gamma}^m$, $\overline{\Gamma}^m$ or Δ^m , and let $F = \mathcal{P}^m$, \mathscr{F}^m , $\overline{\mathrm{Hom}}^m$ or Appl^m, respectively. Consequently, $F(M,N) \approx \mathrm{Hom}(X(M),N)$.

LEMMA 2.1. X commutes with direct limits.

Proof. It suffices to prove that the natural homomorphism $F(\lim M_1, N)$ $\stackrel{e}{\to} \lim F(M_1, N)$ is bijective. For the first three cases see [4], Corollary 4.5. Let $F = \text{Appl}^m$. Observe that ϱ^{-1} exists for F = Map, the functor of all mappings between modules. Moreover, the mapping reconstructed from m-applications is, obviously, an m-application; this completes the proof.

COROLLARY 2.2. Suppose that h^m is mono, epi or iso on the subcategory of finitely generated (and free) R-modules. Then it is so on the category of all (flat) R-modules.

The following diagram of modules and their homomorphisms

$$M \xrightarrow{i} N \xrightarrow{q} P$$

is called a Grothendieck sequence (see [7], p. 278, Definition 1) if q is surjective and

(2.1)
$$\bigvee_{x,y \in N} \left(q(x) = q(y) \Leftrightarrow \underset{z \in M}{\exists} (x = i(z) \& y = j(z)) \right).$$

An equivalent definition is given by the following conditions:

(1) $q = \operatorname{Coker}(i, j)$,

(2)
$$\bigvee_{x \in N} \exists_{t \in M} x = i(t) = j(t).$$

Evidently (1) and (2) follow from the previous definition. Conversely, if q(x) = q(y)then x-y = (i-j)(u) by (1) and hence x-i(u) = y-j(u) = i(t) = j(t) by (2). This gives us (2.1) for z = t + u.

LEMMA 2.3. If $X \neq \overline{\Gamma}^m$ then X preserves Grothendieck sequences.

Proof. It can be proved directly that any X (without restrictions) preserves condition (2). Hence it suffices to prove that the sequence

$$0 \to F(P, Q) \xrightarrow{F(q,1)} F(N, Q) \xrightarrow{F(l,1)} F(M, Q)$$

is exact for any i, j and q constituting a Grothendieck sequence, any O and any $F \neq \overline{\text{Hom}^m}$. Let $F = \text{Appl}^m$. The only non-trivial part is the completion of the following commutative diagram:

1,385

Forms and mappings, I: Generalities

where f is an m-application. It follows from (2.1) that g exists (as a mapping), and it is evidently an m-application. The case of \mathscr{P}^m follows from [7] Théorème IV.4, and the case of \mathfrak{F}^m is a consequence of the two preceding cases.

Remark 2.4. Any exact sequence $K \to P \xrightarrow{q} M \to 0$ induces the following Grothendieck sequences:

$$P \oplus K \xrightarrow{(1,0)} P \xrightarrow{q} M$$
,

and (by Lemma 2.3):

$$X(P \oplus K) \xrightarrow{X(1,0)} X(P) \xrightarrow{X(q)} X(M)$$

for any $X \neq \overline{\Gamma}^m$. In particular,

(2.3)
$$\Delta^{m}(M) \approx \Delta^{m}(P)/R\{\delta^{m}(x+y) - \delta^{m}(x); x \in P, y \in \text{Ker}(q)\}$$

and similarly for other functors. This allows us to compute any value of X provided that the values of X on free modules are known. Lemma 2.3 is not true for $X = \overline{\Gamma}^m$ because in (2.2) g is not necessarily in Hom^m even if f is (for example, it is possible that $\overline{\mathrm{Hom}}^m(N,Q) = \mathrm{Appl}^m(N,Q)$ and $\overline{\mathrm{Hom}}^m(P,Q) \neq \mathrm{Appl}^m(P,Q)$ as follows from Corollary 2.6 and Proposition 2.9 below).

COROLLARY 2.5. Suppose that h_R^m is an isomorphism on the subcategory of finitely generated free R-modules. Then $h_R^m: \Delta_R^m \xrightarrow{\approx} \overline{\Gamma}_R^m = \Gamma_R^m$.

Let us consider the simplest case of a cyclic module R/I. First of all, observe that $\Delta^m(R) = R\delta^m(1) \approx R$ and $\Gamma^m(R) = R1^{(m)} \approx R$ (see [3], Example 7.1) and hence

COROLLARY 2.6. $h_R^m(R)$: $\Delta_R^m(R) \stackrel{\approx}{\to} \Gamma_R^m(R)$.

It follows from (2.3) and [8], Proposition 8, that

$$h_R^m(R/I): R/A_m(I) \xrightarrow{\text{nat}} R/D_m(I)$$

where $A_m(I)$ is generated by the values and $D_m(I)$ by the coefficients of the polynomials

(2.4)
$$(X+y)^m - X^m = \sum_{i=1}^m \binom{m}{i} X^{m-i} y^i \quad (y \in I).$$

Evidently $h_R^m(R/I)$ is an isomorphism for I=0 or R. Moreover, A_m and D_m commute with localizations (compare also Section 3), and hence we can assume that R is local.

PROPOSITION 2.7. Let I be an ideal in a local ring (R, P), char(R) = char(R/P)= p (possibly zero), and let q denote the p-primary part of m (q = 1 for p = 0). Then $A_m(I) = D_m(I) = I^{(q)} := (y^q; y \in I)$, and hence $h_R^m(R/I)$ is an isomorphism.

Proof. First observe that $q = \min\{i > 0; \binom{m}{i} \neq 0 \text{ in } R\}$ (see for example [6], Lemma 2.2); clearly $\binom{m}{a}$ is invertible in R. Evidently $D_m(I) = I^{(q)}$ and $A_m(I)$ is generated by elements of the form $y^q + y^{q+1}a(y)$ for all $y \in I$. Since $y^m \in A_m(I)$ (put X = 0 in (2.4)), it follows by induction that $A_m(I)$ is also $I^{(q)}$.

Suppose now that (R,P) is a discrete valuation ring such that $\operatorname{char}(R)=0$ and $\operatorname{char}(R/P)=p>0$. Let V denote the valuation and let e=V(p), $1\leqslant e<\infty$, be the ramification index. Denote $A_m((r))=(a_m(r))$ and $D_m((r))=(d_m(r))$. The idea of the following Lemma 2.8 and Proposition 2.9 is based on [9], Proposition 3.

LEMMA 2.8. If R is as above, $i \ge 2$ and $V(r) \ge e$, then $V\left(\binom{m}{i}r^i\right) \ge V(mr)$ and the equality holds if and only if p = 2, i = 2, V(r) = e and m is even.

Proof. Let v_p denote the *p*-adic valuation on Q and let $k = v_p(i)$. Since $\binom{m}{i} = \frac{m}{i} \binom{m-1}{i-1}$, it follows that $v_p(m) - v_p\binom{m}{i} \leqslant v_p(m) - v_p\binom{m}{i} = k \leqslant p^k - 1 \leqslant i-1$, and the equalities hold if and only if p = 2, i = 2 and m is even. Consequently

$$V(mr) - V\left(\binom{m}{i}r^i\right) \stackrel{\text{Tole}}{=} e\left(v_p(m) - v_p\binom{m}{i}\right) - V(r)(i-1) \leqslant \left(e - V(r)\right)(i-1) \leqslant 0,$$

and the rest is immediate.

Proposition 2.9. If R is as above and $V(r) \ge e$, then

(1)
$$V(d_m(r)) = V(m) + V(r);$$

(2)
$$V(a_m(r)) = \begin{cases} V(m) + V(r) + 1 & \text{if } V(r) = e, \ R/P \approx \mathbb{Z}_2 \text{ and } m > 2 \text{ is even,} \\ V(m) + V(r) & \text{otherwise;} \end{cases}$$

(3)
$$\operatorname{Ker}(h_{\mathbb{R}}^{m}(R/(r))) \approx \begin{cases} Z_{2} & \text{if } V(r) = e, \ R/P \approx Z_{2} \text{ and } m > 2 \text{ is even,} \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Observe that

$$V(d_m(r)) = \min \left\{ V\left(\binom{m}{i}r^i\right); \ i = 1, ..., m \right\}$$

and

$$V(a_m(r)) = \min \left\{ V\left(\sum_{i=1}^m \binom{m}{i} x^{m-i} y^i r^i\right); x, y \in R \right\}.$$

Hence Lemma 2.8 gives (1) and also (2) except the case where p=2, V(r)=e and m is even. The case of m=2 is evident. For m>2, the above sum has the form $mr(x^{m-1}y+ux^{m-2}y^2)+a$ where $u=\frac{1}{2}r(m-1)$ is invertible in R and V(a)>V(m)+V(r). If $R/P \approx Z_2$ then there exist $x, y \in R$ such that $\overline{x}, \overline{y}, \overline{x+uy} \neq 0$ in R/P, and hence the element in the brackets is invertible. In this case, $V(a_m(r))=V(m)+V(r)$ as required. Let $R/P \approx Z_2$. Since m>2, it follows that $V(a_m(r))\geqslant V(m)+V(r)+1$ and the equality holds because of the case where x=1 and y is the uniformizing parameter. Finally, (3) follows directly from (1) and (2).

The case of V(r) < e is much more complicated. Hence the only complete globalization is the following:

COROLLARY 2.10. Let R be a Dedekind domain. Suppose that any localization R_P is unramified provided that $\operatorname{char}(R_P) \neq \operatorname{char}(R/P)$ (for example, $R = \mathbb{Z}$). Let I be an ideal in R and let t denote the number of prime ideals P in R satisfying $I \subset P$, $I \subset P^2$ and $R/P \approx \mathbb{Z}_2$. Then

$$\operatorname{Ker}(h_R^m(R/I)) \approx \begin{cases} Z_2 \times ... \times Z_2 & (t \text{ times}) & \text{if } m > 2 \text{ is even}, \\ 0 & \text{otherwise}. \end{cases}$$

Proof. Let $I \neq 0$. Write $I = P_1^{k_1} \dots P_n^{k_n}$ for distinct maximal P_i , compute $D_m(I)$ and $A_m(I)$ locally (by Proposition 2.9), and divide $D_m(I)$ by $A_m(I)$ applying the Chinese Remainder Theorem.

Finally, let us study the finite generation of X(M). If M is finitely generated over R then so is $\Gamma^m(M)$ (see [7]) and hence $\tilde{\Gamma}^m(M)$. If, moreover, R is Noetherian, then so is $\overline{\Gamma}^m(M)$. For Δ^m we can prove only

PROPOSITION 2.11. Let M be an R-module generated over Z by $\{x_1, ..., x_k\}$, and let $m \ge 2$. Then $\Delta_R^m(M)$ is generated over Z by $\{\delta_R^m(n_1x_1+...+n_kx_k); 0 \le n_i \le m-1\}$. In particular, if M is a finitely generated R-module then so is $\Delta_R^m(M)$ provided that R is finitely generated as an abelian group.

Proof. Since $\Delta_R^m(M)$ is a quotient of $\Delta_Z^m(M)$ it can be assumed that R = Z. Let $x, y \in M$ and $n \in Z$. The relation $(\Delta^m \delta^m)(nx, x, ..., x, y) = n(\Delta^m \delta^m)(x, ..., x, y)$ gives us the following equality:

$$\sum_{i=0}^{m-2} a_i \delta^m ((n+i)x+y) + \sum_{j=0}^{m-1} b_j \delta^m (jx+y) + b \delta^m (x) = 0$$

where $a_i, b_j, b \in \mathbb{Z}$, $a_{m-2} = \pm 1$ for n > 0 and $a_0 = \pm 1$ for n < 0. Using induction twice (for n > 0 and n < 0) we find that $\delta^m(nx + y)$ belongs to the submodule generated by $\delta^m(x)$ and $\delta^m(jx + y)$ for j = 0, ..., m-1. Applying this successively to $x = x_i$ and the respective y we complete the proof.

The second part of the above proposition will be improved (in Part II) in the simplest non-trivial case m = 3.

3. Change of the base ring. Let A be an R-algebra and let M be an R-module. Then [7], Théorème III.3, gives us the following natural graded A-algebra isomorphism

$$p: \Gamma_{\mathbf{R}}(M) \otimes A \stackrel{\approx}{\to} \Gamma_{A}(M \otimes A), \quad p(x^{(m)} \otimes 1) = (x \otimes 1)^{(m)}.$$

This allows us to prove a generalization of [4], Theorem 6.1:

PROPOSITION 3.1. There exists a natural exact sequence

$$\dots \to \operatorname{Tor}_{1}^{R}(\Gamma_{R}^{m}(M), A) \to \operatorname{Tor}_{1}^{R}(\widetilde{\Gamma}_{R}^{m}(M), A) \to \overline{\Gamma}_{R}^{m}(M) \otimes A \xrightarrow{e} \overline{\Gamma}_{A}^{m}(M \otimes A) \to$$

$$\to \widetilde{\Gamma}_{R}^{m}(M) \otimes A \xrightarrow{\Phi} \widetilde{\Gamma}_{A}^{m}(M \otimes A) \to 0$$

where e and q are induced by p above. Moreover, if $M \otimes A = \{x \otimes a; x \in M, a \in A\}$ (for example, if $A = R_s$ or R/I) then e is surjective and hence q is an isomorphism.

Proof. Evidently p induces e and hence we have the following commutative diagram with exact rows:

$$... \rightarrow \operatorname{Tor}_{1}^{R}(\Gamma_{R}^{m}(M), A) \rightarrow \operatorname{Tor}_{1}^{R}(\widetilde{\Gamma}_{R}^{m}(M), A) \rightarrow \overline{\Gamma}_{R}^{m}(M) \otimes A \rightarrow \Gamma_{R}^{m}(M) \otimes A \rightarrow \widetilde{\Gamma}_{R}^{m}(M) \otimes A \rightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Observe that $\operatorname{Coker}(e) \approx \operatorname{Ker}(q)$ and $\operatorname{Coker}(q) = 0$ by the snake lemma. Moreover, Ker(i) = Ker(pi) = Ker(e). This completes the first part of the proof and the second is evident.

Observe that e is injective if A is a flat R-module. In particular

COROLLARY 3.2. If $A = R_S$ where S is a multiplicative set in R then e is bijective. In other words,

$$\overline{\Gamma}_{R}^{m}(M)_{S} \approx \overline{\Gamma}_{R_{S}}^{m}(M_{S}), \quad \frac{x^{(m)}}{1} \leftrightarrow \left(\frac{x}{1}\right)^{(m)}.$$

If A = R/I then e is surjective and

$$\operatorname{Ker}(e) = \operatorname{Ker}(i) = (\overline{\Gamma}_R^m(M) \cap I\Gamma_R^m(M))/I\overline{\Gamma}_R^m(M)$$

It is non-zero in general because of

Example 3.3. Let (R, I) be a local Noetherian ring, $\dim(R) > 0$, A = R/Iand $M = \mathbb{R}^n$, n > 1. It follows from [7] that $\Gamma_{\mathbb{R}}^m(M)$ is free and $N = \widetilde{\Gamma}_{\mathbb{R}}^m(M)$ is finitely generated. Let ... $\rightarrow F_1 \rightarrow F_0$ be a minimal free resolution of N. Then $\operatorname{Ker}(e) \approx \operatorname{Tor}_{1}^{R}(N, R/I) \approx F_{1}/IF_{1}$, and hence

$$\operatorname{Ker}(e) = 0 \Leftrightarrow F_1 = 0 \Leftrightarrow N \text{ is free} \Leftrightarrow N = 0 \text{ (by [5], Corollary 2.2)} \Leftrightarrow m \leq |R/I| \text{ (by [4], Theorem 6.4).}$$

This is the trivial case where $\overline{\Gamma}^m = \Gamma^m$ over R and over R/I (see [4], Corollary 6.5).

We will prove similar properties of the functor Δ^m . First of all observe that $Appl_A^m(M, N) \subset Appl_R^m(M, N)$ for any R-algebra A and any A-modules M, N. (Moreover, the equality holds if A = R/I). Hence any module homomorphism $M \to N$ over $R \to A$ allows us to complete (in a unique way) the following diagram:

$$\begin{array}{ccc}
& \delta_{R}^{m} & & \\
M & \longrightarrow & \Delta_{R}^{m}(M) \\
\downarrow & & \downarrow & \\
N & \longrightarrow & \Delta_{A}^{m}(N)
\end{array}$$

COROLLARY 3.4. A^m is an endo-functor of the category of pairs (R, M), where R is a (commutative) ring, and M is an R-module.

Let $N = M \otimes A$. The above diagram gives us the following A-homomorphism:

$$d: \Delta_{R}^{m}(M) \otimes A \to \Delta_{A}^{m}(M \otimes A), \quad d(\delta^{m}(x) \otimes 1) = \delta^{m}(x \otimes 1).$$



Moreover, it is evident that the following diagram is commutative

(3.1)
$$\Delta_{R}^{m}(M) \otimes A \xrightarrow{h_{R}^{m} \otimes 1} \overline{\Gamma}_{R}^{m}(M) \otimes A$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow e$$

$$\Delta_{A}^{m}(M \otimes A) \xrightarrow{h_{A}^{m}} \overline{\Gamma}_{A}^{m}(M \otimes A)$$

Observe that d is an epimorphism if $M \otimes A = \{m \otimes a; x \in M, a \in A\}$ (for example, if $A = R_S$ or R/I). In this case, d is invertible if and only if there exists an m-application $M \otimes A \to \Delta_R^m(M) \otimes A$ induced by δ_R^m . This is equivalent to the following condition:

Any m-application $f: M \to N$ over R induces an m-application $g: M \otimes A \to A$ $\rightarrow N \otimes A$ over A such that the diagram

$$\begin{array}{c}
M \stackrel{f}{\longrightarrow} N \\
\downarrow \qquad \qquad \downarrow \\
M \otimes A \stackrel{g}{\longrightarrow} N \otimes A
\end{array}$$

is commutative, i.e., $g(x \otimes a) = f(x) \otimes a^m$ for $x \in M$ and $a \in A$.

PROPOSITION 3.5. Condition (E) is fulfilled for any localization $R \to R_S$.

Proof. Let $f: M \to N$ be an m-application over R. Define $g = f_S: M_S \to N_S$ as above, i.e., $g(x/s) = f(x)/s^m$. An easy verification shows that it is a correct definition and that q satisfies the required condition (A1). Moreover, it is evident that

$$(\Delta^m g)\left(\frac{x_1}{t},...,\frac{x_m}{t}\right) = \frac{(\Delta^m f)(x_1,...,x_m)}{t^m}.$$

In particular, $\Delta^m g$ is m-additive. The following computation completes the proof

$$\begin{split} (\varDelta^m g) \left(\frac{r}{s} \cdot \frac{x_1}{t}, \frac{x_2}{t}, \dots, \frac{x_m}{t} \right) &= (\varDelta^m g) \left(\frac{rx_1}{st}, \frac{sx_2}{st}, \dots, \frac{sx_m}{st} \right) = \frac{(\varDelta^m f)(rx_1, sx_2, \dots, sx_m)}{(st)^m} \\ &= \frac{r}{s} \cdot \frac{(\varDelta^m f)(x_1, \dots, x_m)}{t^m} = \frac{r}{s} \left(\varDelta^m g \right) \left(\frac{x_1}{t}, \dots, \frac{x_m}{t} \right). \end{split}$$

COROLLARY 3.6. If $A = R_s$ where S is a multiplicative set in R then d is an isomorphism. In other words, there exists a natural isomorphism

$$\Delta_{R}^{m}(M)_{S} \approx \Delta_{R_{S}}^{m}(M_{S}), \quad \frac{\delta^{m}(x)}{1} \leftrightarrow \delta^{m}\left(\frac{x}{1}\right).$$

COROLLARY 3.7. Ker $(h_R^m)_S \approx \text{Ker}(h_R^m)$. In particular, Ker $(h_R^m) = 0$ if and only if $Ker(h_{R_R}^m) = 0$ for any prime (maximal) ideal P in R.

EXAMPLE 3.8. Let R be a domain of characteristic 0 or greater than m. Then m! is invertible in $R_{(0)}$; consequently $(\text{Ker}(h_R^m))_{(0)} = 0$, and hence $\text{Ker}(h_R^m)$ is a torsion submodule of $\Lambda_{\mathcal{D}}^{m}(M)$. If R is a Dedekind domain and M is projective then so are $\Gamma^m(M)$ and $\overline{\Gamma}^m(M)$. In this case, $\Delta^m(M) \approx \overline{\Gamma}^m(M) \oplus \operatorname{Ker}(h^m)$.

Let A = R/I. We will find out when (E) is satisfied. Evidently we can assume that N is an R/I-module, i.e., that IN = 0. Then the diagram in (E) has the following shape:

$$M/IM \xrightarrow{g} N$$

COROLLARY 3.9. If M is an R/I-module then (E) is satisfied and consequently $\Delta_{RII}^m(M) = \Delta_{RII}^m(M/IM) \approx \Delta_{R}^m(M)/I\Delta_{R}^m(M), \quad \delta_{RII}^m(x) \leftrightarrow \overline{\delta_{R}^m(x)}.$

The mapping g completing the above diagram has the form $g(\bar{x}) = f(x)$, hence it is unique and it is evidently an m-application (over R or R/I). Unfortunately, the formula can be incorrect (it must be verified that f(x) = f(y) for $x - y \in IM$; compare also Remark 2.4). In other words, we have only $Appl_{R/I}^m(M/IM, N)$ $= \operatorname{Appl}_R^m(M/IM, N) \hookrightarrow \operatorname{Appl}_R^m(M, N)$, and this can be imbedded into the following commutative diagram:

$$0 \to \widetilde{\mathscr{P}}^{m}_{R/I}(M/IM, N) \to \mathscr{P}^{m}_{R/I}(M/IM, N) \xrightarrow{T^{m}_{R/I}} \operatorname{Appl}^{m}_{R/I}(M/IM, N)$$

$$\approx \downarrow^{\mathfrak{g}^{*}} \qquad \qquad \downarrow^{\mathfrak{p}^{*}} \qquad \qquad \downarrow^{T^{m}_{R}} \downarrow^{m}$$

$$0 \to \mathscr{P}^{m}_{R}(M, N) \longrightarrow \mathscr{P}^{m}_{R}(M, N) \xrightarrow{} \operatorname{Appl}^{m}_{R}(M, N).$$

If $T_{R/I}^m$ is surjective then evidently $\operatorname{Appl}_{R/I}^m(M/IM,N) = \operatorname{Hom}_R^m(M,N)$. This is satisfied, for example, if m = 3, $R = \mathbb{Z}$, and R/I is a quotient field \mathbb{Z}_p (Example 1.4). In this case $\operatorname{Hom}_R^m \subset \overline{\operatorname{Hom}_R^m} = \operatorname{Appl}_R^m$ (Example 1.5), and the cokernel for $M = \mathbb{Z}^2$ is $\mathbb{Z}_2 \otimes N$ (Example 4.4 in [4]), which is non-zero for p=2 and $N \neq 0$.

Consider the epimorphism $d: \Delta_R^m(M)/I\Delta_R^m(M) \to \Delta_{R/I}^m(M/IM)$. It follows from the above that d is not always injective. Moreover, we can prove the following analogue of (2.3):

COROLLARY 3.10. Ker(d) = $(K + Id_R^m(M))/Id_R^m(M)$ where $K = R\{\delta_R^m(x) - \delta_R^m(y)\}$; $x-y \in IM$ \}.

Proof. Evidently d induces the following epimorphism:

$$d' \colon \Delta = \Delta_R^m(M)/(K+I\Delta_R^m(M)) \to \Delta_{R/I}^m(M/IM), \quad d'(\overline{\delta^m(x)}) = \delta^m(\overline{x}).$$

It suffices to prove that d' is bijective, and this means that we can complete the following diagram:

$$M \xrightarrow{\delta^m} \Delta^m_R(M)$$

$$\downarrow \qquad \qquad \downarrow_{\text{nat}}$$

$$M/IM \longrightarrow \Delta$$

This is possible since $\overline{\delta^m(x)} = \overline{\delta^m(y)}$ for $x - y \in IM$.

dilles

4. Defect decomposition. Let $X: R\text{-Mod} \to R\text{-Mod}$ be a functor satisfying X(0) = 0. The defect of X is the functor X^2 : R-Mod \times R-Mod \rightarrow R-Mod defined by Eilenberg and MacLane [2] in the following way:

$$X^2(M,N) = \left(\operatorname{id} - X(p) - X(q)\right) \left(X(M \oplus N)\right), \quad X^2(f,g) = X(f \oplus g),$$

where $p, q \in \text{End}(M \oplus N)$ are the projections on M and N, respectively. It is easy to see that $X(M \oplus N) = X(M) \oplus X(N) \oplus X^2(M, N)$.

Put $X^1 = X$ and by induction

$$X^{k}(M_{1},...,M_{k-2},-,-)=(X^{k-1}(M_{1},...,M_{k-2},-))^{2}$$

This defines in a natural way the functors X^k : R-Mod $\times ... \times R$ -Mod $\to R$ -Mod satisfying $X^k(...,0,...)=0$ and the following generalized defect decomposition property:

$$(4.1) X(M_1 \oplus ... \oplus M_n) = \bigoplus_{k=1}^n \bigoplus_{1 \le i_1 \le ... \le i_k \le n} X^k(M_{j_1}, ..., M_{j_k}).$$

In particular,

(4.2)
$$X(R^n) \approx \bigoplus_{k=1}^n \binom{n}{k} X^k(R, ..., R).$$

COROLLARY 4.1. If X preserves direct limits and $M = \bigoplus_{i \in I} M_i$ where I is ordered

$$X(M) = \bigoplus_{k} \bigoplus_{i_1 < \ldots < i_k} X^k(M_{i_1}, \ldots, M_{i_k}).$$

Easy induction shows that

(4.3)
$$X^{k}(M_{1},...,M_{k}) = \left(\sum_{H \in [1,k]} (-1)^{k-|H|} X(p_{H})\right) \left(X(M_{1} \oplus ... \oplus M_{n})\right)$$

where $p_H \in \operatorname{End}(M_1 \oplus ... \oplus M_k)$ denotes the projection on $\bigoplus_{i \in H} M_i$. X^k is a symmetric functor called the kth defect of X; X is a functor of degree m if $X^{m+1} = 0$.

Let $H: X \to Y$ be a natural transformation. Evidently H induces restrictions H^k : $X^k \to Y^k$, and hence preserves defect decomposition (4.1). In particular,

$$\label{eq:Ker} \begin{split} \operatorname{Ker}(H)^k &= \operatorname{Ker}(H^k) = X^k \cap \operatorname{Ker}(H)\,, \quad \operatorname{Im}(H)^k = \operatorname{Im}(H^k) = Y^k \cap \operatorname{Im}(H)\,, \\ & \operatorname{Coker}(H)^k = \operatorname{Coker}(H^k) \end{split}$$

(with the natural meaning of arguments).

Denote $(\Delta^m)^k = \Delta^{m,k}$, etc. It follows from (1.1) and (4.3) that

$$\varDelta^{m,k}(M_1,\ldots,M_k) = R\{(\varDelta^k\delta^m)(x_1,\ldots,x_k);\; x_i\in M_i\} \subset \varDelta^m(M_1\oplus\ldots\oplus M_k)\,.$$

The formula for $\Gamma^{m,k}$ follows from the graded algebra isomorphism $\Gamma(M) \otimes \Gamma(N)$ $\approx \Gamma(M \oplus N)$ induced by multiplication (see [7], Théorème III.4). Identifying the above algebras, we obtain

$$\Gamma^{m,2}(M,N) = \bigoplus_{i=1}^{m-1} \Gamma^{i}(M) \otimes \Gamma^{m-i}(N)$$

and by induction

$$(4.4) \Gamma^{m,k}(M_1,\ldots,M_k) = \bigoplus_{\substack{m_1+\ldots+m_k=m\\m_1,\ldots,m_k>0}} \Gamma^{m_1}(M_1) \otimes \ldots \otimes \Gamma^{m_k}(M_k).$$

This module can be characterized as a submodule of $\Gamma^m(M_1 \oplus \ldots \oplus M_k)$ generated by elements $x_1^{(n_1)} \ldots x_s^{(n_s)}$ with $x_i \in M_1 \cup \ldots \cup M_k$ and $n_1 + \ldots + n_s = m$, depending properly (in non-zero divided powers) on any M_j . Moreover, h^m induces natural transformations $h^{m_ik} : \Delta^{m_ik} \to \Gamma^{m_ik}$ such that $\overline{\Gamma}^{m_ik} = \operatorname{Im}(h^{m_ik}) = \Gamma^{m_ik} \cap \overline{\Gamma}^m$ and $\overline{\Gamma}^{m_ik} = \Gamma^{m_ik} / \overline{\Gamma}^{m_ik}$. More explicitly,

$$\overline{\Gamma}^{m,k}(M_1,...,M_k) = R\{(\Delta^k \gamma^m)(x_1,...,x_k); x_i \in M_i\}$$

where $\gamma^m = h^m \delta^m$, i.e., $\gamma^m(x) = x^{(m)}$. [4; Lemma 3.1] shows that

(4.5)
$$(\Delta^k \gamma^m)(x_1, \dots, x_k) = \sum_{\substack{m_1 + \dots + m_k = m \\ m_1, \dots, m_k > 0}} x_1^{(m_1)} \dots x_k^{(m_k)}.$$

As a corollary, Δ^m , Γ^m , $\overline{\Gamma}^m$ and $\overline{\Gamma}^m$ are functors of degree m and the values of $\Gamma^{m,k}$, $\overline{\Gamma}^{m,k}$ and $\overline{\Gamma}^{m,k}$ for $M_1 = ... = M_k = R$ coincide with the modules defined in [4], Section 8.

COROLLARY 4.2.
$$h^{m,m}$$
: $\Delta^{m,m} \stackrel{\approx}{\to} \overline{\Gamma}^{m,m} = \Gamma^{m,m} = () \otimes ... \otimes ()$ and $\widetilde{\Gamma}^{m,m} = 0$.

Proof. Observe that $h^{m,m}((\Delta^m \delta^m)(x_1, \ldots, x_m)) = x_1 \ldots x_m = x_1 \otimes \ldots \otimes x_m$ by (4.5) and (4.4). The inverse exists since $\Delta^m \delta^m$ is *m*-linear; the rest is evident.

An easy verification shows that many of the properties proved above for Δ^m , $\overline{\Gamma}^m$, Γ^m and $\overline{\Gamma}^m$ are satisfied also by the defects. In particular, they commute with direct limits and localizations and preserve Grothendieck sequences (except $\overline{\Gamma}^{m,k}$). For example, if $M_i = P_i/K_i$ then

$$(4.6) \qquad \Delta^{m,k}(M_1,\ldots,M_k) \approx \Delta^{m,k}(P_1,\ldots,P_k)/K$$

where

Des

Corollary 4.3. If $X = \Delta^m$, $\overline{\Gamma}^m$, Γ^m or $\overline{\Gamma}^m$ and $\operatorname{Ann}(M_1) + \ldots + \operatorname{Ann}(M_k) = R$ then $X^k(M_1, \ldots, M_k) = 0$.

Proof. Since X^k commutes with localizations, it suffices to assume that R is a local ring. In this case $M_i=0$ for some i.

Suppose that $A \subset B$ are classes of R-modules such that any $M \in B$ is a finite direct sum of modules from A. The defect decomposition shows that the investigation of h^m on B reduces to the study of $h^{m,k}$ on $A \times ... \times A$. This can be used (as well as Corollary 2.2) in the following two cases:

(1) $A = \{R\}, B = \text{the class of all finitely generated free } R\text{-modules (see (4.2))};$

(2) A (resp. B) = the class of all indecomposable (resp. finitely generated) R-modules (for a suitable ring R).

5. Ideals $I_m(R)$. The ideals defined below are closely related to the functors \tilde{I}^m and will also be used in Part II.

For any $m \ge 2$ define $I_m(R) = (r - r^m; r \in R)$. Since $rs^m - r^ms = r(s^m - s) + s(r - r^m)$, it follows that $I_m(R) = (rs^m - r^ms; r, s \in R)$.

LEMMA 5.1. $I_m(R_S) = I_m(R)_S$, $I_m(R/J) = (I_m(R) + J)/J$.

Proof. The first formula results from the equalities

$$\frac{r}{s} - \left(\frac{r}{s}\right)^m = \frac{rs^m - r^m s}{s^{m+1}}, \quad \frac{r - r^m}{s} = \frac{1}{s} \left(\frac{r}{1} - \left(\frac{r}{1}\right)^m\right)$$

and the second is evident.

Observe that $I_m(R)=0$ if and only if $r=r^m$ for any $r\in R$. Since $m\geqslant 2$, it follows that R is von Neumann regular.

LEMMA 5.2. Let R be a domain. Then $I_m(R) = 0$ if and only if R is a finite field and |R| - 1|m - 1.

Proof. $I_m(R) = 0$ means that $r^{m-1} = 1$ for any $0 \neq r \in R$, and hence R is a finite field. R^* is a cyclic group and its order must divide m-1.

COROLLARY 5.3. Let P be a prime ideal in R. Then $I_m(R) \subset P$ iff $I_m(R/P) = 0$ iff R/P is a finite field and |R/P| - 1|m-1. In particular, $I_m(R) = R$ iff $I_m(R/M) = R/M$ for any maximal ideal M iff |K| - 1/m-1 for any finite quotient field K. (This is satisfied for example if m! is invertible in R).

COROLLARY 5.4. Any Noetherian ring R has only a finite number of such maximal ideals M that |R/M| = d (for any fixed d), and hence the set of its finite quotient fields is at most countable.

Proof. It suffices to observe that any such M is a prime ideal minimal over $I_d(R)$ by Corollary 5.3.

We are ready to prove the following characterization:

PROPOSITION 5.5. $I_m(R) = \bigcap \{M \in \text{Max}(R); |R/M| - 1|m-1\}$ (a radical ideal). Proof. Let (R, M) be a local ring. Any $x \in M$ gives an invertible element $1 - x^{m-1}$, consequently $x = (x - x^m)/(1 - x^{m-1}) \in I_m(R)$. Hence, by Corollary 5.3,

$$I_m(R) \neq R \Leftrightarrow I_m(R) = M \Leftrightarrow |R/M| - 1|m - 1|$$

as required. For arbitrary R, the inclusion \subset follows from Corollary 5.3, and the inverse can be proved by localization since $(\cap M)_S \subset \cap M_S$.

COROLLARY 5.6. If $m-1 \mid n-1$ then $I_m(R) \supset I_n(R)$. In particular, $I_2(R)$ is the greatest ideal in the collection.

COROLLARY 5.7. If R is Noetherian then $R/I_{m}(R)$ is finite. (More precisely, it is a finite product of finite fields).

Proof. Use Proposition 5.5, Corollary 5.4 and the Chinese Remainder Theorem. (Another proof follows from the von Neumann regularity of $R/I_{-}(R)$).

Suppose that R is a Noetherian ring and X is a finitely generated R-module. Then, by [5] (Theorem 2.3 and Theorem 1.4)

(5.1)
$$\widetilde{\Gamma}_{R}^{m}(X) \approx \bigoplus_{\substack{M \in \operatorname{Max}(R) \\ |R/M| < m}} \widetilde{\Gamma}_{R/(M)}^{m}(X/(M)X)$$

where (M) denotes some power of M (depending on m and X). Observe that R/(M)is local Artinian. Consequently, any finitely generated R/(M)-module has finite length (see for example [1]), and hence is finite as a set, because so is the only simple R/(M)-module R/M. This proves an analogue of Corollary 5.7 (see also [5], Corollary 2.2):

COROLLARY 5.8. If R is Noetherian and X is a finitely generated R-module then $\tilde{\Gamma}_{R}^{m}(X)$ is finite. Consequently, $\tilde{\Gamma}_{R}^{m}(X)$ is a torsion module provided that R is infinite.

If $m \le 5$ and R is Noetherian then (5.1) holds for (M) = M (see [5], Corollary 3.3). If, moreover, $X = R^n$ for n > 1 then all the direct summands are non-zero (see [4], Lemma 6.3) and hence

$$\operatorname{Ann}(\tilde{I}_{R}^{m}(R^{n})) = \bigcap \{M \in \operatorname{Max}(R); |R/M| < m\} = \bigcap_{k=2}^{m-1} I_{k}(R) = \begin{cases} I_{2}(R), & m = 3, \\ I_{3}(R), & m = 4, \\ I_{3}(R), & n = 5. \end{cases}$$

We are going to compute directly $\tilde{\Gamma}_{R}^{m}(R^{n})$ for $m \leq 5$ (Corollary 5.10 below), which will give us the above formulas for arbitrary R. By (4.2) and Corollary 4.2 it suffices to determine $\tilde{\Gamma}^{m,k} = \tilde{\Gamma}_{R}^{m,k}(Re_1, ..., Re_k)$ for 1 < k < m, where $e_1, ..., e_k$ form the standard basis of R^k . Let $(m_1, ..., m_k)$ denote the base element $e_1^{(m_1)} ... e_k^{(m_k)}$ of $\Gamma_R^{m,k}(Re_1,\ldots,Re_k)$. Then (4.5) shows that $\overline{\Gamma}^{m,k}=\overline{\Gamma}_R^{m,k}(Re_1,\ldots,Re_k)$ is generated by the following elements:

$$\sum_{\substack{m_1+\ldots+m_k=m\\m_1,\ldots,m_k>0}} r_1^{m_1} \ldots r_k^{m_k}(m_1,\ldots,m_k) , \quad r_i \in R .$$

One of them, obtained for $r_1 = ... = r_k = 1$, will be denoted by σ .

THEOREM 5.9. In the above notation

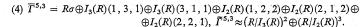
(1)
$$\overline{I}^{m,m-1} = R\sigma \oplus \bigoplus_{i=1}^{m-2} I_2(R)(1, ..., 1, 2, 1, ..., 1), \ \widetilde{I}^{m,m-1} \approx (R/I_2(R))^{m-2}$$

$$(m \ge 3)$$

(2) $\overline{\Gamma}^{4,2} = R\sigma \oplus I_2(R)(2,2) \oplus I_3(R)(3,1), \ \widetilde{\Gamma}^{4,2} \approx R/I_2(R) \oplus R/I_3(R),$

(2)
$$\overline{\Gamma}^{4,2} = \widehat{R}\sigma \oplus I_2(R)(2,2) \oplus I_3(R)(3,1), \ \widetilde{\Gamma}^{4,2} \approx R/I_2(R) \oplus R/I_3(R),$$

(3) $\overline{\Gamma}^{5,2} = R\sigma \oplus I_3(R)(2,3) \oplus I_3(R)(3,2) \oplus I_4(R)((4,1)+(2,3)),$
 $\widetilde{\Gamma}^{5,2} \approx (R/I_3(R))^2 \oplus R/I_4(R),$



Proof. It suffices to consider only $\overline{\Gamma} = \overline{\Gamma}^{m,k}$. Any generator of $\overline{\Gamma}$ can be expressed as an element of the right-hand side in the following way:

$$1^{\circ} \sum_{i=1}^{m-1} r_{1} \dots r_{i}^{2} \dots r_{m-1}(1, \dots, 2, \dots, 1) = r_{1} \dots r_{m-1}^{2} \sigma + \sum_{i=1}^{m-2} r_{1} \dots \hat{r}_{i} \dots r_{m-2} \times \\ \times (r_{i}^{2} r_{m-1} - r_{i} r_{m-1}^{2})(1, \dots, 2, \dots, 1), \\ 2^{\circ} rs^{3}(1, 3) + r^{2}s^{2}(2, 2) + r^{3}s(3, 1) = rs^{3} \sigma + s(r^{2}s - rs^{2})(2, 2) + (r^{3}s - rs^{3})(3, 1), \\ 3^{\circ} rs^{4}(1, 4) + r^{2}s^{3}(2, 3) + r^{3}s^{2}(3, 2) + r^{4}s(4, 1) = rs^{4} \sigma + r(rs^{3} - rs^{3})(2, 3) + \\ + s(r^{3}s - rs^{3})(3, 2) + (r^{4}s - rs^{4})((4, 1) + (2, 3)), \\ 4^{\circ} rst^{3}(1, 1, 3) + rs^{3}t(1, 3, 1) + r^{3}st(3, 1, 1) + rs^{2}t^{2}(1, 2, 2) + r^{2}st^{2}(2, 1, 2) + \\ + r^{2}s^{2}t(2, 2, 1) = rst^{3} \sigma + r(s^{3}t - st^{3})(1, 3, 1) + s(r^{3}t - rt^{3})(3, 1, 1) + \\ + rt(s^{2}t - st^{2})(1, 2, 2) + st(r^{2}t - rt^{2})(2, 1, 2) + (t(r^{2}s^{2} - rs) + rs(t - t^{3}))(2, 2, 1).$$

It suffices to prove that all the direct summands are contained in $\overline{\Gamma}$. Of course, this is evident for $R\sigma$.

- (1) For any $i \le m-2$ put $r_i = 1$ $(i \ne i)$ on the right-hand side of 1° .
- (2) It follows from 2° that $s(r^2s-rs^2)(2,2)+(r^3s-rs^3)(3,1) \in \overline{\Gamma}$. Interchanging r and s and summing up, we obtain $(s-r)(r^2s-rs^2)(2,2)=-rs(r-s)^2(2,2)\in\overline{\Gamma}$. For s = r - 1 this gives us $I_2(R)(2, 2) \subset \overline{\Gamma}$. Then also $I_3(R)(3, 1) \subset \overline{\Gamma}$.
- (3)' Suppose that 2 is invertible in R. Then $I_4(R) = I_2(R) = R$ by Corollary 5.3. Let us exchange r for -r on the left-hand side of 3°. The summation shows that $r^2s^3(2,3)+r^4s(4,1)\in\overline{\Gamma}$. In particular $(2,3)+(4,1)\in\overline{\Gamma}$, as required, and hence $(r^2s^3-r^4s)(2,3)\in\overline{\Gamma}$. For r=1 this gives us $I_3(R)(2,3)\subset\overline{\Gamma}$, and the symmetric consideration shows that $I_3(R)(3, 2) \subset \overline{\Gamma}$.
- (3)" Suppose that 2 is non-invertible. Since both sides of (3) commute with localizations, it suffices to assume that R is a local ring. Hence any odd integer is invertible in R; in particular $I_2(R) = I_3(R) \supset I_4(R)$. Putting s = 1 and $r = \pm 2, \pm 3$ on the left-hand side of 3°, we obtain (since 3 is invertible) the following elements of $\overline{\Gamma}$:

$$\pm 2(1,4) + 4(2,3) \pm 8(3,2) + 16(4,1), \quad \pm (1,4) + 3(2,3) \pm 9(3,2) + 27(4,1).$$

As a consequence, $\pm (1, 4) + (2, 3) \mp (3, 2) - 11(4, 1) \in \overline{\Gamma}$. These elements (and σ) give the following elements of $\overline{\Gamma}$:

$$2(3,2)+12(4,1)$$
, $2((2,3)-11(4,1))$, $2((1,4)-(3,2))$,

and, by symmetry, 2((2,3)-(4,1)). Then $20(4,1) \in \overline{\Gamma}$, hence $4(4,1) \in \overline{\Gamma}$ (because 5 is invertible), and consequently (from above) $2(3,2), 2(1,4) \in \overline{\Gamma}$. By symmetry, $2(2,3), 2(4,1) \in \overline{\Gamma}$.

Put s = 1 and r+1 instead of r on the left-hand side of 3° and compute the defect. This gives us $2r(2,3)+3(r+r^2)(3,2)+(4r+6r^2+4r^3)(4,1) \in \overline{\Gamma}$. Because of the above $(r+r^2)(3,2) \in \overline{\Gamma}$. Hence $I_2(R)(3,2) \subset \overline{\Gamma}$, by symmetry $I_2(R)(2,3) \subset \overline{\Gamma}$.

and the remaining inclusion follows from 3°. (4) Suppose that 2 is invertible in R, and hence $I_2(R) = R$. Putting -r instead

of r in 4° and summing up, we obtain $r^2st^2(2,1,2)+r^2s^2t(2,2,1)\in\overline{\Gamma}$. Doing the same with s and the resulting element, we prove that (2, 2, 1) — and by symmetry (2,1,2) and (1,2,2) — belong to $\overline{\Gamma}$. Hence the right-hand side of 4° for s=t=1shows that $I_3(R)(3,1,1)$ — and obviously $I_3(R)(1,3,1)$ — are contained in \overline{I} .

(4)" Suppose that 2 is non-invertible. As in (3)" we can assume that 3 is invertible; hence $I_2(R) = I_3(R)$. Put r+1 instead of r and s = t = 1 on the left-hand side of 4° and compute the defect. This gives us

(5.2)
$$3(r+r^2)(3,1,1)+2r((2,1,2)+(2,2,1)) \in \overline{\Gamma}$$
.

Put r=3 and s=t=1 in 4°, cancel 3 and substract σ . This gives us

$$8(3,1,1)+2((2,1,2)+(2,2,1)) \in \overline{\Gamma}$$
.

Comparing with (5.2) for r=1 we obtain $2(3,1,1) \in \overline{\Gamma}$, and hence 2((2,1,2)++(2,2,1)) $\in \overline{\Gamma}$. In view of (5.2), $I_2(R)(3,1,1)$ — and also $I_2(R)(1,3,1)$, $I_2(R)(1,1,3)$ — are contained in $\overline{\Gamma}$. Then the right-hand side of 4° for s=t=1shows that $I_2(R)((2,1,2)+(2,2,1))\subset \overline{\Gamma}$. Since $I_2(R)\sigma\subset \overline{\Gamma}$, it follows that $I_2(R)(1,2,2) \subset \overline{\Gamma}$. The rest is given by symmetry.

COROLLARY 5.10.
$$\tilde{\Gamma}_R^3(R^n) \approx \binom{n}{2} \left(R/I_2(R) \right)$$
,

$$\tilde{\Gamma}_R^4(R^n) \approx \binom{n}{2} + 2\binom{n}{3} \left(R/I_2(R) \right) \oplus \binom{n}{2} \left(R/I_3(R) \right)$$
,

$$\tilde{\Gamma}_R^5(R^n) \approx 3\binom{n+1}{4} \left(R/I_2(R) \right) \oplus 2\binom{n+1}{3} \left(R/I_3(R) \right) \oplus \binom{n}{2} \left(R/I_4(R) \right)$$
.

where sM denotes $M \oplus ... \oplus M$ (s times) and $\binom{n}{k} = 0$ for n < k.

Des

The author wishes to thank Professor Artibano Micali for the inspiration and discussions related to the contents of Section 3.

References

- [1] M. Atiyah and I. Mac Donald, Introduction to Commutative Algebra, Addison-Wesley,
- [2] S. Eilenberg and S. Mac Lane, On the groups $H(\pi, n)$, II, Ann. of Math. 60 (1954),
- [3] M. Ferrero and A. Micali, Sur les n-applications, Bull. Soc. Math. France Mém. 59 (1979),
- [4] A. Prószyński, Some functors related to polynomial theory, Fund. Math. 98 (1978), pp. 219-229.
- [5] Some functors related to polynomial theory, II, Bull. Soc. Math. France Mém. 59 (1979), pp. 125-129.

[6] A. Prószyński, m-applications over finite fields, Fund. Math. 112 (1981), pp. 205-214.

[7] N. Roby, Lois polynômes et lois formelles en théorie des modules, Ann. Éc. Norm Sup. 80 (1963), pp. 213-348.

[8] - Sur l'algèbre des puissances divisées d'un module monogène, Université de Montpellier, 1968-1969.

[9] — L'anneau des puissances divisées d'un groupe monogène, Bol. Soc. Matem. São Paulo 18 (1966), pp. 39-47.

WYŻSZA SZKOŁA PEDAGOGICZNA, BYDGOSZCZ

Received 14 December 1981; in revised form 27 July 1982