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Forms and mappings. I: Generalities
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Andrzej Prészynski (Bydgoszcz)

Abstract. This paper continues the problems of [4], [5]'and [6). The main question is the dif-
ference between homogeneous polynomial mappings and so called m-applications. This is investi-
gated with the aid of the homomorphism k between the respective representing modules. Most of
the results form a general tool for the subsequent parts of the paper. Section 5 yields some ideal

theory and an explicit computation (for m<5) of the modules f”"(R") defined in [4].

In this paper all rings and algebras are assumed to be commutativer with 1.
The symbol of a ring will in general be omitted, for example at ® and Hom. We
will also assume that the degree m ‘is positive.

1. Preliminaries. The following definitions are contained in [7], [3] and [4]. -
A polynomial law on the pair (M, N) of R-modules is a natural transformation
F = (F,) of the functors M®-, N®-: R-Alg — Sets. It is called a form of degree m
if Fyxa) = Fy(x)a" for any R-algebra 4, ae A and xe M4. All such forms
constitute an R-module denoted by #%(M, N). This gives us, in a natural way,
a functor #%: R-Mod® x R-Mod — R-Mod. ‘ ’
It js proved in [7] that ZR(R", Ry=RI[Ty, ..., Ty),. In general, any form
Fe #Y(M, N) has the shape
FA(x1®a1 + +X,,®lln) = 2 le,...,m,.(xla ey x")®ar;11 a:'"n’
myFetmyEm
whbere F,, . .. M"— N are uniquely . determined by F. In particular F,, = Fy
and F,, = PFis m-linear and symmetric.
For any mapping fi M — N define the nth defect 4"f: M" - N in the
following way . ' : )
.1 @), i) = (=AY x).
} B, ieH
It can also be defined inductively as an (n—1)-fold iteration of 4% (se€ 4], p. 221).
Moreover, it follows from [4] that PF = A™Fg for any form F of degree m. This
gives us the natural transformation )

T PuM, N) - ApplR(M, N),  Tr(F) = Fg,
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where Appla(M, N) denotes the module of all m-applications f: M — N ie.,
mappings satisfying the conditions:

(A1) f(rx) = rf(x) for any re R and xe M,

(A2) The associated syrﬁmetric mapping A™f is m-linear.

(As a consequence, f(0) = 0 and 4% = 0 for any k>m.) In the free case T}
gives us the following well-known mapping:

™ R[Ty, ..., Tpln = ADPIR(R", R), %) = F(xq, .0, X,)

It is known from [3] that T is an isomorphism if m<2 or M = R or m! is
invertible in R. In general, it is neither injective nor surjective. Write Xer(Tg)
= FYM,N) and Im(TR) = Homy(M, N)cApplg(M, N). The kernel is studied
in [4] and [5], and the cokernel will be investigated in the present cycle of papers.
It follows from [7] that 2™(M, —) is represented by I™(M), the mth divided
_power of M. Moreover, it is evident that Appl™(}/, ~) is representéd by the module
A™(M) defined by the set of generators {6™(x); x € M} and the relations

1° 8"(rx) = r™5™(x) for any re R and xe M,

2° A™5™ is m-linear,

and the correspondence is given by the following diagram:

T™F) (g5 o0

M= Am(ar)
N

N
N.

(In [3), the module 4A™(M) is- denoted by I',(M) and has another presentation,)

T™ induces the natural homomorphism k = k™: A™M)— I'™(M) given by
R(8"(x)) = x™ (see [3]). Write I™(M) = Im(h™) = R{x™; xe M}. Since Hom
is left exact it follows that &™(M, —) = Ker(T™) is represented by [™(M)
= Coker(h™) = I'"(M)[T™(M). On the other hand, Hom™M, —) = Im(T"') is
representable if and only if the exact sequence

0 — I™(M) — I'™(M) — [™(M) - 0
splits (see [4], Corollary 4.2), Moreover

Levva 1.1. Hom(T™(M), —) is the smallest representable functor containing
Hom™M, —). .

Proof. A representable functor F = Hom(X, —) contains (isomorphically)
Hom™M, —) if and only if there exists an exact sequence 0— F™M, —) >
> P, ~) — F, or, equivalently, an exact sequence X — I™(M) — [™(M) 0.
In particular, Hom™(M, —) < Hom(I™ (M), —). In general, the image of X is

I™(M), and this gives us the unique monomorphlsm Hom(I™(M), —) <> F over
Hom™(M, —). -
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COROLLARY 1.2. Hom(T™(M), N) is isomorphic 1o the followmg submodule
of Appl™(M, N):

Hom™(M, N) = {g: M 4"00) S T"(0) > N, fe Homw(-zj‘v"(M) N}

Moreover, g € Hom™ (M, N) if and only if f can be extended to I""(M ) In particular,
Hom’"(M N) = Hom"‘(M N) for any injective N. :
Let us consider the following extensions:

Hom™(M, N)=Hom™ (M, N)cAppl™(M, N). '
The first of them can be embedded in the long exact sequence
‘0 - Hom™(M, N) - Hom™(M, N) - Ext'(I™(M), N) - Extl(F’”(M) N)=-.
(see [4], Corollary 4.3). Su:mlarly, for the second extenswn

0 — Hom™ (M N) = Appl™ (M, N) » Hom (Ker (""(M)), N) = Ext'(T™(M), N)
- Bxt!(4"(M), N) —

Since I'™ preserves projectives (see [7]), it follows that the first (the second) sequence
reduces to the short sequence if M is projective (and gl. dim(R)<1). Then the
question of the cokernel reduces to the computation of I™(M) or Ker(A™(M)).
The value of I™(M) is found in [4] and [5], finding the value of Ker(h"‘(M)) is
much more complicated.

The most interesting case is described in

COROLLARY 1.3. The following conditions are equivalerit:

(1) Ker(h™: 4™(M) — I™(M)) = 0, '

(2) Hom™(M, —) = AppI"(M, —),

(2') Appl™(M, —) is the smallest representable functor contamzng Hom™ (M =),

(3) Hom™(M, Q) = Appl™(M, Q) for any injective Q, ‘

(3") For any injective Q, one can complete any diagram of the form

A" ———> rar)
B 7/

v
Y

Proof. Evidently (1)< (2) < (2') = (3) < (3"). For the bfoof of (Si) = (1)
use an injective module Q containing A™(M).

ExampLE 1.4, Let K be an algebraic extension of Z,. It follows from [6]
(Theorems 2.7 and 4.1) that the above conditions are satisfied for any K-module M
if and only if K = Z, or m<2p.

3.
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. ExampLE 1.5, Let-m = 3. It will be proved in Part'II that the above conditions
are satisfied for any flat R-module if R is a Dedekind domain, and for any R-mod-
ule if R = Z or no quotient field of R is isomorphic to Z,. ‘

Tnvthe next sections we state the 1esults which will be used to determine Ker (™)
in some cases, OF, in partlcular to prove theorems as in the above. examples

2. Fundamental properties. Let X = I'™, f” F’" or A"', and let F = P,
m Hom™ or Appl™, respectively. Cousequently, F(M N)NHom(X (M), N).

Lemma 2.1. X commutes with direct limits,

Proof. It suffices t'o:prm}e that the natural homomorphism F(limM;, N)
2 lim F(M;, N) is bijective. For the first three cases see :[4], Corollary 4.5, Let
F = Appl™. Observe that ¢~* exists for F = Map, the functor of all mappings
between-'modules. Moreover, the mapping reconstructed from m- applications is,
obviously, an m- apphcatlon this completes the proof.

COROLLARY 2.2. Suppose that b™ is mono, epi or iso on the subcutegory of. finitely
genérated (and free) R-modules. Then it is so on the category of.all (flat) R- modules;

The following diagram of modules and their homomorphisms
: i
MZIN>P
i
is called a Grothendleck sequence (see [7], p. 278, Deﬁnmon 1) if ¢'is surjective and

(2.1 V (q(x) =q0) = dx-i@&y= =j@).

An equivalent deﬁmtlon is given by the following conditions:
(1) g = Coker(i, ),
@ Y 3 x=i() =j().

xeN teM : ' ’ ’
Evidently (1) and (2) follow from the previous deﬁnmon Conversely, if- q(x) = q(y)
then x—y = (1= by () and hence x—itw) = y=j0) = i) = J(t) by (2
This gives us (2.1) for z = t4u.
LeMMA 2.3. If X & T™ then X preserves Grothendieck sequences.

Proof. It can be proved dlrectly that any X (without restrictions) preserves
condition (2). Hence it suffices to prove that the sequence

: F(i;1)
0 - F(P, Q)*“—*F(N Q) ’F(M Q)
is exact for any i ] and g constituting a Grothendleck sequence, any Q and any
F # Hom™. Let F = Appl™. The only non-trivial part is the completion of the
following commutative djagram: .
: i
M—IN->p

\Jlf/a

@2
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where f is an m- -application. It follows from (2.1) that g-exists’ (as a mapping), and
it is evidently an m-application. The case of #™ follows from [7] Théoréme IV.4;
and the case of #™ is a consequence of the two preceding -cases.

Remark 2.4. Any exact sequence K5Pi Mo 0 mduces the followmg

Grothendieck sequences ‘ ‘ ;
(1,i) ’ :
POK 3P - M,
o

and (by Lemma 2.3):
X1 ;)
X(POK) —Z X(F) LN X(M) -
X0

for any X # I'™. In particular,
2.3) A™(M )= A™(P)|R{6™(x+y) —8"(x); x € P, y e Ker (@)}
and similarly for other functors. This allows us to compute any value of X provided
that the values of X on free modules aré known. Lemma 2.3 is not true for X = ™
because in (2.2) g is not necessarily in Hom™ even if fis (for example, it 1s poss1b_1e
that Hom™W, Q) = Appl™(V, Q) and E()—Ex'"(P,_Q) # Appl"(P, Q) as follows
from Corollary 2.6 and Proposition 2.9 below).

COROLLARY 2.5. Suppose that I3 is an isomorphism on the subcategory of. “finitely
generated free R-modules. Then hy: AR STe=rm

Let us consider the simplest case of a cyclic module R/I. First of all, observe
that 4"(R) = R&™(1)~R and F"‘(R) R1™=xR (see [3], Example 7.1) and hence

COROLLARY 2.6. hR(R): AR(R) nd T'R(R).

Tt follows from (2.3) and [8], Proposition 8, that

HXRID): RiALD) —> RIDD)

where A,,(I) is generated by the values and D,(I) by the coefficients of the poly-

nomials
m

—x"=Y (’:’) Xt (yel).

i=1
Evidently #%(R/I) is an isomorphism for 7 = 0 or R. Moreover, A, and D,
commute with localizations (compare also Section 3), and hence we can assume
that R is local.
ProrosiTION 2.7. Let I be an ideal in a local ring (R, P), char(R) = char(R/P)
= p (possibly zero), and let q denote the p-primary part of m (g = 1 for p = 0).
Then A,I) = D,(I) = 19:= (y yeI), and hence Kg(R/I) is an isomorphism.

Proof. First observe that q= mm{z>0, ( ) # 0 in R} (see for example {6]

24 X+y"

Lemma ‘2.‘2); clearly (';) is invertible in R. Evidently D,,!(I) = I'? and A, (D) i
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generated by elements of the form y7+y2*1a(y) for all y e I Since y" € 4,,(I) (put
X =0 in (2.4)), it follows by induction that A4,,(I) is also I @ ‘

Suppose now that (R, P) is a discrete valuation ring such that char(R) = 0
and char(R/P) = p>(:)..Let V denote the valuation and let e = V(p), 1ge< 0,
1.3e the ramification index. Denote 4,((r)) = (a,()) and D,((") = (d.(). The
idea of the following Lemma 2.8 and Proposition 2.9 is based on [9], Proposition 3.

LemMa 2.8. If R is as above, i2 and V(r)>e, then V(('ﬂ r‘); V(mr) and the
equality holds if and only if p = 2, i = 2, V(r) = ¢ and m is e/ven<

Proof. Let v, denote the p-adic valuation'on Q and let k = v,(i). Since (m)

i
LT A m
- 7(H), it follows that vp(m)—up(':.‘)svp(m)—-%(—i—) = k<pt—1<i—1, and

the equalities hold if and only if p = 2, i = 2 and m is even, Consequently
Vim)—v ".’)r‘ Z e[o,tm—o (™) = v a-1< j
) = e (o,0m)—5,|7)) = V() G- 1)< (e~ V() - D) <0,

and the rest is immediate.
ProPOSITION 2.9.-If R is as above and V(r)ze, then

6h) o V(d"',(r)) = V(m)+V({r);

_ [V +V(O+1 if V() = ¢, RIPRZ, and m>2 i
(2) . V(@) {V(m)+ V(r) otherwise ; » 6 mmS B o,
3) Ker(hﬁ(lé/(r)))z{fz thr(;)i;‘e, RIP=Z, and m>2 is even,

Proof. Observe that

V(do(r) = min{V((’;’)ri); i=1,.., m}

and

V(a,(r) = min{ V(izl (':1) x"’"‘yir‘); x,y€ R} .
Her;ce 'Lcmma 2.8 gives (1) and also (2) except the case where p = 2, V() = ¢
and m is even. The case of m = 2 is evident. For m>2, the above sﬁm has the form
mr(x™ Yy +ux™ %)+ a where u = }r(m—1) is invertible in R and V(a)>Vim)+
+V(r). If RIP#Z, then there exist x, ye R such that %, 7, x-+uy # 0 in R/P,
and hence the element in the brackets is invertible. In this c;se: V(a,(r)) = V(m) +’
+V(r) as required. Let R/P~Z,. Since m>2, it follows that V('c"z ®)=Vim+
+.V(r)-|f1 and the equality holds because of the case where x = lmand/y is the
uniformizing parameter. . Finally, (3) follows directly from (1) and (2).

The case of V(r)<e is much more compli
he ¢ . plicated. Hence th
globalization is the following: " only complee
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COROLLARY 2.10. Let R be a Dedekind domain. Suppose that any localization Rp
is unramified provided that char(Rp) # char (R/P) (for example, R = Z). Let I be
an ideal in R and let t denote the number of prime ideals P in R satisfying I<P,
I¢P? and R/P~Z,. Then : ’ .
if m>2 is even,
otherwise .

Zy % .oXZ, (t times)

.,Ker(hz(R/I))%{o

Proof. Let I 0. Write I =_P%.. Pk for distinct’ maximal P;, compute
D, (I) and 4,(I) locally (by Proposition 2.9), and divide D,(I) by 4,() applying
the Chinese Remainder Theorem.

Finally, let us study the finite generation of X(M). If M is finitely generated
over R then so is I™(M) (see [7]) and hence [™(Mf). If, moreover, R is Noetherian,
then so is T™(M). For 4™ we can prove only

PROPOSITION 2.11. Let M be an R-module generated over Z by {15 wees X}y
and let m>2. Then AR(M) is generated over Z by {SR(nyx, +...+mx); 0<n,<m— 1}.
In particular, if M is a finitely generated R-module then so is AW(M) provided that
R is finitely generated as an abelian group.

Proof. Since AZ(M) is a quotient of AZ(M) it can be assumed that R = Z.
Let x,y € M and ne Z. The relation AmS™ (X, X, o0y X, ¥) = n(Am8™(x, .., X, ¥)
gives us the following equality:

m—2 m—1 .

Y a;8"((n+i)x+y)+ Zobjé'"(jx+y)+b5"‘(x) =0

i=0 j= .
where a;,b;,be Z, a,, = 1 for n>0 and @, = £1 for n<0. Using induction
twice (for n>0 and n<0) we find that 6™(nx-+ ) belongs to the submodule gener-
ated by 8™(x) and &™(jx+y) for j =0, ...,m—1. Applying this successively to
x = x, and the respective y we complete the proof.

The second part of the above proposition will be improved (in Part II) in the
simplest non-trivial case m = 3.

3. Change of the base ring. Let 4 be an R-algebra and let M be an R-module.
Then [7], Théoréme II1.3, gives us the following natural graded A-algebra iso-
morphism

p: TR(M)®A S T,M®R4), px™@1) =)™

This allows us to prove a generalization of [4], Theorem 6.1:
PROPOSITION 3.1. There exists a natural exact sequence

.. = Tor}(I(M), 4) — Tori(IR(M), 4) = TRM)®A4 S TUMRA) —
- M4 S FiMe4) -0

where e and q are induced by p above. Moreover, if M®A = {x®a; xe M, ae A}
(for example, if A = Rg or R[I) then e is surjective and hence q is an isomorphism.
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Proof: Evidently p induces e and hence we have the following commutative
diagram with exact rows:

o> TorX(TR(M), 4) ~Tor’ (M), 4) - TH(M)@ A~ I M@ A [M)@A—0
e p|® q

0= THMQA)~ MM A) - (M 4)— 0

Observe that Coker(e)~Ker(q) and Coker(q) = O by the snake lemma. Moreover,
Ker(i) = Ker(pi) = Ker(e). This completes the first patt of the proof and the
second is evident.
Observe that e is injective if 4 is a flat R-module. In particular
‘COROLLARY 3.2. If A = R where S is @ multiplicative set in R then e is bijective.

In other words, .
o) x)(m)
2o s (2) .
1 1
" If A= RJI then e is Surjective and

Ker(e) = Ker(i) = (TR(M) ~ ITR(M))/ITR(M) .
It is non-zero in general because of
ExameLE 3.3. Let (R, I) be a local Noetherian ring, dim(R)>0, A = R/I
and M = R", n>1. It follows from [7] that I'y(M) is free and N = (M) is

finitely generated. Let .. — F; — F, be a minimal free resolution of N. Then
Ker(e)x~Tork(N, R/I)NFl/IFI, and hence

Ker(e) =0 <> F; = 0 <> N is free < N =0 (by [5], Corollary 2.2)
<> m<|R/I| (by {4], Theorem 6.4).

TM)sn TaM),

This is the trivial case where T™ = I over R and over R/I (see [4], Corollary 6.5).
We will prove similar properties of the functor 4™ First of all observe. that
Appli(M, N)<Applz(M, N) for any R-algebia 4 and any A-modules M, N.
(Moreover, the equality holds if 4 = R/I). Hence any module homomorphism
M — N over R — A allows us to complete (in a unique way) the following diagram:
L4
M— AK(M )

&4 J

N——>4Y (N)
COROLLARY 3.4. 4™ is an endo functor of the category of pairs (R, M), where
R is a (commutative) ring, and M is an R-module.

Let N = M®aAd. The above diagram gives us the following A4-homo-
morphlsm

d: AR(M)®A - 4UMRY), A1) = 6"‘(x®1)‘.
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Moreover, it is evident that the following diagram is commutative

el
ARM)®A ——>TR(M)®A
G . . .

HMQA)——THM R4
Observe that d is an epimorphism if M®A4 = {m®a; xe M, ac A} (for
example, if 4 = Rg or R/I). In this case, d is invertible if and only if there exists
an m-application M®A4 — AF(M)® A induced by S%. This is equivalent to the
following condition: ‘
(E) Any m-application f: M — N over R induces an m-application g: M® A~
— N®A over A such that the diagram

7
M—N

MO®A —>N@A

is commutative, i.e., g(x®a) = f(x)®«™ for xe M and ae 4.
ProrosiTION 3.5. Condition (E) is fulfilled for any localization R — Rg.
Proof. Let f: M.— N be an m-application over R. Define g = fs: Mg — Ny

as above, i.e., g(x/s) = f(x)/s". An easy verification shows that it is a correct
definition and that g satisfies the required condition (A1) Moreover it is evident
that

| B X @G

Aam"Pl—=, .., — | = ——— .

(a9) ( t t.) : "
In particular, A™g is m-additive, The following computation completes the i)roof
of (A2):

r 1 Xq X rXy SX%g Xy A™f)(rxy, X9, ooy §%,)
4™ == | ="l —,—, ... — | =
") ( t t ) ( g)( st st st ) (st)"

r (") (Xq, s Xy r X X,
T D) T g (54 )
s t s t t
COROLLARY 3.6. If A = Rg where S is a multiplicative set in R then d is an iso-
morphism. In other words, there exists a natural isomorphism

&) > 5" <i> .
1 1

CoroLLARY 3.7. Ker(hp)s=Ker(hR,). In particular, Ker(hy) = 0 if and only
if Ker(hg,) = O for any prime (maximal) ideal P in R.

ExampLE 3.8. Let R be a domain of characteristic 0 or greater than m. Then m!
is invertible in Ry); consequently (Ker(hg))o) = 0, and hence Ker(hR) is a torsion

AR(M)s= AR (M),
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submodule of AZ(M). If R is a Dedekind domain and M is projective then so are
I™(M) and T™(M). In this case, A™(M)~T"(M)@®Ker (A"™).

Let 4 = R/T. We will find out when (E) is satisfied. Evidently we can assume
that N is an R/I-module, i.e., that IN = 0. Then the diagram in (E) has the follow-
ing shape:

M
r

MIM —"=> N
COROLLARY 3.9. If M is an R/I-module then (E) is satisfied and consequently
A (M) = A% (MIIM) = ARMDIARM) , - Spy(%) < OR(x).

The mapping g completing the above diagram has the form g(X) = f(x), hence
it is unique and it is evidently an m-application (over R or R/I). Unfortunately,
the formula can be incorrect (it must be verified that f(x) = f(y) for x—y e IM;
compare also Remark 2.4). In other words, we have only Applg,(M/IM, N)

= Appli(M/IM, N) > ApplR(M, N), and this can be imbedded into the following
commutative diagram:

o o TRx .
- 0= PR (M[IM, N) - PR(M/IM , N)— Applz;(M]|IM, N)
=~ | g* ~ | p* mn

TR
0 = PUM, N) ——> PR(M, N) - Appla(M, N).

If Ty is surjective then evidently Applg;(M/IM,N)= HomQR(M, N). This is satisfied,
for example, if m = 3, R = Z, and R/I is a quotient field Z, (Example 14). In
this case Homﬂcl—-l—o;ﬁ' = Appl? (Example 1.5), and the cokernel for M = Z*
is Z,®N (Example 4.4 in [4]), which is non-zero for p-= 2 and N # 0.

Consider the epimorphism d: ARM)/TAR(M) — Ax;(M/IM). Tt follows from
the above that d is not always injective. Moreover, we can prove the following
analogue of (2:3): -

COROLLARY 3.10:. Ker(d) = (K+IAR(M))/IAR(M) where K = R{S%(x)—0R(»);
x—yelIM}.

Proof. Evidently 4 induces the following epimorphism:

&A= SZOD/(K+TAZM) ~ AR(M]IM) d(E) = 5"(%) .

It suffices to prove that d' is bijective, and this means that we can complete the
following diagram:
M- g300) ,
nat ’
o MIIM ——> 4
This is. possible since 5_”'.(;) = ~cS"‘Ty) for x—yelIM.
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4. Defect decomposition. Let X: R-Mod — R-Mod be a functor satisfying
X(0) = 0. The defect of X is the functor X?: R-Mod x R-Mod — R-Mod defined
by Eilenberg and MacLane [2] in the following way:

X*(M, N) = (i~ X (p)-X@)(X(MON)),  X*(f,9) = X(f®9),

wfxere p, g€ End(M@N) are the projections on M and N, respectively. It is easy
to see that X(M®N) = X(M)DX(N)®X*(M, N).
Put X* = X and by induction

Xk(Mn s Myg, —, ") = (Xk—l(Ml: ey Mlc—Z; —))2 .

This defines in 2 natural way the functors X*: R-Modx ... x R-Mod — R-Mod
satisfying X™...,0,..) = 0 and the following generalized defect decomposition
property:

n

@1 XM, D ... OM,) = XMy, o M) .
k=1 1<j1<,..<jx<n
In particular, :
@2 L X(RY~ @(Z) X¥R, ..., R).
! k=1

COROLLARY 4.1. If X preserves direct limits and M = @ M, where I is ordered
iel

by <, then

XM= @ XMy, ..,M).

b i<a.<h

Easy induction shows that
63 X M) = (T (D) (XM . ©11)

where py € End(M,;® ... ®M,) denotes the projection on @ M. X* is a sym-

. ieH
metric functor called the kth defect of X; X is a functor of degree m if X™*! = 0.

Let H: X — Y be a natural transformation, Evidently H induces restrictions
HY X* - Y* and hence preserves defect decomposition (4.1). In particular,
Ker(H)* = Ker(H") = X* nKer(H), Im(H)*=In#HY = Y*nInH),

Coker (H)* = Coker (H¥) ‘
(with the natural meaning of arguments).
Denote (4™)* = A™F, etc. It follows from (1.1) and (4.3) that
A (Mo, .y M) = R{(AS™ (xy, -, X); %€ M} A" (M D ... ® M) .
The formula for I"™* follows from the graded algebra isomorphism I'(M)®I (N)

~I'(M@®N) induced by multiplication (see [7], Théoréme IIL.4). Identifying the
above algebras, we obtain ' .

m—1
™ (M,N) = @ I'(M)®I™'(N)
i=1
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and by induction

(4.4) My, M) = @ ™M) ®I™(M).

myt o tme=m
My .mk>0

This module can be charactenzed as a submodule of 1""‘(M1® .@M,) generated
by elements x{™ ... xI with x,€ M, U ... U M}, and ny+ ... +n, = m, depending
properly (in non-zero divided powers) on any M;. Moreover, A" induces natural
transformations A™*: A™* — I™* such that I™* = Im(lz"‘"‘) =I"™* ~AT" and
[k = pm¥[Tm*, More explicitly,

T™(My, .., M) = R{(d"")(xy, ..., x); x,€ My}
where y" = B"§™, ie., ¥"(x) = x™. [4; Lemma 3.1] shows that

(4.5) (4™ (x4, ... ¥ x|, x{me),

mytbme=m
myyeee,mpe>0

> X)) =

As a corollary, 4™, I'™, T™ and I™ are functors of degree m and the values of ™,
T™* and [™* for M; = ... = M, = R coincide with the modules defined in [4],
Section 8.

CORQLLARY 4.2. pmm; gmm 5 Fmm o pom ()®...Q() and I'™m = Q.

Proof. Observe that F™™((A™5™)(xy, ..., X)) = Xg... Xy = X1 ® ... @, by (4.5)
and (4.4). The inverse exists since 4™6™ is m-linear; the rest is evident.

An easy verification shows that many of the properties proved above for 4™,
T™, I™ and I'™ are satisfied also by the defects. In particular, they commute with

direct limits and localizations and preserve Grothendieck sequences (except I™).
For example, if M; = P;/K; then

(4.6) - . A" M, s MO A™HP, ..., PYIK
where ) )
K = R{(48™) (%y 4Py, ..o, X+ 1) — () (x4, .., )5 X, € Py, y, € Ko}

= R{(4*™) (x, ..., ;455 ..n
= R{(Akém)(xl: T S PRTTH

s %) — (4™ (x4, ..
X0, (46 (x4, ..

2 %05 X € Py, viek;, j=1,..k}

2 Xjs Vps wees X3 X € P, y € K,

i=1,..,k}.

COROLLARY 4.3. If X = A", T™, I'™ or ['™™ and Aon(M,)+ ... +Ann(M,) =
then X*(M,, ..., M) =

Proof. Since X* commutes with localizations, it suffices to assume that R is
a local ring. In this case M; = 0 for some i.

Suppose that 4 =B are classes of R-modules such that any M e B is a finite
direct sum of modules from A. The defect decomposition shows that the investigation
of h™ on B reduces to the study of A™* on Ax ... x4. This can be used (as well
as Corollary 2.2) in the following two cases:

icm
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) = {R}, B'= the class of all finitely gerierated frée R-modules (see (4 2);

(2) A (resp. B)=the class of all indecomposable (resp. finitely . generated)
R- modules (for a suitable ring R).

5, Xdeals I,(R). The ideals defined below -are closely related to the functors
™ and will also be used in Part II.

For any m>2 define I,(R)= (r—r"; reR). Since rs"—r"s = r(s"—s)+
+s(r—r™), it follows that I (R) = (rs"—r"s; r,s € R).

Lemma 5'1' Im(RS) = m('R)Sz I,"(R/J) = (Im(R)"l"J)/J

Proof. The first formula results from the equalities .

Foor\" . st — s =t 1 (AT
s \s) Tt e s\ 1)

and the second is evident.

Observe that. I(R) = 0 if and only 1f r =" for any re R. Smce mz2, it
follows that R is von Neumann regular.

LEMMA 5.2, Let R be a domain. Then L(R)=
and |Rj—=1|m—1.

Proof. I,(R) = O means that " * =1 for any 0 # re R, and hence R is
a finite field. R* is a cyclic group and its order must divide m—1.

COROLLARY 5.3. Let P be a prime ideal in R. Then L(RY=P iff I,,,(R/P) =0
iff R/P is a finite field and |R/P]~1|m 1. Inparticular, I(R) = Riff I (RIM) = RIM
for.any maximal ideal M iff |K|—1)m—1 for any finite quotient field K. (This: is
satisfied for example if m! is invertible in R).

6 if andv only if R is aﬁﬁiteﬁeld

COROLLARY 5.4. Any Noetherian ring R has only a finite number of such maximal
‘ideals M that |RIM| = d (for any fixed d), and hence the set of its finite quotient
fields is at most countable. .

Proof. It suffices to observe that any such M is a prime ideal mmlmal over
I(R) by Corollary 5.3.

We are ready to prove the following charactenzatlon

PrOPOSITION 5.5. I,,(R) = (| {M e Max(R); |R/M| l—llm 1} (a radical ideal).

Proof. Let (R, M) be a local ring. Any x € M gives an invertible element
1—x""1 consequently x = (x—x™)/(1—x""%) e I,(R). Hence, by Corollary 5.3,

L(R) # R < I(R) = M < |R/M|~1jm=1

as required. For arbitrary R, the inclusion = follows from Corollary 5.3, and the
inverse can be proved by localization since (\M)y<(\Ms.

COROLLARY 5.6! If m=1n—1 then I,(R)>I(R). In particular, I,(R) is the
greatest ideal in the collection. ‘
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CoROLLARY 5.7. If R is Noetherian then R[I(R) is finite. (More precisely, it
is a finite product of finite fields).

Proof. Use Proposition 5.5, Corollary 5.4 and the Chinese Remainder Theo-
rem. (Another proof follows from the von Neumann regularity of R/T,(R)).

Suppose that R is a Noetherian ring and X is a finitely generated R-module.
Then, by [5] (Theorem 2.3 and Theorem 1.4)

61 HEoL ea f‘R/<M>(X/(M>X)

|R

where (M) denotes some power of M (depending on m and X). Observe that R/(M)
is local Artinian. Consequently, any finitely generated R/(M)-module has finite
length (see for example [1]), and hence is finite as 2 set, because so is the only simple
R/(M)-module R/M. This proves an analogue of Corollary 5.7 (see also [5], Corol
lary 2.2):

COROLLARY 5.8, If R is Noetherian and X is a finitely generated R-module then
['%(X) is finite, Consequently, R(X) is a torsion module provided that R is infinite.

If m<5 and R is Noetherian then (5.1) holds for (M) = M (see [5], Corol-

lary 3.3). If, moreover, X = R" for n>>1 then all the direct summands are non-zero
(see [4], Lemma 6.3) and hence

m=1 IZ(R)s m = 3,
Am(FRRY) = N {M e Max(R), |R/M|<m} = ﬂ I(R) = 15(R), m=4,
L(R) A L(R), m = 5.

We are going to compute directly RR™ for m<5 (Corollary 5.10 below), which
will give us the above formulas for arbitrary R. By (4.2) and Corollary 4.2 it suffices
to determine [™* = [R*(Rey, ..., Rey) for 1<k<m, where e,,..,e, form the
standard basis of R*. Let (my,..,m,) denote the base element e{™...ef™ of
I'R*(Rey, ..., Re). Then (4.5) shows that T™* = T*(Re,, ..., Re) is generated
by the following elements:

Y. T my, o m), reR.
my oLt me=m -
Miyeenyiie>0
One. of them, obtained for r; = ... = r, = 1, will be denoted by o,
THEOREM 5.9. In the above notation
_ m—2 i
(1) ™1 = Re@ @ LR@,..,1,2,1,..,1), "m1x(R/L(R)"2
=1

o . ' (m=3),
@) T*? = Ro@L(R)(2, 2)@L(R)(3,1), [~ RIL(R)®R/I(R),
(3) T** = Ro@L(R)(2, HOL(R) (3, 2)®I(R)((4, 1)+(2, 3)),

12 (RIL(R) @ RIT{R),
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@ T°* = Re®L(R)(1, 3, DOLR)B3, 1, DAL (1, 2,8LR) (2, 1,2)®
OL(R)2,2, 1), F** ~(RILE)Y SR/L(R)).
Proof. It suffices to consider only I' = I"™* Any generator of ' can be ex-
pressed as an element of the right-hand side in the following way:
i : m-2
1° Z} Py PP rm_l(l, a2y e ) =1y ...rm_la+§lr1 SN
o i
X ey =T ) (L ooy 2,0, 1),

2° rs3(1, 3)+r32(2, D +r3s(3, 1) = rsdo+s(Ps—rsH2, 2)+(rPs—rs) (3, 1),
3% rs*(1, A +r23Q2, 3)+r3523, D+ris@, 1) = rsto+r(rs*—r5) (2, 3)+

+s(r s~rs3)(3 2)+(r*s—rs*) (4, D+(2, 3),
4 rst3(1, 1, ) +rsPt(l, 3, D+rist(3, 1, D+rs2t3(1, 2, 2)+r252(2, 1, 2+

L 25212, 2, 1) = st Fr(stt—st®) (1, 3, D+s(Pt—r) (3, 1, 1+
et —stt) (1,2, 2)+st(rPt—rt?) (2, 1,2)+ (2 —rs) +rs(t— )(2,2,1).

It suffices to prove that all the direct summands are contained in T. Of course,
this is evident for Ro. :

(1) For any i<m—2 put r; = 1 (j # z) on the right-hand side of 1°..

(2) 1t follows from 2° that s(r2s—rs?)(2, 2)+(r3s—rs*)(3, ) eT. Interchangir_l_g
r and s and summing up, we obtain (s—r)(r2s—rs?)(2,2) = —rs(r—s)*2,2eT.
For s = r—1 this gives us I,(R)(2,2)<T. Then also I3(R)(3, )<=T.

(3)" Suppose that 2 is invertible in R. Then I,(R) = I,(R) = R by Corollary 5.3.
Let us exchange » for —r on the left-hand side of 3°. The summation shows that
r2s3(2, 3)+r*s(4,1)eT. In particular (2,3)+(4,1)eT, as required, and hence
(r’s®—r*s)(2,3)eT. For r=1 this gives us I3(R)(2, 3)cT, and the symmetric
consideration shows that I5(R)(3, 2)<=T.

(3)"" Suppose that 2 is non-invertible. Since both sides of (3) commute with
localizations, it suffices to assume that R is a local ring. Hence any odd integer
is invertible in R; in particular I,(R) = I,(R)>I,(R). Puttings = landr = £2, +3
on the left-hand side of 3°, we obtain (siice 3 is invertible) the following el-
ements of I':

£2(1, 4)+4(2,3)£8(3,2)+16(4, 1), (1, H+3(2,3)£93,2+27(4,1).

As a consequence, =+ (1,4)+(2,3)F(3,2)—11(4, I)eT. These elements (and a)
give the following elements of T':

2(3,2)+12(4,1), 2(2,3)-114,1), 2(01,4-G,2),

and, by symmetry, 2((2, 3)—(4, 1)). Then 20(4, 1) e T, hence 4(4, 1) e T’ (because 5

is invertible), and consequently (from above) 2(3,2), 2(1,4)e I. By symmetry,

2(2,3),2(4,)el. - .
Put s = 1 and r+1 instead of r on the left-hand side of 3° and compute the

defect. This gives us 2r(2, 3)+3(r+r2)(3, 2)+(@dr +6r* +4r>)(4, 1) e T. Because of
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the ‘above, (r+r?)(3,2)eT. Hence I,(R)(3,2)<T, by symmetry I,(R)(2, 3)cT,
and the remaining inclusion follows from 3°.

(4)" Suppose that 2 is invertible in R, and hence I,(R) = R. Putting —r instead
of r in 4° and summing up, we obtain r2st3(2, 1, 2)+r%5*1(2, 2, 1) e T. Doing the
same with s and the resulting element, we prove that (2,2, 1) — and by symmetry
(2,1,2) and (1,2, 2) —belong to T'. Hence the right-hand side of 4° for s = t = {
shows that I;(R)(3,1,1)—and obviously I3(R)(l, 3, 1) —are contained in T.

(4)" Suppose that 2 is non-invertible. As in (3)"" we can assume that 3 is in-
vertible; hence I,(R) = f3(R). Put r+1 instead of r and s = ¢ = 1 on the left-hand
side of 4° and compute the defect. This gives us :

.2 O 30+)B,1,D42r(2,1,2+(2,2, D) eT .
Put r=3and s=17=1 in 4° cancel 3 and substract o. This gives us
' 3G, 1, D+2(2, 1, D+@, 2, D) eF.

Comparing with (5.2) for r = 1 we obtain 2(3,1,1)eT, and hence 2((2, 1, 2)+
+2,2,))eT. In view of (52), I,(R)(3,1,1) — and also I(R)(1,3,1),
L(R)(1,1, 3) — are contained in T. Then the right-hand side of 4° for s = ¢ = 1
shows that I,(R)((2,1,2)+(2,2,1))=T. Since L(R)ocT, it follows that
I(R)(1,2,2)cT. The rest is given by symmetry.

-+ CoroLrAry 5.10. F3(R") =~ (;)(R/IZ(R)),

' - rey (5] +2(3)) Rin)e ) (RIE@),
ra~3" 3 Rm@)e" s Rin@)e (3) (Ri®)

where sM denotes M® ... (B‘M (s. times) and (Z) = 0 for n<k.

The author wishes to thank Professor Artibano Micali for the inspiration and
discussions related to- the contents of Section 3.

References

{11 M. Atiyah and I. MacDonald, Introduction to Commutative Algebra, Addison-Wesley,
1969. .

[2] S. Eilenberg and S. MacLane, On the groups H(m,n), II, Ann. of Math., 60 (1954),
Pp. 49-139.

3] M. Ferreroand A. Micali, Sur les n-applications, Bull. Soc. Math. France Mém. 59 (1979),
pp. 33-53. .

[4] A. Prészyriski, Some functors related to polynomial theory, Fund. Math. 98 (1978),
pp. 219-229. )

(51 — Some functors related to polynomial theory, II, Bull. Soc. Math. France Mém. 59 (1979),

pp. 125-129. .

icm°

Forms and mappings. I: Generalities 235

[6] A. Proszyniski, m-applications aver finite flelds, Fund. Math. 112 (1981), pp. 205-214.,
[71 N. Ro by, Lois polynﬁmes et lois formelles en théorie des modules, Ann. Ec. Norm Sup.
80 (1963), pp. 213-348.

[81 — Sur Palgébre des puissances divtsées dun modiile monogéne, Université de Montpellier,
1968-1969. )
[91 — L~ des pui. divisées d’un groupe monogére, Bol. Soc. Matem. Sédo Paulo

18 (1966), pp. 39-47.

WYZSZA SZKOEA PEDAGOGICZNA, BYDGOSZCZ

Received 14 December 1981;
in revised form 27 July 1982

4 — Fundamenta Mathematicae CXXII/3


GUEST




