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On line-symmetric graphs
by

David Burns (Big Rapids, Mich.), S. F. Kapoor (Kalamazoo, Mich.)
and P. A, Ostrand * (Santa Barbara, Ca.)

' Absfract, The structure of line-symmetric graphs is investigated.

Introduction. Whereas, an automorphism of a graph G with vertex set V(G)
and cdge set E(G) is a bijection of ¥(G) with itself which preserves adjacency and
non-adjacency between vertices, an edge-automorphism of G is a bijection of E(G)
with itself which preserves adjacency and non-adjacency of edges. Following the
notation of [1], #/(G) denotes the group of all automorphisms of G and &,(G)
denotes the group of all edge-automorphisms of G. If G is a non-empty graph and
a e o/ (G), then ¢ induces an edge-automorphism & of G, where, if e = {x, »}
e E(G), then &(e) = {«(x), a(»)}. Let &/*(G) denote the subgroup of 4(G)
consisting of all the edge-automorphisms of G that are induced by the automorphisms
in & (G). The literature of graph theory contains a variety of results that specify
conditions for isomorphisms among the groups & (G), &,(G) and #*(G) [1, p. 179].

If &/*(G) acts transitively on E(G), meaning that for all edges ¢ and f of G
there exists a 1 in &/*(G) such that A(e) = £, we say that G is line-symmetric. This
concept has been studied by Bouwer [2], Dauber and Hatary [6], and Folkman [7].
We observe that for all positive integers m and n, the graphs nkK,, K(m,n), Ky
and the line-graphs L(K,) are line-symmetric, as are all cycles, together with a number -
of other well-known graphs such as the Heawood and Petersen graphs and the
graphs of the five regular polyhedra.

The analogous vertex related concept is point-symmetry, ie., a graph G is
point-spmmetric if o (G) acts transitively on V(G). Following Harary [8], a graph
is symmetric if it is both point-symmetric and line-symmetric. Also, we call a graph
biregular if the set of degrees of its vertices has cardinality two.

Our 'interest in line-symmetric graphs grew out of a recent work [3] where
it was shown that a graph G is line-symmetric if and only if its complement G has
the property that G-+e = G-f for all edges e and f of G. For this latter property
we adopted a descriptive phraseology; a graph G is uniquely edge extendible (UEE)

* This author wishes to express his appreciation to Western Michigan University for the
hospitality extended to him during the period of this research.
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if G4+ex G+f for all edges e and f of G. The above referenced result is then
succinctly restated: a graph is line-symmetric if and only if its complement is UEE.
Unless specified otherwise we will follow the symbols and terminology as in [1].
Section I. In this section we present structural characterizations of several
classes of line-symmetric graphs, where the classes are specified by various con-
nectivity properties of either the graph or its. complement.

THEOREM 1. Let G be a disconnected graph. Then G is line-symmelric if and
only if there exists a connected line-symmetric graph H such that every non-trivial
component of G is isomorphic to H.

Proof. Let G be a disconnected line-symmetric graph. Tt is easily seen that
each component of G must be line-symmetric. If G has exactly one non-trivial
component, the result is true. Otherwise, let G4 and G, be distinct non-trivial com-
ponents of G. Let e;e E(G;), i =1,2. Since G is line-symmetric, there exists
o€ o (G) such that &(e;) = e,. It follows that #(E(G,)) = E(G,) and that o re-
stricted to V(G,) is a G; — G, isomorphism.

Tt is readily verified that if there exists a connected line-symmetric graph H such
that every non-trivial component of G is isomorphic to H, then G is line-sym-
metric. W

The analogous theorem for point symmetry also holds. We include it here
because it will be needed in the proof of a subsequent characterization.

THEOREM 2. Let G be a disconnected graph. Then G is point-symmetric if and
only if there is a connected point-symmetric graph H and an integer t2 such that
G = tH.

~ Proof. It is readily verified that if G' & tH, with #>2 and H point-symmetric,
then G is a disconnected point-symmetric graph. Suppose conversely that G is
a disconnected point-symmetric graph. Let Gy, ..., G;, t=2, be the components
of G. Let H = G, and let ue V(H) and ve V(G)) for some 2<i<¢. Then there
exists 7 € & (G) such that n(b) = u. So n(V(G)) = V(H) and = restricted to V(G))
is an isomorphism of G; with H. Thus G; = H for every 2<i<t, and G = tH. W

THEOREM 3. Let G be a connected graph which is not a block. Then G is line-
symmetric if and only if G = K(1,n) for some n=2.

Proof. If G = K(1,n) for some n>2, then G is a line-symmetric connected
graph which is not a block.

Conversely let G be a line-symmetric connected graph which is not a block.
Then G has at least one cut-vertex. If G has two or more cut-vertices, then G con-
tains end-blocks and blocks that are not end-blocks. Let ¢ be an edge in an end-
block of G, and let f be an edge belonging to a block of G which is not an end-block.
Then for all o € #*(G), a(e) is an edge of G belonging to an end-block of G. Hence
a(e) # f for any « € #*(G), contradicting the fact that G is line-symmetric. There-
fore G has exactly one cut-vertex v. Let g be an edge of G incident with v, and as-
sume that G contains an edge  not incident with v. For all « € o/*(G), the edge a(g)

S
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must be incident with some cut-vertex of G; and hence «(g) must be incident with v,
since v is the only cut-vertex of G. It follows that «(g) & for all o € &Z*(G), dagain
contradicting the fact that G is line-symmetric. Thus every edge of G -is incident
with v and G is isomorphic with K (1, n) for some n3>1. But since G is not.a block,
we must have n>2. W e

We recall that the complete f-partite greph K(n,n, ..., n) is denoted K-

THEOREM 4. If G is a graph whose complement is disconnected then G is line-
symmetric if and only if either there exist distinct positive integers m and n such that
G = K(m,n) or there exist integers n=1 and t22 such that G = K.

Proof. It is easily verified that if G has either of the specified forms then G is
line-symmetric and G is disconnected. - Suppose conversely that G is a line-sym-
metric graph whose complement is disconnected. Let Gy, ..., G, be the components
of G, t»2. We claim that each G; is complete. To see that this is so, suppose to
the contrary that there are two non-adjacent vertices x and y in G; for some 1 <i<r.
Then e = {x, y} is not an edge of G, i.e. e E(G). Also, if we choose arbitrary
vertices u in G, and v in G,, then f = {u, v} is not an edge of G but is an edge
of G. So there exists © € o (G) with #(e) = f. But as an automorphism of G, = is
also an automorphism of G, so there exists an index j, 1<j<t, such that n(G)
= G, contradicting #(e) = f (which requires that #(G;) meet both G; and G,).
Thus every component of & is complete. Then, if +=2 and m= IXV(G1)I
and n = |V(G,)| we have G 2 K,, U K, so that G & K(m, ), and either m # n,
or m = n in which case G & Ky, If 123 then it is easily verified that the line-
symmetry of G implies |V(G))| = |V(G))] = ... = |V(G)l. If n denotes the com-
mon values of |V(G))|, then G = tK,, and G= Ky(,y. M

For graphs G with sufficiently many isolated vertices a suitable modification
of Theorem 4 also characterizes line symmetry.

COROLLARY 4a. For any positive integer s let G be a graph with at least s isolated
vertices such that %(G) = 5. Thén G is line-symmetric if and only if either G = Kiq
or there exist distinct positive integers m and n such that G = K, K(m, n) or there
exist integers n=1 and t22 such that G & Ky U Kygy-

Proof. It is easily seen that if G has any of the three forms specified in the
conclusion of the corollary then G is line-symmetric. Suppose conversely that G is
a line-symmetric graph with at least s isolated vertices and that %(G) = 5. Then
either G = K., or G contains a cut-set S of cardinality s. In the former case we
are done. So we suppose that G has a cut-set S of cardinality s. Being a cut-set of G,
S must contain all isolated vertices of G. Thus G has exactly s isolated vertices
which constitute the cut-set S. Then G—S is a line-symmetric graph and ifs com-
plement G—S = G~-S is disconnected. Now by Theorem 4 either G—S'& K(m,n)
or G—8 &2 Kyy; and G = K, U K(m,n) or G = K, U Ky, for appropriate values
ofmandnortandn M .

A similar result holds for graphs whose complements have isolated vertices.
1*
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COROLLARY 4b. Let G be a graph such that G has an isolated vertex. Then G is
line-symmetric if and only if either G = K, for some positive integert or G = K(1, n)
for some integer nz2.

Proof. It is easily seen that complete graphs and stars are line-symmetric
and that their complements each contain an -isolated vertex. Conversely, let G be
a line-symmetric graph whose complement contains an isolated vertex. If G is of
order 1 then G is K; and we are done. So we suppose that the order of G is at least 2.
Then G is disconnected, so by Theorem 4 we need consider only two cases.

Case 1. G = K(m, n) for some positive integers m<n.

Since G has a vertex which is isolated in G, we must have m = 1, and ¢
=~ K(1,n) for some nx2.

Case 2. G = Ky, for some integers n>1 and 7>2.

Then G = tK, and because G has an isolated vertex we must have n = 1, and
G g.K,(m = Kt' |

If « is an automorphism of a graph G and e and f are edges of G such that
&(e) =f, then o is also an isomorphism of G—e with G—f, which suggests another
characterization of line symmetry.

THEOREM 5. A graph G is line-symmetric if and only if for any two edges ¢ and f
of G, G—e = G—f.

Proof. In [3] it is shown that a graph G is line-symmetric if and only if G
i_s_ UEE, that is, if and only if for any two edges e and f of G, G+e = G+1. But
Gt+e=G—-ecand G+f= G—f, so G+e = G+fif and only if G—¢ = G—7; and
this is so if and only if G—e =~ G—f. W

Information about the edges of a graph can often be equivalently interpreted

as infgrmation about the vertices of its line graph. Our next two theorems do so
for the problem at hand.

THEOREM 6. If G is a non-empty graph which does not contain both K, and
K(1,3) as components then G ‘is line-symmetric if and only if L(G) is point-sym-
metric. .

.Proof. First, suppose that G is a non-empty line-symmetric graph. Let v, w be
arl‘)ltrary-vertlces of L(G) and ?‘et e,f be the corresponding edges of G. There
exists A in M*(G) such that A(e) = f. Now «#/*(G)=,(G) = #(L(G)) so there
is a corresponding o in #(L(G)) and a(v) = w because v and w are the vertices
of L(G) corresponding to edges e and f of G. Thus the line symmetry of G implies
that: L(G) is point-symmetric. :

Now, suppose that G is a non-empty graph which does not contain both K,
and K(1,3) as components such that L(G) is point-symmetric. We consider two
cases according as G is connected or not.

Case i G is connected.

] We note that L(C,+e) = K;+C, which is not point—s&mmetric and neither
is L(K(1, 3)+e) = Cy+f, s0 G cannot be either of the graphs Cy+e, K(1, 3)+e.
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G could be K, but in that case we are done since K, is line-symmetric, so we may
assume that G is not K, either. Thus &{(G) = &*(G) [1, p. 179]. Now let e, f be
arbitrary edges of G and v, w the corresponding vertices of L(G). There is an o in
& (L(G)) such that a(v) = w. Let A be the corresponding mapping in «#,(G)
= o*(G). Then A(e) = f. Thus G is line-symmetric.

Case 2. G is disconnected.

Let Gy, G,, ..., Gy be the components of G (k22). If L(G) is connected,
then G has exactly one non-trivial component to which Case 1 may be applied to
show that G is line-symmetric. If L (G) is disconnected then its components, without
loss of generality, are L(G,), L(G,), ..., L(G,) for some 2<m<k. By Theorem 2,
L(G,) = L(G,) & ... = L(G,). Since not both of K3 and K(1, 3) are components
of G it follows by Whitney’s Theorem [1, p. 188] that G; = G, = ... & G,,. Also,
Guit = Gy & ... 2 G, = K;. Hence, if G, = H, then G 2 mH v (k—m)K,,
and L(G) = mL(H). By Theorem 2, since L(G) is point-symmetric we know that
L(H) is point-symmetric. Then, by applying the argument of Case 1 to H, we
conclude that H is line-symmetric. Hence G is linc-symmetric by Theorem 1. M

TreoreM 7. Let G be a connected bridgeless graph. Then G is line-symmetric
if and only if for any two vertices v and w of L(G), the graphs L(G)—v and L(G)—w
are isomorphic.

Proof. First let G be a connected line-symmetric graph. By Theorem 5 we
know that for any two edges g, and g, of G, the graphs G—g, and G~g, are
isomorphic. Let v and w be any two vertices of L(G) and let e and f be the corre-
sponding edges of G. Then G—e = G—f which yields L(G—e) = L(G-f). But
L(G—e) = L(G)—v and L(G—f) =2 L(G)—w [, p. 198] so L(G)—v = L(G)—w.

Conversely assume that G is a connected bridgeless graph where L(G)—vy
= L(G)—v, for any pair vy, v, of vertices of L(G). Let ¢ and f be any two edges
of G and let v and w be the corresponding vertices of L(G). Then L(G—e)
=~ I(G)—v = L(G)—w = L(G—f). Since G is connected and has no bridges,
both G—e and G—f are non-trivial connected graphs different from Kj. By Whit-
ney’s Theorem [1, p. 188] we concludé G—e = G~—f, and by Theorem 5 we con-
clude that G is line-symmetric. M

We note that the restriction in Theorem 6 that G should not contain both Kj
and K(1,3) as components is essential since if G = K3 v K(1, 3) then G is not
line-symmetric but L(G) = 2K, is point-symmetric. By comparison, the restriction
in Theorem 7 that G be connected and have no bridges is added only because it
is useful in our proof. We know of no example which shows that this condition
is necessary for the conclusion.

Section II. As the results of Section I indicate, there is great diversity among
the line-symmetric graphs. To bring some order to this state of chaos we now present
some results which categorize line-symmetric graphs. To facilitate the description
of the three essentially different types it is convenient to adopt some additional
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terminology. -A transitive bipartition of a bipartite graph G is a bipartition of G
such that..of (G) acts transitively- on each of the partite sets.

The next two results presented are attributed by Folkman [7] to an unpublished
manuscript -of Dauber and Harary [6], and they are attributed by Harary [8] to
Dauber alone. We provide their.proofs for the sake of completeness.

THEOREM 8. Let G be « line-symmetric graph which has no isolated vertices.
(i) If' G is bipartite, then G has a transitive bipartition.
(il If G is not bipartite, then G is point-symmetric.

Proof. Lét u; and u, be adjacent vertices of G and let V, = {rn(u))| n & H(G)}
for i = 1,2. Then of course, o (G) acts transitively on each of the sets ¥y and V;.
We consider two cases.

Case 1. ¥, and V, are disjoint.

Let ey = (ug,u,), and let e = (u,v) be an arbifrary edge of G. Then there
exists an automorphism o of G such that &(eo) = ¢. Hence {a(u,), a(u;)} = {u, v},
so e is incident with one vertex in each of the sets ¥, and V,. Moreover for an
arbitrary vertex z of G, z is not isolated so there is an edge f of G which is incident
with z. Then there exists an automorphism 7 of G such that #(ey) = f, so that
ze {n?ul),‘n(uz)}ch U ¥,. Thus V(G) = V; U V, is a bipartition of ¢ and as
noted above &/ (G) acts transitively on each of the sets ¥, and ¥,. In Case 1 G is
bipartite .and has a transitive bipartition.

Case 2. V; meets V.

It is‘readily verified that V; = V, = V(G) so «/(G) acts transitively on V(G).
Thus G is point-symmetric; and in the event that G is also bipartite, every biparti-
tion of G is transitive because G is point-symmetric. M

We note from Case 2 of the preceding proof that if G is a line-symmetric
graph it is possible for G to be both bipartite and point-symmetric. Indeed all cycles
of even order are of this type. Regularity or lack thereof provides an alternatwu
scheme for categorizing line-symmetric graphs.

THEOREM 9. If G is a line-symmetric graph which has no isolated vertices then
either G is regular or G is biregular. .

Proof. If @ is bipartite, then by Theorem 8 there is a bipartition of G such
that /(G) acts transitively on each of the two partite sets. Then it is apparent that
vertices which lie in the same partite set must have the same degree, and thus at
most two different degrees occur in G. On the other hand, if G is not bipartite,
then again by Theorem 8, G is point-symmetric, and hence regular, M

The common hypothesis in Theorems 8 and 9 that G have no isolated vertices
is not a significant hindrance since if G is a graph which has isolated vertices and
H is the subgraph of G resulting from the deletion of the isolated vertices then G is
line-symmetric if and only if H is line-symmetric. In short, the isolated vertices

do not affect the line-symmetry of a graph; they only complicate the description
of its structure.
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The two classification criteria of the preceding theorems may be combined
to producc a three-way classification of line-symmetric graphs.

TueoreM 10. If G is a line-symmetric graph which has no isolated vertices then
G satisfies exactly one of the following conditions.

(i) G is biregular and bipartite, in which case G has a unique transitive bipartition
namely, the unique partition of V(G) into two subsets so that vertices of equal degree
are in the same subset:

(i) G is regular and bipartite, in which case G might be or might not be point-
symmetric.

(iii) G is regular but not bipartite, in which case G must be point-sym-
metric.

Proof. By Theorem 9 we know that G is either regular or biregular. If G is
biregular then, by Theorem 8, G must be bipartite since G cannot be point-sym-
metric. For any transitive bipartition of G, vertices in the same partite set must
have the same degree. Since two different degrees occur in G there can only be one
such partition of ¥(G). Thus if G is biregular it satisfies condition (i) but neither (ii)
nor (iii).

If G is regular then either G is bipartite or it is not. If G is bipartite it may be
point-symmetric, as in the case of even cycles, or it may fail to be point-symmetric
as in the case of the graphs constructed by Folkman [7] and the graphs described
in Corollary 16a below, If G is regular and not bipartite then, by Theorem 8, G must
be point-symmetric. Thus regular line-symmetric graphs without isolated vertices
satisfy exactly one of conditions (ii) and (iii) and, of course, do not satisfy con-
dition (i). W

Among the regular line-symmetric graphs, the condition of also being point-
symmetric is certainly the rule rather than the exception. So one-sided is this bias
that the existing literature deals mainly with techniques for constructing regular
line-symmetric graphs which are not point-symmetric. Folkman [7] provides a set
of necessary conditions together with a-set of sufficient conditions for the existence
of regular line-symmetric graphs of a specified order which are not point-symmetric.
The vertex splitting construction below enables us to extend Folkman’s result to
include a new infinite family of possible orders.

Let G be a graph and let & = {S,| ve V(G)} be a family of pairwise disjoint
non-empty finite sets. In this case we will say that & is a vertex splitting family
for G. For each edge ¢ = {u, v} of G let S, = {{x,»}| x& S, and y & §,}. For each
ve V(G) and each x e S, we say that x is a fragment of v and that v is the source
of x. Likewise for each ¢ € E(G) and each f e S, we say that fis a fragment of ¢ and

that e is the source of f. Let &*G denote the graph with vertex set U(G)S and
veV
U S,. We say that *G is a vertex-splitting of G. Note that if every
ee E(G)
set in & is of cardinality 1 then ¥*G = G. In this case we refer to #*G as the

trivial vertex-splitting of G.

edge ‘set
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ExaMPLE 1. Let G be the graph K; with V(G) = {u,v,w}. Let & be the
vertex splitting family with S, = {1,2}, S, = {3}, and S,, = {4}. The graphs ¢
and &#*G are illustrated in Figure 1.

u 1
W v
?

Fig. 1

ExaMPLE 2. For the very same graph G as in Example 1 now let & be the
family, S, = {1}, S, = {2, 3}, S, = {4}. Then ¥*G = C, as shown in Figure 2.

2

© Fig. 2

ExaMpLE 3. Let G be the graph C, U K(1,2) and let & be the family which
splits the C,.component of G trivially and splits the K(1, 2) as in Example 2. Then
S*G =2 2Cy.

We note that in Example 1 the graph G is line-symmetric but $*G is not line-
symmetric, while in Example 3 G is not line-symmetric but &*G is line-symmetric.
In Example 2 both G and #*G are line-symmetric, while if G is any graph which
is not line-symmetric then neither' G nor its wivial vertex splitting are line-sym-
metric. Thus a graph and its vertex splittings are independent with respect to the
property of line-symmetry. The same is true with respect to point-symmetry. How-
ever in the presence of other conditions the line-symmetry and point-symmetry
of G and &*G are related. Our first such condition is the following. A graph is
called elementary if no two of its vertices have the same neighborhoods.

LeMMA 11. Let G be an elementary graph and let & be a vertex splitting family
Jor G. Then for vertices x and y of *G, N| (x) = N(y) if and only if x and y are
fragments of the same vertex in G. C

. I"roof. .Let G be an elementary graph and let & = {S.l ve V(G)} be a vertex
splitting family for G. Let x, y be vertices of $*G. Let 1 and » be the sources of x
and y respectively. Then N(x)= Sy and N(») = U S,. Thus N(x)

. i weN(u) weN(v) ¢ -
= N(y) if and only if N(u) = N(y), which is so if and only if u = v, in which
case x and y are both fragments of ¥ = ». W
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THEOREM 12. Let G be an elementary graph and let & be a vertex splitting family
Jor G such that S*G is line-symmetric. Then G is line-symmetric.

Proof. Let G and & be as in the hypothesis of the theorem. Let e, = {u;, v}
and ¢, = {u,, v,} be arbitrary edges of G. Let f; and f; be fragments of e, and e,
respectively in S*G. Then f; = {x;,»;} where x;€§,, and y,eS,, for i=1,2.
There exists o € & (*G) such that &(f;) = f,. Without loss of generality we may
assume that «(x;) = x, and a(y;) = y,. Define n: V(G) — V(G) as follows. For
arbitrory v e V(G) let x be an arbitrary fragment of v and let w be the source of
a(x). Define n(v) to be this w. Note that if y is some other fragment of v then by
Lemma 11 N(x) = N(») and N(x(x)) = a(N(x)) = a(N(»)) = N(x(»)), so by
Lemma 11 again o(x) and o(p) have the same source w. Thus = is well-defined.
If v and v’ are adjacent vertices of G then their fragments x and x' are adjacent
vertices of #*G so a(x) and a(x’) are adjacent vertices of &*G and their sources
7(v) and n(v') are adjacent vertices of G. Thus = is an automorphism of G and it
is apparent that (fe;) = e,. Thus G is line-symmetric. B

The analogous result holds also for point-symmetry with the very same con-
struction as proof. .

THEOREM 13. Let G be an elementary graph and let & be a vertex splitting family
for G such that $*G is point-symmetric. Then G is point-symmetric.

Proof. Let & and G be as in the hypothesis of the theorem. Let uy and u,
be arbitrary vertices of G and let x; and x, be fragments of u; and u, respectively.
There is an o € & (F*G) such that a(x,) = x,. Construct n: ¥(G) = V(G) from
a as in the proof of Theorem 12. Then = is an automorphism of G and w(u,) = u,.
Thus G is point-symmetric. M

If & satisfies the right conditions line- or point-symmetry of G can also be
carried over to S*G. :

THEOREM 14. Let G be a line-symmetric graph and let & = {S,| ve V(®} be
a vertex splitting family for G and let I be a subgroup of o4 (G) such that I'* acts
transitively on the edges of G, and such that |S,| = Syl for every ve V(G) and
every we I'. Then $*G is line-symmetric. : ‘

Proof. Let G, &, and.I' be as in the hypothesis of the theorem. Let f
= {x;,y,} and f, = {x,,y,} be arbitrary edges of &*G. Let ¢; = {uy,v,} and
e, = {uy, v,} respectively be the sources of f; and f;. Then without loss of gener-
ality we may assume that u, is the source of x; and v; the source of y; for i =1,2.
There exists « in I' such that &(e;) = ¢,. Again, without loss of generality we may
assume that a(u,) = u, and «(v;) = v,. For each vertex v of G [S,| = [Sunl so
.there is a bijection 7,: S, = Sy, where, without loss of generality, we may assume
that 7,(x;) = x, and m,,(»;) = y,. Define n: V(#*G) ~ V(£*G) by letting
restricted to S, be n, for each ve V(G). It is apparent that « is an automorphism
of #*G and that R(f) = f,. B
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Theorem 14 is principally of value for the following corollaries which, illustrate
how the conditions involving the subgroup I' can be applied.

COROLLARY 14a. If G is a line-symmetric graph and & is a vertex splitting family
for G such that all- member's of & are of the same cardinality, then S*G is line-sym-
metric. . ) o

Proof. Let G and & satisfy the hypothesis of the corollary. Let I' = & (G).
Then G, &, and I' satisfy the hypothesis of Theorem 14, so &* G is line-sym-
metric. B

COROLLARY 14b. If G is a biregular line-symmetric graph and & = {S,} v e V(G)}
is a vertex splitting family for G such that for vertices u and v of G of equal degree
1S, = |S,l, then S*G is line-symmetric. W

We omit the proof of Corollary 14b since it is identical to that of Corollary 14a.
Corollary 14c is a bit different, however, '

COROLLARY 14¢. Lef n be an even positive integer and let G be the cycle of length
n so that G has a unique bipartition. Let & = {S,| ve V(G)} be a vertex splitting
family for G such that for any two vertices u and v of G in the same partite set, |S,|
= |S,|. Then &*G is line-symmetric.

Proof. Let G and & be as in the hypothesis of the corollary. Let V(G)
= V, U ¥, be the unique bipartition of G. Let I' = {n e & (G)| a(Vy) =V;}. Then
G, &, and T satisfy the hypothesis of Theorem 14, so ¥*G is line-symmetric, W

The even cycles are not only graphs to which the preceding argument applies.
It may be used for any connected bipartite line-symmetric graph such that for I" as
defined in the proof, I'* acts transitively on E(G). Other examples of such graphs
include the n-cubes Q, for n>1.

As in the case of Theorem 12, Theorem 14 also has its point-symmetric analog
which we state without proof because it is analogous to that of Theorem 14,

THEOREM 15. Let G be a point-symmetric graph and let & be a vertex splitting
family for G and let I be a subgroup of £ (G) which acts transitively on V(G) such
that |S,| = |Su| for every ve V(G) and every a € I'. Then *G is point-symmetric. W

By selecting I' = & (G), Corollary 15a is established. The analogs of 14b
and 14c in terms of point-symmetry are not meaningful. o

COROLLARY 13a. If G is a point-symmetric graph and & is a vertex splitting
Samily for G such that all members of & are of equal cardinality, then S*G is point-
symmietric. B )

ExaMpLe 4. Let G =K, with V(G) = {u,}. Let S, = {1}, S, = {2, 3}.
Then &£*G is K(1, 2). (See Figure 3.)
.~ As Example 4 indicates, the converse of Corollary 14a is false. The graph G in
this example is elementary and & contains members of different cardinalities and
yet &*G is line-symmetric. However the converse of Corollary 15a is valid,

THEOREM 16. If G is an elementary graph and if & = {S,| ve V(G)} is a family

icm
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of pairwise disjoint non-emply finite sets such that S*G is point-symmetric then all
members of & are of the same cardinality. ‘

Proof, Let ¢ and & satisfy the hypothesis of the theorem. Let w and v be
arbitrary vertices of . Then there exists x & S, and « € o (£*G) such that a(x) €.5,,.
Thus for all y &S, we have N(y) = N(x) by Lemma 11 and therefore we have
N(a(y) = a(N(p) = a(N(x)) = N(a(x)) so that a(y)e S, by Lemma 11. Then
al$,)eS,. Since o s injective we conclude that 1SS, The same argument
applicd to the automorphism a”! und the vertex a(x)e S, yields the reverse in-

equality |5,/ <181, Thus [S,] = IS, for arbitrary vertices # and v of G. W
2
(57 et} Gl
i v
3
Fig, 3

COROLLARY 16a. For every integer t22 there exists a regular line-symmetric
graph of order 2t(2t+1) which is not point-symmetric.

Proof, Tt will be shown in Section TII that for every integer 2 the subdivision
graph of Ky, is an clementary biregular line-symmetric graph which has £(2¢+ 1)
vertices of degree 2 and also 2/+1 vertices of degree 2¢. Take this as the graph G,
and Tet & = {S,| ve V(G)} be a family of pairwise disjoint sets with |S,| =1
Whenever dego = 2 and |S,| = ¢ when degv = 2¢. Then S*G is regular of degree
2t and order 2¢(2t+1) and by Corollary 14b S*G is line-symmetric but, by The-
oreém ‘16, it is not point-symmetric. M

Corollary 16a extends the results of Folkman since it includes some orders
which are not covered by Folkman’s results. Specifically for ¢ = 9 we have a graph
of order 342 which is not covered by Folkman’s constructions. It is interesting to
note that for ¢ = 2 we obtain the very same graph of order 20 which Folkman [7]
used (see Figure 4) to illustrate his construction. In [7], Folkman proves the follow-
ing resull, for which we offer an alternative proof basgd on the preceding theorems.

Truorin 17, Let G be an elementary graph of order p which is line-symmetric
and regular of degree d but is not poipt-symmetric. Let r be a positive integer. _Then
there is u line-symmetric graph @ of order rp which is regular of degree rd but is not
point=spmmetric,

Proof. Let G be a graph which satisfies the hypothesis of the theorem and
let & = {S,| ve V(G)} be a vertex splitting family for G consisting of ‘sets of
cardinality . Let G = &*G. Apparently G is of order rp and. 1'egu1ar of df,tgree»rd.
By Corollary 14a G is line-symmetric and by Theorem 13 G is not point-sym-
metric, M
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In fact the graph G constructed by Folkman in his proof is the very same one

we construct, but described differently. What is interesting is that our proof that &

has the desired properties comes essentially for free when G is expressed as a vertex-
splitting.

We conclude this section by noting that regular symmetric graphs which are
either bipartite or non-bipartite are easy to find, as the following infinite families
of examples indicate. Regular symmetric bipartite graphs include the even cycles
and more generally the graphs ¢C, for #>1 and n even, the graphs K, for any
t>1, and the regular complete bipartite graphs K(n, n), n=1. The regular sym-
metric non-bipartite graphs include C, for n odd and £>1, K, for 1 and #>3,
Ky for n>1 and 23, L(K,) and L(K,) for n>5, and K, x K, and 3(',—,;;{: for
nz3. In addition to these families there are a number of sporadic examples such
as the graphs of the five regular polyhedra.

Section ITI. In this section we collect results which deal primarily with the
structure of line-symmetric graphs in the biregular -bipartite category. We begin
by observing that one way to construct a biregular bipartite graph is to subdivide
a regular graph.

If G = (V, E) is a graph, the subdivision of G, denoted S(G), is the graph with
vertex set E U V and edge set {{e,v}| ec E, ve V, and ¢ and v are incident}. It is
apparent that S(G) must always be bipartite with one of the partite sets consisting
entirely of vertices of degree 2 introduced by the subdivision process, and that
distinct vertices in said partite set cannot have the same pair of neighbors. In fact
these properties characterize subdivisions when we exclude the uninteresting case
of empty graphs. (If G is empty then S(G) = G.)

On line-symmetric graphs 13

ExampLE 5. The graph G and its subdivision shown in Figure 5 explain the
use of the term subdivision in this context. S(G) is essentially a copy of G in which
an extra vertex has been added in the middle of each edge.

Fig. §

TuroREM 18. A non-empty graph G is a subdivision, meaning that there exists
a graph H with S(H) = G, if and only if G is bipartite and G has a bipartition V(G)
= V, u V, such that each vertex in V has degree 2 and no two vertices in Vy have
the same pair of neighbors.

Proof. Tt is apparent that for any non-empty graph H, S(H) is bipartite and
the partition V(S(H)) = E(H) v V(H) is a bipartition of S(H) with the properties
specified in the theorem. If G = S(H) then G must have a bipartition.

Suppose, conversely, that G is a bipartite graph with a bipartition V(G)
= V, U V, such that every vertex in ¥, has degree 2 and no two vertices in ¥V
have the same pair of neighbors. Construct a graph H as follows: V(H) = V,,
and E(H) = {N@)| u e Vy}. Define ¢: V; UV, —» ¥V, U EH) as follows. For
xeV,,let p(x) =x and for ue ¥y, let (1) = N(u). The hypothesis that no two
vertices i ¥, have the same pair of neighbors is just what is needed to guarantee
that H is a graph. Ttis easy to verify that ¢ is an isomorphism of G with S(H). Thu-
G is a subdivision. W

Before proceeding to the applications of Theorem 18 in the context of lines
symmetry we must establish some results concerning the automorphisms of sub-
divisions. ‘

LemMA 19. Let H be a graph and let o€ of (H) and let § =8 € S*(H). Define
w: V(H) U E(H) - V(H) u E(H) by n(x) = a(x) for xe V(H) and n(e) = B(e)
for e € E(H). Then w is an automorphism of S(H).

Proof. Letv e V(H) and let e ¢ E(H) be such that in S(H) vand e are adjacent.
Then in H, v and e are incident, so in H a(v) and B(e) are incident. Then in S(H),
7(v) and n(e) are adjacent. Thus = is-an automorphism of S(H). W

We note that the subdivision automorphism = constructed in the Lemma has
a special property, namely that =(V(H)) = V(H) and n(E(H)) = E(H). For
some graphs there are subdivision automorphisms which do not have this property.
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EXAMPLE 6. Let G = K. Then G and S(G) are shown in Flguxe 6. The auto-

morphism y of S(G) given by y{) = e, y(v) = f, y(w) = g and y(e) = v, 9(f) _'W
(g) = u interchanges the partite sets V(G) and E(G) of S(G).
. P v
e : i f
G: ] N !

g "

Fig. 6

For automorphisms of S(G) which do not interchange the partlte sets of S(G)
the converse of Lemma 19 is valid.

Lemma 20. Let H be a graph and let @ be an automor, phzsm of S(H) such. that
2(V(H))=V(H) and n(E(H))<E(H), and let « and f be the restrictions of = to
V(H) and to E(H) respectively. Then a€ o (H) and B = 8 s/*(H).

Proof. Let = € #(S(H)) be such that n(V(H))=V(H) and n(E(H))<E(H).
Let o and f be the restrictions of = to V(H) and to E(H) respectively. Then o and Ji
are permutations of V(H) and E(H) respectively.

For adjacent vertices x and y of H, let e = {x, 1} € E(H). Then, in S(H): e is
adjacent to both x and y, n(e) is adjacent to both n(x) and =(y). Thus =(c)
= {n(x), ()} e E(H). So ae A/ (H) and f=06. W

From Theorems 10 and 18 we can infer that many, if not all, of the biregular
line-symmetric graphs which contain vertices of degree 2 are subdivisions of regular
graphs. Our next two results concern line-symmetry of such graphs.

THEOREM 21. If G is a regular graph and S(G) is line-symmetric then G is sym-
metric.

Proof. Let G be a regular graph for which S(G) is line-symmetric. We consider
3 cases depending on the degree of regularity of G.

Case 1. G is regular of degree 0.

In this case G is certainly symmetric.

Case 2. G is regular of degree 2.
K

In this case G is either a cycle or the union of cycles, i.e., G = (J C,,for some
=1

k
k=1 and some sequence of integers n; >n,> ... 2m23. Then S(G) = U S(Cy)
=1

¥ ;
= |J C,,, is also a cycle or the union of cycles. Thus, by Theorem 1, the line-
i=1 :

symmetry of S(G) implies that 2n, = 2n, = ...

= 2, in which case it is also true
(by Theorems 1 and 2) that G is symmetric. : ‘
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Case 3. G is regular of degree ¢ # 0, 2. ,

‘ If ¢,fe E(G) and x, y € ¥(G) such that x is incident with e and y is incident
with f, then {e, x}, { f, y} € E(S(G)). So there is a = € o (S(G)) such that £ = ({e, x})
= {f,»}. Then {n(e), n(x)} = {f, y}. Bach vertex in V(G) is of degree d # 2 as
a vertex of S(G) and each edge in E(G) is of degree 2 as a vertex of S(G). Thus
n(V(G))= V(G) and 7(E(G)) <E(G). Let « and § be the restrictions of = to V(G)
and to E(G) respectively. By Lemma 20, x € #/(G) and f € #*(G) with a(x) =y
and fi(¢) = J. Since every edge of G is incident with two vertices of G and cvery
vertex of G is incident with o # 0 edges of G we deduce that G is both point-
-symmetric and. line-symmetric, that is, G is symmetric. B

THEOREM 22, If G iy a regiilar graph, then S(G) is line-symmetric if and only
if G is line-symmetric and for every edge e={x,y} of G there exists m e o (G)
such that n,(x) =y and n,(y) = x.

Proof. Let G be a regular graph. We consider three cases according to the
degree of regularity of G.

Case 1. G is regular of degree 0.
The result is apparent.

‘Case 2. G is regular of degree 2.

In this case G = U w for some integer £>1 and some sequence ny, 1,, ..., 71

k
of positive integers. Then S(G) & U C,,,- By Theorem 1, S(G) is line-symmetric

if and only if 2ny = 2n, = ... = an, in which case G is also Ime—symmetrlc by
Theorem 1, and in any case G, as the union of cycles, satisfies the interchange
conditions of the theorem.

Case 3. G is regular of degree d # 0, 2.

Suppose that S(G) is line-symmetric. By Theorem 21, G is also line-symmetric.
Let e = {x, y} € E(G). Then {e, x} and {e, y} are edges of S(G) so there exists = in
& (S(@)) such that #({e, x}) = {e, y}. Thus {r(e), n(x)} = {e, y}. Every vertex
of G is of degree d = 2 in S(G) and every edge of G is a vertex of degree 2 in S(G)
so n(V(G))=V(G) and =n(E(G))=E(G). Let =, be the restriction of 7 to V(G).
Then by Lemma 20, 7, € & (G) and 7 (x)= y. Since n(¢) = ¢ and n(x) = », n(y)
must be x, the only other vertex of G incident with e. Thus z(y) = x.

Suppose conversely that G is line-symmetric and has the interchange property
specified in the theorem. Let e,feE(G) and x,yeV(G) with {e, x}, {f,»}
€ E(S(G)). Then there exist u, ve ¥ (G) such that e= {x, u} and f = {y, v}, There
exists o« € & (G) such that 4(¢) = f. We consider two subcases.

Subcase 3A. a(x) = y and a(y) = v.
Define n: V(5(G)) = V(S(G)) by =n(2) = a(z) for ze V(G) and =(z) = &(2)

for z € E(G). By Lemma 19, # is an’ automorphism of S(G) and #({e, x}) = {f, ¥}
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Subcase 3B. a(x) = v and a(w) = .

There exists n, € #/(G) such that ny(y) = v and © (v) = y. Let B = myo. Then
Be) =1, B(x) = y and B(u) = v, so B is covered by Subcase 3A and there cxists
7 in o(S(G)) such that #({e, x}) = {f, }.

Thus S(G) is line-symmetric. M

In fact we can iniprove upon Theorem 22 a bit by reducing the interchange
requirement to a single edge. .

THEOREM 23. If G is a regular non-empty graph then S(G) is line-symmetric
if and only if G is line-symmetric and there exists m in o (G) and e = (x, y) in E(G)
such that n(x) =y and n(y) = x.

Proof. By Theorem 22 if G is regular and S(G) is line-symmetric then G has
the specified properties. Thus it sufficies to prove the reverse implication. To that
end, let G be a regular line-symmetric graph such that there exists 7 € &/ (G) and
e = {x, y} € E(G) for which n(x) = y and n(y) = x. For an arbitrary edge /' = {u,v}
of G there exists o € &(G) such that 8(e) = f. Let n, = ama~ Y. It is readily verified
that my(u) = v and 7(t) = u. Thus G has the full interchange property specified
in Theorem 22 so S(G) is line-symmetric. W

As a consequence of either Theorem 22 or Theorem 23 it is easily seen that
S(K,) is line-symmetric for every p>2, which fact was used for odd p in the proof
of Corollary 16a in Section II. :

It is interesting to note that if G is a regular bipartite line-symmetric graph
then the limited interchange property of Theorem 23 is exactly what is needed to
make G point-symmetric since the interchange automorphism must interchange
the two partite sets. Combined with the transitivity of the bipartition, this implies
that @/ (G) acts transitively on all of V(G). All of this is quite compatible with
Theorem 21 which requires G to be point-symmetric as a necessary condition
for S(G) to be line-symmetric.

We complete our consideration of subdivisions by noting that there are bi-
regular line-symmetric graphs which are not subdivisions, namely the complete
bipartite graphs K(2,n) for n23. This does not contradict Theorems 10 and 18
because the hypothesis of Theorem 18 requires that no two vertices in the degree
2 partite set have the same pair of neighbors. In K(2,n), n>3, all n vertices of
degree 2 have the same pair of neighbors. In fact the n vertices of degree 2 arc
graphically indistinguishable from each other. With regard to many graphical
properties the presence of all n of these vertices should have no more consequence
than the presence of just one such vertex. This is certainly the case with regard to
line-symmetry with K(2, 1) which has just one such vertex being just as line-sym-~
metric as K(2, n) for any other n. This leads to our next result which is essentially
the reverse of the vertex-splitting construction of Section II.

We say that two vertices x and y of a graph G are indistinguishable and write
x =y if N(x) = N(3). It is apparent that = is an equivalence relation on V(G).
Let X denote the equivalence class containing the vertex x.

icm
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LeMMA 24. Let x and y be vertices of a graph G. If x and y are adjacent, then
every vertex in X is adjacent to every vertex in §. If x and y are non-adjacent then no
vertex. in X is adjacent to any vertex in y.

Proof. Assume that x and y are adjacent and that ue X, ve J. Then xe N(y)
= N(v), so ve N(x) = N(u), so u and v are adjacent. The second half of the lemma
is a logical consequence of the first half, W

LemMMA 25, Let x and y be vertices of a graph G and let ae o (G) be such-that
a(x) = y. Then |%] = |j.

Proof. We will show that |%<|y]. Since a™'e (@ and a~1(y) = x, the
same argument ecstablishes the reverse inequality. Let zeX. Then N (oc(z))
= a(N(2) = a(N(%)) = N(x(x)) = N(3), so a(z)ey. Thus a(x)cy for the in-
jective mapping «, so [X|<|y]. W

THEOREM 26, If G is a biregular line-symmetric graph with no isolated vertices
and if x and y are vertices of G of equal degree then |X| = |j].

Proof. By Theorem 10, G has a transitive bipartition with vertices of equal
degree in the same partite set. Then the result follows from Lemma 25. M

ExampLE 7. Consider the graphs G and H shown in Figure 7.

a 4 ¢ a b ¢
; a
™,
G H:
1 2 3 4 5 6 x » H

Fig. 7

Both G and H are bipartite line-symmetric graphs with essentially the same
structure. They differ only in that the vertex x of H has been replaced in G by the
two indistinguishable vertices 1 and 2 with the same neighbors a and b. Likewise
y is replaced by 3 and 4 and z by 5 and 6. In short G = &*H where S, = {1,2},
S, =1{3,4}, S, = {5,6} and S, = {a}, §, = {b} and S, = {c}. With regard to
the bipartite and line-symmetry properties the extra vertices in G with the same
neighborhoods ate of no consequence. With respect to these properties G and H
do indeed represent essentinlly the same structure, which suggests that reducing
a graph such as G which has indistinguishable vertices to a relatively more simple
graph such as H which does not have indistinguishable vertices but otherwise
represents the same graphical structure might be useful in the study of line-symmetry.

Let G be a graph. The nucleus of G, denoted y(G) is the graph with vertex
set {%| xe V(G)} and edge set {{%,7}| {x,»} e E(@)}. By Lemma 24, E(y(G)) is
well defined. Recall that in Section I we called a graph elementary if no two of
2 - Fundamenta Mathematicae CXXII/1 °
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its vertices have the same neighborhood. In our present terminology G is elementary
if no two vertices of G are indistinguishable. The nucleus of a graph is just the
elementary graph with essentially the same structure. The process of reducing
a graph to its nucleus is just the reverse of vertex-splitting.

THEOREM 27. The nucleus of a graph G is the unique elementary graph H such
that G is a vertex splitting of H..

Proof. Let H = y(G). For each ¢ V(H) let S5 = X, and & = {S;| X e V(H)}.
Then & is a vertex splitting family for H and G = $*H. Suppose conversely that
H is an elementary graph and that G = %*H for some vertex splitting family
& = {8,| ve V(H)}. By Lemma 11 two vertices of G are indistinguishable if and
only if they are fragments of the same vertex in H. Thus for x € S,, X = S,. Thus
V(@) ={S) veVH)} and E@(Q) = {{S,, Su}| {v,w}eE(H)}. So the
function n: V(H) - V(y(G)) defined by n(v) = S, is an isomorphism of y(G)
with H and, up to isomorphism, H'is y(G). B

Many of the results in Section II can be reinterpreted in terms of the nucleus.
Theorem 28 follows from Theorems 12 and 13, Theorem 29 from Theorem 14,
Corollary 29a from Corollary 14a, and Corollary 29b from Corollary 14b.

THEOREM 28. If G is line-symmetric (point-symmetric) then y(G) is also line-
symmetric (point-symmetric).

THEOREM. 29. Let G be a graph such that y(G) is line-symmetric and there exists
a subgroup I' of o2(y(G)) such that I'* acts tramsitively on the edges of y(G) and
|X| = |a(X)| for all xe V(G) and a € I'. Then G is line-symmetric.

COROLLARY 29a. If G is a graph such that y(G) is lme-symmetric and |X| = |
for all x,y e V(G) then G is line-symmetric.

CoROLLARY 29b. If G is such that y(G) is biregular and line-symmetric and if
Ix| = [yl for all x, y € V(G) such that % and § have equal degree as vertices of y(G),
then G is line-symmetric.

COROLLARY 29¢.-If G is a connected bipartite graph such that y(G) is an even
cycle and if |X| = |J| whenever x and y are vertices in the same partite set of G, then
G is line-symmetric.

Proof. This follows by Corollary 14¢ and the fact that y(G) is connected and
bipartite and if ¥(G) = ¥; U ¥V, is the unique bipartition of G, then V({7(G)
= {X| xeV;} U {X| xeV,} is the unique bipartition of y(G). W

Theorem 30 follows from Theorem 15 by applying this to Theorem 30. The-
orem 31 is established using Theorem 16 and Corollary 15a.

THEOREM 30. If y(G) is point-symmetric and if T is a subgroup of o (y(G))

such that T' acts transitively on V(y(G)) and if |3 = |a(R)| for every x € V(G) and
every ae I, then G is point-symmetric. ’

TueoreM 31. If y(G) is point-symmetric then G is point-symmetric if and only
if |X] = |3 for every x,y€ V(G).
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Our next result is the natural one which we might expect about isomorphisms
of graphs and their nuclei.

LemMA 32. Let G and H be isomorphic graphs and n: V(G) — V(H) be an
isomorphism of G with H. Define &: V(y(G)) » V(y(H)) by #(%) = n(x). Then 7 is
well defined and ®@ is an isomorphism of y(G) with y(H).

Proof. If £=7 then N(x) = N(3), so N(n(x)) = n(N(x)) = n(N(»)
= N(n( y)) 50 7w(x) = n(»). Thus = is well-defined. Similarly, if 7(X) = 7(J) then
n(x) = 7(y), so n(N(x)) = N(z(x)) = N(n()) = n(N(»)). Thus, since = is in-
jective N(x) = N(») and X = ¥. So 7 is injective. It is apparent that & is surjective
because 7 is. For x,y e V(G), X and y are adjacent vertices in y(G) if and only
if x and y are adjacent in G, in which case 7(x) and n(y) are adjacent in H, so that
7(X) and 7(y) are adjacent in y(H). Thus % is an isomorphism. M

The nucleus has a bearing on the position of the anomalous biregular line-
symmetric graphs K (2, n), n>3, which, although they have vertices of degree 2,
are not subdivisions of regular line-symmetric graphs. All of these graphs have
the same nucleus K,, as does the graph K(2,1) which is a subdivision, namely
S(K,). So in some sense the graphs K(2, n)- which are not themselves subdivision
have the same structure as K(2,1) which is a subdivision.

We can produce other examples of non-elementary biregular line-symmetric
graphs with vertices of degree 2 which are not subdivisions by splitting only the
“edge” vertices of some line-symmetric subdivision. One example is shown in

,Figure 8.

2 4
Fig. 8

Let 22 and p>2 be integers such that max{p,:}>3. Let & be a vertex
splitting family for S(K,) with |5, =1 for all xe V(K,) and |S,| =t for all
x e E(K,) and let G = &*5(K,). Then G is a biregular line-symmetric graph which
contains vertices of degree 2, For p = 3 and t = 2 the construction is shown in
Figure 8. Note that the restriction max{p,¢}23 is necessary for biregulazity of G
since for p =t =2, G is C,. We note that all of the examples obtained in this
manner have the subdivision S(X,) as their nucleus.

We now move in the direction of another description of biregular line-sym-
metric graphs, for which another construction is meeded, a conmstruction which
was inspired by the idea of an intersection graph. Let T be a finite set and let & be
a family of subsets of 7. The inclusion graph associated with &, denoted G (&),
is the graph with vertex set & and edge set {{Sy, S;}=&| S &S}

2%
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Certain isomorphisms of inclusion graphs are easy to describe.

LemuMa 33. Let Ty, T, be finite sets with [Ty = |T,| and let &, &, be families
of subsets of Ty and of T, respectively, with %] = |%,]. Let m: Ty — T, be «
bijective mapping such that for each Se &1, {n(x) x € S} € &;. Definen': 1~ &,
by w'(S) = {n(x)| x& S} Then 7' is an isomorphism of G(&y) with G(&5).

Proof. The mapping =’ is injective because = is injective. Then = is surjective
because |#,] = |#4| and =’ is injective. It is apparent that for Sy, S, € &y, S1 &S,
if and only if n'(Sy) &7'(S,). Thus #’ is an isomorphism of G (&) with G(&,). W

Let m, n and 1 be positive integers with m<n<t. Let T be a set with [T| = ¢.
Let &(T,m,n) = {S<T| |S| =m or |S| = n}. The complete (t,m,n) inclusion
graph, denoted G(t,m,n) is the graph G (ST, m,n). A graph G is a (¢, m, n)
inclusion graph if there cxists a family S <P (T, m,n) such that G = G(&).

‘We are now prepared for the results which explain our interest in inclusion
graphs.

THEOREM 34. Let t,m, n be positive integers with m<n<t. Then the complete
inclusion graph G(t, m,n) is line-symmetric.

Proof. Let m<n<t Let T be a set with |7} =t and & = & (T, m, n). Then
G(t,m,n) = G(¥). Let e = {Ry, S;} and f = {R,, S,} be edges of G(&). Without
loss of generality we may assume that |[Ry| = |R,| = m and |S| = |S,| = n, and
R, =8y, Ry=S, so that [S;—R| = n—m and |T—S;| = t—n, for i = 1, 2. Then
there exist bijections «: R; — R, and f: (S;—Ry) = (S,—R,) and y: (T—S))
— (I'—S,). Let w: T — T be the mapping o U f U y; i.e, n(x) = a(x) for xe R,
and n(x) = B(x) for x & (Sy—Ry) and n(x) = y(x) for x € (T'—S,). Then = is a bi-
jection of T. By Lemma 33 the induced map #’ is an automorphism of G(&); with
7'(Ry) = R, and 7'(Sy) = S, so #'(e) = f. Thus G(¥) = G(¢t,m,n) is line-sym-
metric. W

We note that the complete (¢, m,n) inclusion graphs are always biregular

and elementary.
Our next result is not quite the converse of the preceding one, but it comes close,

TeeOREM 35. Let G be an elementary biregular line-symmetric graph. Then
there exist positive integers n-and t with t>n>=2 such that G is a (¢, 1, n) inclusion graph.

Proof. Let G be an elementary biregular line-symmetric graph. Let m and »
be the degrees which occur in G where m<n. Let § = {x € V(G)] degx = n} and
T = {x e V(G)| degx = m}. By Theorem 10, ¥(G) = S U T is a bipartition of G.
Let & = {{x}] xeT} u{N(x)| xeS}. Then & is a family of subsets of T and
S (T,1,n). Define ¢: V(G) » & by o(x) = {x} for xeT and ¢(x) = N(x)
for x e S. Since G is elementary and because n>m which implies that nz2, ¢ is
injective. By the construction of &, ¢ is surjective. Let x € S, y € T. Then, in G, x is
adjacent to y if and only if y € N(x), in which case {y} = N(x) and, in G(&), ¢(»)
is adjacent to @ (x). Thus ¢ is an isomorphism of G with G(%) so that Gis a (¢, 1,n)
inclusion graph with ¢z = |T]. ®&
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We note again that Theorems 34 and 35 are not quite converses. In fact the
full converse of Theorem 35 is false as the next example illustrates.

ExameLE 8. Let T = {a, b, ¢} and let & consist of {a}, {b}, {2, b} and {a, c}.
Then G(¥) = P, is a (3,1, 2) inclusion graph which is not line-symmetric (see
Fig. 9).

ab a ac

Fig. 9

We close by noting that in the proof of Theorem 35 we could just as well have
used S in place of T and m in place of n provided that m # 1. Thus if G is an ele-
mentary biregular line-symmetric graph which contains vertices of degree 2 then
Gisa(T,1,2) inclusion graph for some finite set 7. The special case of Theorem 34
when vertices of degree 2 are present is that for every integer z>2, the complete
(T, 1, 2) inclusion graph G(t, 1, 2) is an elementary biregular line-symmetric graph.
Actually it is readily verified that G(z, 1, 2) & S(K,). Thus the complete inclusion
graphs do mnot provide any new examples of biregular line-symmetric graphs
with degree 2 vertices with which we were previously not familiar.
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