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A uniquely homogeneous space need not be
a topological group

by

Jan van Mill (Amsterdam)

'

Abstract. A (separable metric) space X is called uniquely homogeneous provided that for al
x,y € X there is a unique homeomorphism of X taking x onto y. Each uniquely homogeneous space
admits & patural group structure for which all left translations are homeomorphisms. We present
an example of a uniquely homogeneous space X for which this group structure is Abelian, which
implies that both left and’ right translations are homeomorphisms, such that X does not admit the
structure of a topological group. ’

0. Introduction. All spaces under discussion are separable metric. A space X is
called uniguely homogeneous provided that for all x,ye X there is a unique
homeomorphism. of X taking x onto y. Barit and Renaud'[1], using a result of
Ungar [14], showed that a uniquely homogeneous space cannot be compact, or
locally compact and locally connected. The author presented in [9] an example
of ‘a connected and locally connected topological group G which is Boolean (each
element of the group has order at most 2), and which has the additional property
that each autohomeomorphism of G is a translation. An easy consequence of these
properties of G is that G is uniquely homogeneous.

Ungar [14] defines a natural group structure on a uniquely homogeneous
space X for which it is easily seen that all left translations of X are homeomorphisms,
and shows that if X is compact, or locally compact and locally connected, then
this group structure makes X into a topological group. In addition he showed that
the group of topological isomorphisms of X is trivial. Subsequently, Barit and
Renaud [1] showed that a locally compact group different from {0} or Z, always
has a nontrivial topological isomorphism. This gave a proof of the result that
a uniquely homogeneous space containing more than one point cannot be compact,
or locally compact and locally connected:

In view of the above remarks and in view of the fact that all known examples
of uniquely homogeneous spaces are topological groups, the question naturally
arises whether every uniquely homogeneous space admits the structure of a topo-
logical group. We will answer this question in the negative. by constructing an
example of a uniquely homogeneous semitopological group which does not admit
the structure of a topological group. This answers a question raised in [9).
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1. Preliminaries. If G is an Abelian group then we let “+” denote the group
operation on G. We regard + to be a fanction of Gx G onto G and for +(x, »)
we write x+y of course. If K= G x G then the restriction +|K will also be denoted
by +.

A group is called Boolean if each element of the group has order at most 2.
Observe that a Boolean group is Abelian. Let G be a group. If 4G then «A4»
denotes the subgroup of G generated by A. Let G be a Boolean group and let
H<G be a subgroup. If x & G then it is easily seen that

CHU {x}» = Hu (x+H).

A group (G, .) equipped with a topology is called a semitopological group if
the operation -: GxG — G is continuous in each variable separately. It is known
that if G is a semitopological group then G is a topological group if G is Baire,
see Husain [5, p. 38].

A cardinal is an initial ordinal and an ordinal is the set of smaller ordinals,
¢ denotes 2%,

The domain and range of a function f will be denoted by dom(f) and range(f),
respectively. Observe that the cardinality of the collection of all Gj-subsets of
a given space is at most ¢. This implies that if X and ¥ are spaces, then the collection

& = {f: dom(f) is a G,-subset of X and range(f)< ¥}
has cardinality at most c.
Let X be a space. A subset U< X is called regular open provided that U
= intyclyU. Let RO(X) = {UcX: U is regular open}. Jt is well-known, and

easy to prove (see Sikorski [13, § 1.20]), that RO(X) is a complete Boolean algebra
under the following operations:

UAV=UnvV,
UvV = intycy (U U V),
and
U’ = inty(X\U) .

Let 2= RO(X) be a subalgebra. The Stone space of @, denoted by st(®),
has as underlying set the set ‘of all ultrafilters in &, If Ue & then U = {Best(®B):
Ue B}. The topology of st(4) is generated by the collection

{0: Uea). ‘ ‘
The sets T are cloper (= closed and open) and st(4%) is compact. The reader should
observe that if % is countable then st() is metrizable and that then for the defi-
nition of st(%) one does not need the full strength of the axiom of choice. Since
% is countable, if y= 4 is a filter then y ¢an be extended to an' ultrafilter =% by
a process of countably many ‘steps. ;

If X is a space; then H(X) denotes the group of all autohomeomorphisms.
of ".X.: The identity of X will be denoted by id. - : o

If X is a space, and if 4= X then cly4 and 4 denote the closure of 4 in X:
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2. Unique homogeneity. In this section we will show that each uniquely homo-
geneous space admits a very natural group structure such that all left translations
are homeomorphisms. The results in this section are.included for completeness
sake; they are well-known and easy to prove, see Ungar [14].

2.1. LeMMA. Let X be homogeneous. The following statements are equivalent:

(1) X is uniquely homogeneous,

(2) if f, g€ H(X) and f(x) = g(x) for certain xe X, then f = g,

©3) if fe H(X) and f has a fixed point, then f = identity.

Proof. (1) = (3). Suppose that f(x) = x for certain fe H(X) and x e X" Since
the identity is 2 homeomorphism taking x onto x, by (1), f = id.

(3) = (2). Let h = g~'f. Then h(x) = x and therefore, by (3), h = id. We
conclude that f = g. ] . ’

(2) = (1). Take x, y e X. Since X is homogeneous, there is an fe H(X) with

(x) = y. By (2) this f is unique. M o ‘

Let X be uniquely homogeneous. Fix e € X and for each x € X let f, be the
unique homeomorphism taking e onto x. Define a binary operation “+” and an
operation “—” on X by ‘

x4y =f£i3), and —x=f71e).

2.2. LEMMA. Let x,y,ze X. Then
1)y x+(y+2) = (x+y)+2z,

) x+e=e+x = x,

@) x+(—x) = (—=x)+x = e.
Proof. (1) Observe that

()@ = F{f©) = fi3) = x4+,
and '
Fery(@ = x+y.
By Lemma 2.1(2) we therefore conclude that ff, = f,..,. Since

x+(y+2) = x+£,2) = (D) = ()@ and

we conclude that x+( y+zi\= (x+y)+z.

(2) trivial.

(3) x+(—x) = f£{fi'()) = e. Notice that f_.(e) = —x = £7!(¢). Lemma
2.1(2) therefore implies that f_. = f7% Consequently, (—x)+x = f..(x)
=fx)=c _

We conclude that + is a very natural group operation on X.

2.3, LemMA. All left translations of X are homéomorj)hisms. ) :

Proof. Fix ae X and define I,: X — X by [(x) = a-+x. Then L(x) = f,(x)
for all xe X. We conclude that I, = f,. W

X+ +2z = frgy(2),
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3. A theorem. The aim of this section is to prove Theorem 3.1 below, which
ié the key in the construction of our example. The proof of this result is similar
ta the proof of Theorem 3.1 in [9] except for some minor changes. Since these
changes are not always obvious, we will give the proof in full detail.

3.1. THEOREM. Let X be a Boolean semitopological group with the follpwing
properties '

" o
(@) X = U X,, where each X, is a topologically complete subgroup of X, and
n=1

X,sX,., forall neN,
(b) if x,y € X then there exist an ne N and a disc D X, containing both x
and y. o ’ ‘
_ If ES X is a countable subgroup, then there is a dense subgroup HS X containing
E such that the autohomeomorphisms of H are precisely its translations. Consequently,
H is uniquely homogeneous.
" Proof. Let aX be a compactification of X. Let # = {f: dom(f) and range (f)
are Gs-subsets of aX}. Since |#|<¢, we can enumerate & by {f,: a<¢, a even},
Let {K,: a<c, « odd} enumerate all Cantor sets in X. By transfinite induction,
for every a<c we will construct subgroups H,SX and subsets V,SaX such that
(1) if B<o then ECH,cH,, VycV, and H,nV, = @,
(2) |H< oo and Vol <ol Ko, :
- (3) if « is odd then H,n K, # @,
(4)if o is even and if [{x edom(f) 0 X: f(x) ¢ «ﬂg Hyu {x}»}] = ¢, then
a .

there is a point x € dom(f,) n H, such that f,(x) e V,.

Suppose that we have completed the construction for all B<a, where a<c.
For convenience, put H*= U H, and V*= |V, X. Observe that |H%
<a

p<a
<lu| 8o <e, and, similarly, that |V <|e| 8o <c,

Case 1. « is odd. Since |K,| = ¢, we can pick a point
xe KN(H "+ V7).

Define H, = «H, u {x}» and ¥, = J ¥;. An easy check shows that H, and V,
f<a

are as required.
Case 2. ais even and |S| <cwhere S = {x € dom(f;) n X:f(x) ¢ «<H* L {x}»}.
Define H, = H* and V= |) V;.

p<a
Case 3. « is even and |S| = c¢. By the same argument as in Case 1, we can
find a point

xe S\(H VY.
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Define  H, = «H* v {x}» and 'V, = U V; u {f(x)}. Since
. . } . p<a )
Hon Vo= (B0 (et 0 (U Ve 0 {409) = @,

we see' that H, and ¥, are as required.
Now put H = ) H,. We claim that H is as required. Let f: H - H be

p<c .
a homeomotphism. Our task is to find a point ze A such that f(x) = x+h fo
all xe H. ‘
By the well-known Lavrentieff Theorem ([6]; see also [3, Thm. 4.3.21]), there
are G-subsets S and T of aX such that f can be extended to a homeomorphism
Fi 8~ T. Let a<c be such that f = f,.

Case 1. [{xeSn X: f(x)¢ «U Hyu {x}p}| = c¢. Then by (4), there is
p<a

a point xe S n H such that f,(x) ¢= H. Since f, extends f, this is impossible.
Case 2. Not Case 1. Let
H'=UH, and- U={xeSnX: f(x)¢«UHu{xp}.
B<u B<u

By assumption, |U|<c. For each 7 e H* define
E,={xeSnX: f(x)=x+h}.

We claim that E,,v‘is ‘closed in S. For all ne N take x, € E, and x € S such that
im x, = x. Then

oo

Jux) = lim fa(x,) = lim (x,+h) = x+h

(this uses of course only the fact that X is semitopological). In addition the col-
lection & = {E,: he H*} is clearly pairwise disjoint. For each he H" let F,
= ENfo HH"). We conclude that the collection & = {F,: he H*} is also pairwise
disjoint. We claim that at most one set of the collection % can be nonempty. To
the contrary, suppose that there exist distinct points s, te H* and points x € F,
and y e F,, We first claim that X\§ is countable. If not, then there is an n € IV such
that X,\S is uncountable, Since X,\.S is a countable union of closed subsets of X,
one of these closed sets must be uncountable and therefore contains a Cantor set
since X, is topologically complete, [4] (see also [3, 4.5.5]). This is impossible since
HcS intersects all Cantor sets. Find an ne N and a disc DX, containing both
x and y. Since |U|<c and since |f*(H®)|<¢, we can choose an arc/< D which
connects x and y but misses U u fTH(H®) v X\S. We conclude that Js U .
Put K = {he H*: F, nJ # @}. By assumption, |K|>2, whence {Jn E,: he K}
is a partition of J in at least 2 closed and disjoint, nonempty sets. Notice that Ey, n J
is closed in J since J=S. By Sierpinski’s Theorem, [11] (see also [3, Thm. 5.3.2]),
[K|>%o. Also, |K|<|H"<c (so in case the Continuum Hypothesis holds, we
have derived a contradiction). Find an m=n such that K X, is uncountable,
Then Kn X, is not closed in X,, since X, is topologically complete and &,
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<|Kn X,|<c. Let k;eKn X, (ie N) be a sequence converging to a point

ke X,\K. For each i€ N, take a point x; € J n Fj,. By compactness of J, we may

assume that lim x; = p e J. Since X, is a semitopological group which is topo-
-

logically complete, by Montgomery {10] (see also [5, p. 38]) X, is a topological
group with group operation +. We conclude that +: X,,x X,, - X,, is continuous.
Consequently, ‘

Jdp) = limfm(xx) = lim Ptk = p+k

(notice that x;, k; € X, for alli & N). Since p eJ there is an h e K such that p € E,,.
Therefore,

Jdp) =p+h =p+k,
which implies that h = k, a contradiction.

If for each ke H® it is true that F, = @, then f(H)<f(U) v H", Since H
intersects all Cantor sets in X, the cardinality of H must be ¢. Since f, is one-to-one,
this implies that f,(H) has cardinality ¢. However, since f,(U) U H* has cardinality
less than ¢, this is impossible. Consequently, there is precisely one A e H* for which
F, # @. Since H intersects all Cantor sets in X, each nonempty open subset of H
has clearly cardinality c. Since Ej, is closed in S, and since S\E,< U has cardinality
less than ¢, we may conclude that E, = S. This proves that f; is a translation. M

3.2. Remark. In the proof of the above result we used a technique originally
" due to Kuratowski [7]. Some specific ideas needed for the proof can be found in [8],

and also in [9]. For more references and information concerning Kuratowski’s
technique, see . [9]. :

4. A Boolean group structure on Q. Let O denote the space of rational numbers.
Among other things, we will show that there is a Boolean group structure # on
Q such that all translations are (topological) homeomorphisms while moreover the
function *: @x @ — Q is nowhere continuous (*).

Let K = {0, 1)¥ and let G be a countable dense subgroup of K. Observe that
G is Boolean. For all ne N, define ;

A, ={xeK: x;=0if ie{1,2,.,n~1,n+1,..,2n—1} and x, = 1}.

It is clear that A, is clopen, that the diameter of 4, tends to 0 if n goes to infinity,
and that each neighborhood of the identity of X, which we will denote by Oy,
0

contains all but finitely many of the 4,’s. Let 4 = () 4,. Observe that 4 € RO(K).
n=1
4.1. LemMA. If n<m<2n then (4,+A,) N A = @.
Proof. If xe 4, and ye 4,, then (x+); =0if i€n—1, (x+y),=1 and there is
ajeN with n<j<2n—1 such that (x+y); = 1. This easily implies that x+y ¢ 4. R

*) Itis well-known of course that a semitopological group need not be a topological grouﬁ

In our construction we nced a Boolean group structure as above. I do not know whether this has
been done before.
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k
472, LeMMA. If FSN is finite and if N\F = \J B, then there is an i<k such
i=1 .

that B; contains two points n and m such that n<m<2n.

Proof. Choose r e N such. that r>maxF and r>k. There are x,y e N with
r<x<y<2r and there is an i<k with {x,y}<B;. It is clear that x<y<2x. W

4.3. PROPOSITION. If & is a finite family of subsets of A such that for all E€ &
we have that E+ESA, then there are infinitely many ne N with A,n )6 = @

Proof. Suppose that F = {nie N: 4,n )& = @} is finite. By Lemma 4.2
there is an Ee & and there are n, m € N\F such that n<m<2n and En 4, # @
# A, N E. Since by assumption E+E<A, this contradicts Lemma 4.1. B

4.4, LEMMA. There is a countable subalgebra #< RO(K) such that

(1) if C=K is clopen then Ce &,

) 4e A,

(3) if xe G and Be & then x+Be A.

Proof. Let &, be the smallest subalgebra of RO(K) containing all clopen
subsets of K and the set 4. Observe that 4, is countable. Inductively construct
countable subalgebras #,<.RO(K) such that for all nelV,

(a) gn 1= ‘%nr

(b) if xe #,-, and xe G then x+Be &,.

Suppose that the subalgebras are constructed for all in. Let %,,, be the smallest
subalgebra of RO(K) containing the collection {x+B: xe G and Be 4,}, It is
clear that 4,., is countable.

Now put # = |J #,. An casy check shows that # is as required. W
n=0

For each xe G define f,: K — K by f(t) = x+t. Let X = st(#). Define
05t X = X by ¢,(B) = {f«(B): Be p}. By Stone duality, ¢, is a homeomorphism.
Consider the following subcollection of #:

y={B:Be B, B=A4 and B+Bc< A} u {C=K: Cis clopen and Oge C} L {4} .

. 4,5. LeMMA. If &<y is finite, then )\ & # 0.
Proof. Without loss of generality, & = {Bj, ..., B} u {4} v {C}, where for
each i<m we bave that B, U (B;+B)c4, and C is a clopen neighborhood of Ok.

By Proposition 4.3, the set {neN: 4, N U B, = @} is infinite. Since C contains

almost all of the 4,’s, we conclude that /\d’ # O M
By the above Lemma we can extend the collection y to an ultrafilter f < 4.
Whence fest(®) = X. Define
, Y= {pf): xeG}.
We topologize Y by regarding it to be a subspace of X.
4.6. LEMMA. If @ (B) = @y(p) then x = y.
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Proof, Suppose that x 5 y. Find a clopen neighborhood C of Ok such that
(x+C) A (y+C) = B. Since x+C = f,(C) € o) and y+C = f(C) € py(p), we
find that ¢.(8) # ¢,(B), which is a contradiction. W

Define a binary operation * on ¥ by ¢.(B) * ,() = ¢.,(f). By Lemma 4.6,
the operation * is well defined. For notational simplicity, the point ¢.(f) will be
denoted by f, from now on.

4.7. LEMMA. (Y, *) is a Boolean group with identity f8. In addition, all translatlons
of Y are (topological) homeomorphisms of Y.

Proof. That (¥, #) is a Boolean group with identity g is trivial. Take t,& ¥
and consider the translation £(r,) = f, » f,. Observe that

E(ty) = /x—!-y = (Px-(-y ﬁ) = (px((py(ﬁ)) = (Px(ty)

for all ye Y. Consequently, £ = ¢,|Y. Since by construction ¢,|Y is an auto-
homeomorphism of ¥, we conclude that & is an autohomeomorphism of Y. M

It is easily seen that X has no isolated p’fﬁnts. Since Y is dense in X, we con-
clude that Y=~ Q, Sierpinski [12].

4.8. THEOREM. There is a Boolean group structure x on Q such that -

(1) *: Q% Q — Q is nowhere continuous,

(2) all translations of Q are (topological) homeomorphisms.

Proof. It clearly suffices to show that *: ¥x Y — Y is not continuous in
(B, B). We claim that *~*(4) is not a’neighborhood of (B, §) in ¥'x Y. Indeed, to
the contrary assume that there is a neighborhood B of f in X, where B e 4, such
that

(B Nx(BnY))ed.
It is clear that without loss of generality we may assume that B< 4. Take x,y
€ B G. Then B is a neighborhood of both x and y, so
(ty,tyeBaNxBnY)

and consequently, #.xf,€ A or, equivalently, xey(B) E A, Since ()
={(x+))+E: Eep}, there is an Eef such that (x+y)+E = A. Since Ogxe E
this implies that (x+))+ Ox € 4. We conclude that x+y e 4. Since B.~ G is dense
in B, we therefore have that B+ B< 4. By definition of y, B’ e vé B. Since by as-
sumption Be f, this is a contradiction. M

5. Spaces of measurable functions. Let X be a’space. A function f: [0,1] » X
is said to be measurable if f~*(U) is a Borel subset of [0, 1] for every open subset
U< X. Measurable functions f, g: [0,1] — X are called equivalent if

A{teO,1]: f&) # g()}) = O,

where A denotes Lebesgue measure on [0, 1]. Let My be the topological space of
equivalence classes of measurable functions from [0, 1] into X with the topology
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of convergence in measure. The topology of My is determined by the metric

.
o, 9) = | @U@, g0V},

where d is any bounded metric compatible with the topology of X. The topology
of My does not depend on the chosen metric 4 on X. Bessaga and Pelczyniski [2]
show that My~ l,, the separable Hilbert space, if and only if X is completely metriz-
able and contains more than one point. It is easily seen that the set of constant
functions is closed in My and isometric to X. We identify X and this isometric
copy of X in My.
Let  be the Boolean group structure on Q given by Theorem 4.8. Define

a Boolean group structure, which we will also denote by , on My as follows:

(frg)(t) = f) xg(2).

It is trivial to verify that * is indeed a Boolean group structure on My and that Q is
a subgroup of M. It is also easily seen that all translations of M, are homeo-
morphisms, whence M, is a semitopological group which is not a topological
group since Q is a subgroup, see Bessaga and Pelezyriski [2]. Define

X = {feMy: f([0,1]) is finite} .

5.1. LEMMA. X is a subgroup of My and Q< X.

Proof. If f, g € X then (fx g)([0, 1]) is contained in the subgroup generated
by £([0, 17) and g ([0, 1]). This subgroup is clearly finite since Q is a Boolean group.
That Q<X is trivial. W i

5.2, LEMMA. If F=Q is a finite subgroup, thern B(F) =
is a subgroup of My which is homeomorphic to My.

Proof. Obvious. M

We will identify B(F) and My.

{fe My: f(0, 1D <F}

0
53, Lemma. X = |J X,, where X, is a topologically complete subgroup of X

. n=1
and X, X, ., for all ne N. Mmeover if x,y e X then there are an n€ N and a disc

Dc X, containing both x and y.

. @ B
Proof. Write Q as |J F,, where cach F, is a finite subgroup of Q and F,

n=1

o
SF,, for all ne N. Then X = J B(F,). Since B(F,)~My,~ L, sce Bessaga and
n=1
Pelozyniski [2], we see that if X, = B(F,) then X is as required, Lemma 5.2. M
We conclude that the semitopological group X satisfies the conditions of
Theorem 3.1. Therefore, X contains a dense subgroup H which contains Q such
that all autohomeomorphisms of H are translations. Because of this, it easily follows
that H is uniquely homogeneous.
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5.4, THEOREM. H is a uniquely homogerieous semitopological group but H does
not admit the structure of a topological group.

Proof. To the contrary, assume that “o” is a topological group structure on H.
If f1 H — H is defined by f(x) = x~! then f is a homeomorphism having a fixed
point. ' We conclude that f is the identity, Lemma 2.1(3). Therefore, (H, o) is
Boolean. Without loss of generality we may assume that the identities of (H, o)
and (H, %) are both equal to the same point e e H. Take x € H arbitrarily. The
translation f(z) = x o t maps e onto x. However, there is only one homeomorphism
mapping e onto x, namely the translation g(¢) = x *¢. We conclude that for all
te H we have that x o t = x * £. Since x was arbitrary, we find that o = *. However,
*: Hx H — His not continuous since by construction *: @ x Q — Q is not con-
tinuous. Contradiction. B
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