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Existence of measurable selectors and
parametrizations for G;-valued multifunctions

by

V. V. Srivatsa (Calcutta)

T Abstract. In this paper we establish the existence of measurable selectors and parametrizations
or Gs-valued multifunctions. Examples are given to show that certain reasonable conjectures
fre false,

1. Introduction. In recent articles, Srivastava [6] and Sarbadhikari and Sriva-
stava [5] have  established the following facts about measurable G;-valued multi-
functions: ‘

TugoreM 1.1. Let T and X be Polish spaces and A a countably generated sub
o-field of the Borel o-field By on T. Suppose F: T — X is a multifunction such that
F is A-measurable, Gr(F)e AQ By and F(t) is a G5 in X for eachteT. Then
there is an A-measurable selector for F, that is, there is an A-measurable function
fi T — X such that f(t) e F(t) for ecach teT.

TueoreM 1.2. Let T, X, A, F satisfy the hypotheses of Theorem 1.1. Then there
is @ map f2 TxZ - X such that for each teT, the map f(r,.) is continuous, open
and onto F(t) and for each o € X, f(., o) is A-measurable, where X is the space of
irrationals.

In [5], Sarbadhikari and Srivastava raised a question regarding the converse
of Theorem 1.2, viz., whether all multifunctions induced by maps f: Tx % — X of
the above kind necessarily satisfy the hypotheses of Theorem 1.1.

Theorems 1.1 and 1.2 hold, as has been shown by the above-mentioned authors,
even when T is an analytic set and 4 any sub o-field of By. This is easily deduced
from the above theorems. The present article is motivated by the question whether
the above results can be extended to the case where (T, 4) is an arbitrary measur-
able space or the even more general framework of the Kuratowski-Ryll-Nardzewski
sclection theorem, Debs [1] has already considered this problem. By assuming
that the graph of the multifunction is of a certain form, Debs was able to establish
Theorem 1.1 in the set-up of Kuratowski and Ryll-Nardzewski, In this article
we prove the parametrization theorem (Theorem 1.2) in this situation and settle
the question raised in [5], mentioned above, in the negative by means of an example.
We then go on to settle another natural question, arising therefrom, by means of
another example. ‘ o
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The paper is organized as follows: Section 2 is devoted to definitions and
notation. In Section 3 we prove Theorem 1.1 in the set-up of Maitra and Rao [4].
It should be mentioned that though this is only a slight extension of Debs’ result,
our proof is simpler and more transparent than that of Debs. In Section 4 we prove
the main result, the parametrization theorem. In Section 5 we give our counter-
examples. -

The author is indebted to S. M. Srivastava and A. Maitra for helpful dis-
cussions and suggestions.

2. Definitions and notation. We denote by N the set of all natural numbers
and S will denote the set of all finite sequences of natural numbers, including the
empty sequence e. For k€ N, S, will be the set of all elements of S of length k. For
s €S, |s| will denote the length of s ,'md if i<|sf is a natural number, s, will denote
the ith coordinate of s and, for n €'N, sn will denote the catenation of s and n. If
X is a non-empty set then a function 4: § - P(X) from S into the power set of X is
called a system of sets in X and will usually be denoted by {A(s), s € S} or simply
by {4(s)}. A system of sets {4(s)} in X is called regular if A(sn)<A(s) for each s & S
and ne N. We put ¥ = N". Endowed with the product of discrete topologies on
N, Z becomes a homeomorph of the irrationals. For 0 € ¥ and i € N, ¢, will denote
the ith coordinate of o and o|i will denote the finite sequence (g, o'y, ..., 05-1);
here, if i = 0, o|i will just be the empty sequence. If s € S then the set {c e X: 0, = 5,
for i<|s} will- be denoted by X,. In particular, ¥, = .

Let T and X be non-empty sets and A<P(T). A multifunction F: T — X is
a function whose domain is T and whose values are non-empty subsets of X, For
ECX, we denote by F™'(E) the set {te T: F(t) n E # @}. We denote by Gr(F)
the set {(z, X) e Tx X: xe F(t)}, and call it the graph of F. A furiction f: T — X
is called a selector for F if f(t) e F(t), te T. For A< P(T), A° will denote the set
{AST: A° A} and the smallest countably additive (resp. countably multiplicative)
family of subsets of T containing A will be denoted by 4, (resp., by d,). If 4 and B
are o-fields on T and X respectively, then 4(X) B will denote the product ¢-field
on T'x X. Further if L and M are families of subsets of 7' and X respectively, then
L x M denotes the family {4xB: Ae L and Be M}. If WeTx X then, for t&7,
W'is the set {x: (¢, %) e W} and will be called the section of W at 1.

Now suppose T is a non-empty set and A< P(T). Suppose X and Y are metric
spaces. A multifunction F: T — X is called 4-measurable if F ~1(V) e A for every
open V< X. Similarly, a point map f: T — X is A-measurable if FYV)ed for
every open set VSX. A map f: Tx Y— X is called a Carathéodory map if, for
each €T, the map f(,.): Y- X is continuous and the map f(.,¥): T— Xis
A-measurable for each y € Y. A Carathéodory map is said to be open (resp. closed)
if, for each € T, f{t,U) is relatively open (vesp. closed) in the range of f(z,.) for
each open (resp. closed) set US Y. If F: T — Xis a multifunction, a Carathéodory
map f: Tx ¥ — X is said to induce F it F(t) = f(t, Y) for each teT.

We say LS P(T) satisfies the weak reduction principle (and we write" WRP (L))
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o0
if, for any sequence of sets Ly, Ly, ... from L such that UL, =T, we can find
’ n=1

@0
disjoint L}, Ly, ... from L such that Lj<L; for each i and U L;=T.

i=1
A field on T is a family of subsets of 7' containing & and closed under finite
intersections and complementation. We remark here that it is well known that,
if L is a field, then WRP(L,). For ESX, clE or E will denote the closure of E,
and 9(E) will denote the diameter of E. .
For terminology not defined we refer the reader to Kuratowski [2].

3. A Selection Theorem. Before proceeding to prove our results, we 1.'1rst m-)te
that, as every Polish space can be embedded in a compact metric space in whlc}x
it is automatically a G;, we will find it sufficient to prove our theorenlls whex? Xis
a compact metric space. This assumption will be made, when required, without
loss of generality. . .

"We now fix some notation. In what follows, X will denote a Polish space with
a metric d such that 8(X)<1. The topology on X will be denoted by U.'We fix
a base {V,: ne N} for X such that ¥, = X and V,, # @ for each n. 'Allso, in what
follows, T will be a non-empty set and L a family of subsets of T’ containing Gand T,
closed under finite intersections and countable unions and such th.at, rr}oreover,
WRP(L). In the sequel, F: T — X will be an L-measurable multifunction such

0
that Gr(F) e (LxU),s. Set G = Gr(F) and write G = nO1G"’ where G,2G,41
w0
and G, = U Ly Uyy) with L, e L and Uy, e U, n,m=1.
m=1
The following is well known: .
LemmA 3.1. Let f,: T— X, n€N, be a sequence of L-measurable functions.
If f, converges uniformly to a function f: T — X, then f is L-n@ﬂsurczble.

The next lemma is implicit in [1].
LEMMA 3.2. Let X be compact. If HSTxX is such that He (Lx U),, then

- or any closed set CS X, the set {te T: C<H'} belongs to L.

Proof. Let H = G (L,x U,), where L, e L and U, & U. Then, as C is com-
. n=1

pact, {reT: C<H'} = U (L, 0 ... nLy,,), where the union runs over all finite
sequences (7, ..., ny) such that CsU, v U,V ... Y U,. As L is closed under
finite intersections and countable unions, the proof is complete.
Lemva 3.3. Let {T(s)} and {U(s)} be regular systems of sets belonging to L
and U respectively such that:
(@) T(e)=T,

(ii) T(s) = 6 T(sn) for each s S,
n=1

(i) s,t€8, s 1, Js] = [t] = T(Hn @) =9,
(iv) d(U)<2~! for each s,
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WM TE) # 3 = Uls) # 0.
Put My = \J (T()xW(U(s)) and M = [\ My. Then M is the graph of an
seSk k=1

L-measurable function f: T - X. Further, if each T(s)e (L NL%), then f is
(L n L°),~-measurable.

Proof. Let e T. Then there is a unique o € £ such that ¢ e T'(c|n) for each n.

Then cl(U(oln)) is a decreasing sequence of non-empty closed sets of diameters
w0

tending to zero. We put f(r) to be the unique point belonging to cl(U(aIn)),
n=1

Then M is the graph of f.

We shall now define a sequence of L-measurable functions f;: T — X which
converge uniformly to f. First, for each s € .S such that U(s) # &, choose and fix
a point x; & cl(U(s)). Define f,: T'— X by fi(t) = x,, where s is the unique element
of § of length k such that /e T'(s). (Observe that in this situation U(s)  @.) It
is easily checked that f; is L-measurable and that f, — f uniformly. Lemma 3.1
now shows that f is L-measurable. This completes the proof.

Lemmas 3.1, 3.2 and 3.3 hold even without the assumption that the weak
reduction principle holds for L. '

LeMMA 3.4. There exist systems {T(s)} and {U(s)} of sets in T and X, respectively,
satisfying conditions (}-(v) of Lemma 3.3 and further satisfying:

(vi) cl(U(s)) =G}, for each s S, and t e T(s),

(vil) U(s) N G* # @ for each teT(s),

(viii) T'(s)e L v LC for each se S.

We assume here that X is compact.

Proof. The construction is by induction on k= [s|. Fork=0,putI'(e) =T

and U(e) = X. Suppose T(s), U(s) have been defined for s ¢ S;. We will now define
T(sn), U(sn), for all n>0. Define

T(S) ﬂ{f: anF(t) # Q} ﬂ{f VmgGltﬂ‘l}S

Am(s) = if V,,cU(s) and (V)< 27‘“{1 ,

@  otherwise.
As Fis L-meaﬁurable, {t: V.. 0 F(t) # @} e L. By Lemma 3.2, X being compact,
.we have, {t: V,,< Gi41} € L. Finally, as L is closed under finite intersections,
it ‘f.‘ollows that A™(s) € L, for each m>0. Further, by the induction hypothesis and
(vii), we have LJOA’"(S) = I'(s). As WRP(L), we obtain a disjoint family
mz
{B"(s): m=0}cL
such that for each m>0, B"(s)cA™s) and ) B™(s) = T(s). Since L is closed
mz0
under countable unions, it is easy to see that B"(s)e L n L® for each m>0. Put

T(sn) = B'(s), 030,
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and
V,, ifT(n)+#9,
4] otherwise .

U(sn) = {

It is easily seen that {T'(s)} and {U(s)} as defined above satisfy conditions (i)}~(viii).
This completes the proof of the lemma.

We now prove the main theorem of this section. This is essentially the theorem
in [1].

TuroriM 3.1. Let X be a Polish space, T a non-empty set and L a finitely multi-
plicative, countably additive Jamily of subsets of T, containing & and T and satisfying
WRP(L). Let F: T — X be an L-measurable nultifunction with Gr(F) € (Lx U),,
U being the topology of X. Then F has an (L n L) -measurable selector.

Proof. As remarked earlier, we can, without loss of generality, take X to
be compact. Use Lemma 3.4 to obtain systems {T'(s)} and {U(s)} satisfying con-
ditions (i)~(viii). By Lemma 3.3 we obtain an (L n L%),~measurable function
f: T = X, whose graph is M. From condition (vi) it follows that M<G. Thus,
fis an (L N L%),-measurable selcctor for F. The theorem is proved.

Remark 3.1. If M is a field on T and we take L = M, in the above, then as
remarked in Section 2, we have WRP(L). Thus we obtain the theorem in [1]. Notice
that while in [1] M has been taken to be a clan, that is, a family closed under finite
intersections and pairwise differences, no greater level of generality has really been
attained. For the multifunction F being L-measurable and non-empty set valued,
F~YX) = TeL = M,. Consequently, M now being closed under differences, we
can write T = | M,, {M,} being a pairwise disjoint family of subsets of 7. Further,

R~

21 _
M restricted to each M, is a field, Thus our theorem applies to F restricted to M, for
every n 1. The theorem in [1] is an immediate consequence. To see that Theorem 1.1
follows we have to show that Gr(F) may be written as () U (T X U,n) with

nzimz1
T,,€d and U, open in X. But this is implicit in the proof of Lemma 3.8 of [6].
The only additional observation one need make is the following:
Let T be a Polish space, and X a compact metric space. Let B be a Borel set
with open sections contained in T'x X. Then B = | (B, x U,), with B,, n=1, Borel

nz1
in 7 and {U,,n21}, form a base for X. This, X being compact, is an easy con-
sequence of the well-known theorem of Kunugui-Novikov.
Remark 3.2. If 7' is a Polish space, for L we can take the family of sets of the
additive class a, for any ordinal a>0, or the family of coanalytic sets to obtain
selectors of the respective classes, and in the last case, a Borel measurable selector.

4. A representation theorem. In this section T and X will be as before. However,
in addition to the assumptions made in Section 3, we will further assume that
each V, appears in {V;: n € N} infinitely often. We will also require that L = M,
where M is a field on 7. Such an L will satisfy the earlier conditions, as observed
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in Remark 3.1. We will take F, G, L,,, U,,,,,,yn, mz1 as before. We first prove
a lemma:

Lemma 4.1. Let X be compact. For each s€ S, there is a map p(.,8): T — N
such that:

(a) p(.,s) is L-measurable,
1
) 0V, 9)< > for se S, and teT,

(© Ve, SGra1 N Vigr,p» 120,
(d) F(’) n Vp(t,s) 7& Q>

(e) F(t) n V.ﬂ(f,s\g U Vp(t,sn),
=0

&) F(OS Ve
, Proof. The proof will be by induction on |s|. Define p(z, ¢) = 0. Suppose
pit, 5) has been defined for s € S;. We shall now define p(t, sn), for n>0. Put

. 1
@, if B(Vm)>§ﬂ-‘1’

Ry = {teT: F(©) n V'" # 0, VSVt and Vi SGhaa}s

m==
1

‘ if 6(Vm)< Fﬁ.
By Lemma 3.2, {t: ¥,,=G}.:} L.

Now, {r: V,<= Vp(,,s)}. = U {#: p(t,5) =1}, the union running over all / such
that V,,c¥,. As p(.,s) is L-measurable, we have {: ,=¥V,, el As F is
L-measurable, it follows that R,,e L. Let R,, = U Q,;, O leM Let i — (m;, 1)

1z0 " 0 B

i

be a 1-1 mapping from N onto N x N. Put P; = Q,,,,lz € M. Observe that ) R, = T.
m=0

.Fufther, as the base {V,} has been chosen so-that each ¥, appears infinitely often
1t.'1'ollows fhalt, fo.r each fixed ze T, {m: teR,} is infinite, and consequentiy that
{i: teP} is infinite. Define p(z, sn) = m;, where i is the (n+1)st integer j such

thitot €P;. As {i: te P} is infinite, p(t, sn) is defined on the whole of T for each
nzv,

Now,
p(t,50) = m « @F)[m = m, and reP; and (Vji<i)( ¢Pp].

As each P;e M and M is a field, i .
for o1 s a field, it follows that {z: p(¢, s0) = m} € M, = L. Further,

p(t,sn) =m < @A)[m; = m and teP, and
Gh<h<.<jp<i)eP,n..nP,
and (V) (j<i and jé{j;, .../} = t¢ P))].
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Here again the expression within square brackets is a Boolean combination of
the P/s. Thus, as M is a field. we have

{t: plt,sn) =m}eM, = L.

Consequently, p(., sn) is L-measurable for cach n30. One easily checks that the
system of functions p(., ) as defined above satisfies conditions (a)~(f). This proves
the lemma.

We now prove the representation theorem:

THrorEM 4.1, Let X be a Polish space, T a non-empty set and M a field on T.
PutL =M, Let F: T — Xbean L-measurable multifunction with Gr (F) € (L X U)yss
U being the topology of X. Then there exists a map f: TxZ — X satisfying:

(i) For each teT, the map f(t,.): Z — X Is continious, open and onto F(t)
(here f(1,U) is relatively open in F(t) for each U open in X).

(i) For cach oceX, the map f(.,0): T - X is L-measurable.

Proof. As before, without loss of generality we take X to be compact. By
Lemma 4.1, we have a system p(.,s) of functions satisfying conditions (a)-~(f).

Define f: I'xZ = X by: .

o0 -] -
f@,0 = N Vons N G
k=1 k=1

@
It is casy to see that, for each ¢ and o, the intersection () Vig,oqn reduces to
k=1

a singleton. The map f is therefore well-defined. Fix o e 2. For each se Sy, define
T() = {teT: pt,oll) =5, p(t, 0]2) = §15 00 P, 0lk) = S}

and U(s) = V., if T(s) # & and U(s) = @, otherwise. Observe that, so defined,
U(s) = Vyu,op» for teT(s). Then, as is easily checked, {T(s)} and {U(s)} are
systems satisfying conditions (i)-(vii) of Lemmas 3.3 and 3.4. Tt follows that

2 ]
N U(T() x U(s)), where the inner union runs through all 5 €Sy, is the graph of
k=1

an L-measurable sclector for F, say f,: T — X (by Lemma 3.3 and condition (vi)
of Lemma 3.4). Also, note that f,(t) = f(t, 0). Thus, for each fixed o € %, f(., 0)
is an L-measurable function on T into X and f(#, 0) € F(#). Now fix tel. It
follows from (b), (c) and (e) that the map f(t,.): Z - X s continuous and open
onto F(t). The proof of the theorem is complete.

Remark 4.1. The above proof does not go through under the weaker as-
sumptions on the family L made in Theorem 3.1. Indeed, Lemma 4.1 makes es-
sential use of the fact that L is of the type M,, where M is a field on T.

Remark 4.2, If we take T 1o be metric and L to be the family of sets of ad-
ditive class @, where >0, we obtain a representation of the above type, where
the maps f(., ¢), for fixed o e 2, are of class a.
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Remark 4.3. By the observations made in Remark 3.1, Theorem 1.2 follows
from Theorem 4.1.

Remark 4.4. In [5], S. M. Srivastava and H. Sarbadhikari have proved that
the multifunctions of the type considered in Theorem 1.2 are of the so-called
‘Souslin type’, i.e., they prove the following: Let T, X, F, 4 be as in Theorem 1.2.
Then there is an A-measurable closed valued multifunction H: 7 — X and
a continuous, openmap f: ¥ — X such that F(¢) = fi (H (t)). ‘We shall content ourselves
with the observation that the same result holds in the more general set-up of
Theorem 4.1, with the closed valued multifunction H: I' - X now being L-measur-
able. The proof in [S] goes through mutatis mutandis.

5. Counterexamples. Let T, X be Polish spaces, and let 4, F, By be as in The-
orem 1.1. As seen above, F is induced by a continuous, open Carathéodory map
J:Tx X2 — X. Conversely, suppose a multifunction F: T — X is induced by a continu-
ous, open Carathéodory map f: TxX — X. Then, as observed in [5], F is
A-measurable. Moreover, by a theorem of Hausdorf, continuous, open images

of absolute G sets are absolute Gy's. It follows that F(z) is a G; in X for each & T.-

The question has been posed in [5] as to whether in this situation Gr(F) is necessarily
in A® By. An answer in the affirmative would provide a complete characterization
of multifunctions of the type specified in Theorem 1.1 in terms of such Carathéodory
maps. We remark here that in [7] it has been shown that such multifunctions are
indeed induced by Carathéodory maps where the maps f{(¢, .), for each t e T, are
continuous and closed on X onto F(t), and, further, that such closed Carathéodory
maps characterize these multifunctions. We show below, by means of an example,
that the answer to the above question is in the negative. We then show, by means
of another example, that if in Theorem 1.2, Gr(F) is assumed to be analytic, F need
not even admit a measurable selector.

ExampLE 1. Let T, X be uncountable Polish spaces. Let 4 be an analytic,
non-Borel subset of T". Fix x, € X such that x, is not an isolated point. Let GEST x X
be defined by:

G = (Ax{xh) U (T (X—{xo})).

Then G is -an analytic, non-Borel subset of Tx X. Consider the multifunction
F: T'— X defined by: ‘

F(t) = G
Then

(i) As each F(r) is dense in X, F is Br-measurnble, where By is the Borel
o-field on T~

(ii) Each F(r) is a G; in X.
(iif) Gr(F) = G is an analytic, non-Borel subset of Tx X.
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We will now show that F is induced by a continuous, open Carathéodory
map f: I'x X — X providing us with our counterexample. We will do so by obtain-
ing a subset H of T'x XxX satisfying:

(a) For each teT, (X—{x,)xZcH".

(b) His a G5 in Tx XxZX.

(©) mpyx(H) = G, where my, x is the projection map on Tx Xx X onto Tx X,

Suppose such an A has been obtained. Consider the multifunction K: T — X x %
given by:

K() = H'.

Then by (a), Kis Br-measurable. By (b), K is G;-valued and Gr(K) = H € B;® By, ;.
Thus X satisfies the hypotheses of Theorem 1.2. There is therefore a Carathéodory
map h: TxE — XxX inducing K such that for each fixed t €T, the map h(z,.):
Z — Xx X is continuous and open onto K(¢). Look at the map f: TxZ — X de-
fined by:

f(z‘, o) = ny(h(t, 0))

where 7y is the projection onto X.

Then, clearly, for each fixed ¢ € Z, if /i is Br-measurable, so is f(., o): T — X.
For fixed e T, h(t,.) is continuous, open and onto H*. As 7y is continuous and (c)
holds, we have '

f(t,.): 2 — X is continuous and onto F(z).

Let U= U xU,cXxZ, with U; open in X and U, open in X be a basic open
set in X'x Z. Fix te T. Then ny(U n H') is either U; or U; —{x,}. In either case,
my(Un HY) is open in X. Tt follows that @y is open on the range of A(z,.). As
h(t,): Z - Xx X is an open map, it follows that f = myoh: X — X is an open
map. Thus, f as defined above gives the required representation. Finally, it remains
to find H. As A is analytic in T, there is a closed subset C of T'x X' such that 7,(C) = 4.
Let

H=(I'x(X—{x;hxZ)u ({(t,x,0) e TxXxZ: (t,0) e Cand x = xp}).

This H satisfies conditions (a), (b) and (c).

As we have found that the range under such open Carathéodory maps can
be an analytic non-Borel set, the question that naturally arises is whether any
measurable multifunction, taking Gs-values, whose graph is analytic is induced
by such a Carathéodory map. We show below that sych 2 multifunction need not
even admit a measurable selector.

ExampLE 2. Let C<ZxEx 2 be a coanalytic subset of ¥ xXx X which is
universal for all coanalytic subsets of ¥ x X. To fix ideas, we assume that sections
of C obtained by fixing the first coordinate run through all the cocnalytic subsets
of ZxZ. Consider D = {(x,z)eXxX: (x,x,z)e C}. Then D is a coanalytic
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subset of X x 3. Apply the Kondo Uniformization theorem for coanalytic sets to
obtain a coanalytic uniformization for D, i.e., get a coanalytic set B< D such that
B* is a singleton whenever D* # &. Let A = (¥ xZX)~B. Then,

() 4 is an analytic subset of % x X,

(ii) For each xe Z, 4™ = {y € Z: (x, y) € 4} is either X or ¥ minus a point.

Define a multifunction F: ¥ — X by F(x) = A% Then,

(a) As each A" is dense in X, F is By-measurable, By being the Borel ¢-field
on X.

(b) For each xe X, F(x) is open in X.

(€) Gr(F) = A is analytic in ZxZ.
However, F admits no By-measurable selector. Indeed, 4 admits no coanalytic
uniformization, a fortiori, no Borel uniformization. For if not, let E<A4 be a co-
analytic subset of X x ¥ such that E* is a singleton for each x € X. As C is universal
for the coanalytic subsets of X x X there is x* € X such that £ = c*", Novi/, there
is a unique y* € X such that (x*, y¥)e E. Tt follows that D*" = y* and con-
sequently, that (x*, y*)e B. But Ec4. So (x*,y*)e 4 = T xX¥—B, which leads
to a contradiction.

Added in proof: Theorem 1.1 has been extended to an arbitrary measurable space
(T, A) by the author in his doctoral dissertation: Measurable sets in product spaces and their
parametrizations, Indian Statistical Institute, Calcutta 1981.
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Homology with models
by

Daryl George (Delaware)

Abstract. A general type of topological homology theory is developed using the left derived
functors of the left Kan extension or the equivalent André derived functors. The homology theory is
based on a model category and a coefficient functor from the model category to the category of
abelian groups, It is shown that if the model category contains a singleton and is closed under prod-
ucts with the unit interval, and the coefficient functor is homotopy invariant, then the homology
theory satisfies the Eilenberg-Steenrod axioms. It is also shown that, in certain cases, these hypo-
theses can be weakened considerably. By appropriate choices of the model category both singular
homology and an exact version of Vietoris-Cech homology are obtained as examples of the general
theory.

1. Preliminaries and notation. Let M be a small, full subcategory of a category T,
J: M — T be the inclusion functor, and A be an abelian category with colimits and
enough projectives. Functor categories are denoted with brackets. Thus, [, %] is
the category whose objects are functors from It to 9 and whose morphisms are
natural transformations between these functors. The left Kan extension along J,

Lan,: [, A] - [T, A]
is defined by
Lan; F(x) — lim F(M)
M=X

where F is an object of [, 2], X is an object of T, and the colimit is over the category
of M-objects over X. (See [M2] or [H-S] for more details.) If a: M — X is a mor-
phism in T (i.e., an M-object over X), then

ay: F(M) — Lan; F(X)

denotes the injection into the colimit at o.

Since 2 has enough projectives, so does [, AL. Thus, any object F of [M, A]
has a projective resolution P, — F — 0. The left derived functors of the left Kan
extension are defined by

L,Lan,F = H(Lan,P,).
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