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On embedding curves in two-dimensional polyhedra
by

Juliusz Oledzki and Stanislaw Spiez (Warszawa)

Abstract, A 3-book is a union of three discs with a common segment lying on their boundary,
It is proved that every one-dimensional compact metric space not locally flat at points composing
at most a zero-dimensional set can be embedded in a 3-book. In particular, for every curve there
exists a curve of the same shape in a 3-book.

Introduction, It is well known that curves (one-dimensional continua) can be
embedded in the 3-dimensional Euclidean space. Some curves cannot be embedded
in 2-dimensional polyhedra. For instance the Menger universal curve has this pro-
perty, since none of point of it has a neighbourhood which is flat (can be embedded
in a plane). Some curves which are not flat can be embedded in 2-dimensional
polyhedra (see [1], p. 45 and [2], p. 121). An n-book (compare [1], p. 43) is the union
of n closed discs such that the intersection of those discs is a segment (called an edge)
lying on their boundary and no two of them have any other common points.
R. M. Bing [2] has noticed that a solenoid which is not flat can be embedded ‘in
a 3-book; a solenoid can be obtained as an intersection of a decreasing sequence
of Mébius bands with added discs, everything lying in a 3-book.

Tn shape theory it is known ([6] or [3], p.354) that for every curve X there exists
a plane curve Y of the same shape as X if and only if X is movable. The results of
this paper are connected with the question (due to J. Krasinkiewicz [4]) what shapes
are embeddable in an n-book, n=3.

We say that a family U of subsets of a space X is isomorphic to a family V of
subsets of a space Y iff there is a bijection f: U ~ ¥ such that for every subfamily U,
of U we have | U, = @ if and only if N f(U,) = @.

§ 1. Preliminaxy construction. For every positive integer n we define the fol-
lowing sets:
I ={(x,y,9) e R’ x = 1/n, 0<y<n, z = O},
Dn = {(x: Vs Z)E-Rsl X ‘= I/n! Osy: zgl/n} B

Let ¥ = {(x,y,2)e R 0<y<x<l, z=0}. Then the set W=Vol D, is
. n=2
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homeomorphic to a subset of the 3-book,
T = {(x,y,2)| 0<x<1 and ((y = 0 and 0<z<1) or (z =0 and —_1<y<1))}.
For example W is homeomorphic to the subset To =T defined by

Ty = {(x, 3, )| x-sin(1/x)—x/2< y<x-sin(1l/x)—x/2 and 0<x<1
and (z=10 or (y =0 and 0<z<x)} v {0, 0, 0)}
(see Fig. 1).

W

y
Fig. 1
Let us prove the following
(1.1) LemMA. Let a = {o)| i = 1,2, ...,n} be a family of mutually disjoint seg-
ments in I,. Then there is a family {D, ;| 1<i<j<n} of mutually disjoint discs in W

such that D; ; Iy is the sum of two segments,-one of them contained in o; and the
other in o;. .

Proof. Let fbe an injection which maps the set {(i,/)} 1<i<j<n} in the set
of positive integers. Then every disc'D; ; can be defined as a union of three discs,
two of which are contained in V between I and Iy ; and the third in Dy,
(see Fig. 1).

Let Y be the union of two dises D and D, such that D n D, = L is an arc
lying in D n D, :

(1.2) CoroLrary. Let {o; ;| i=1,2,..,k, j=0,1,2,..,j0)} be a family
of mutually disjoint segments contained in L. Let U be an open subset of Y which in-
tersects L and is disjoint with \).; ;. Then there exists a family

Dyl i=1,2,.,k,j=1,2,.,jd}
of mutually disjoint discs in Y such that
(1.3) D;;jeDy0 U,
(14)  one of the components of D;; (L is the segment oy ; comained in Dy ;.

(1.5)  Dyjnay is a segment contgined in D5 0 a0
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(1.6) COROLLARY. Let A be a finite family of sets with ord A<1. Let B and C
be disjoint subfamilies of A such that ord BO. Then for any family {o4} sec of mutually
disjoint arcs which lie on the boundary D and for any positive & there is a family
D = {D(A)}4eq of discs contained in Y such that

(1.7) A and D are isomorphic,

(1.8) if A" e d intersects A" € A (A" # A"") then D(4A") r D(4") is an arc which
lies in L o D(A') n D(4"™),

(19) DA D =uy for AeC,

(1.10) if Ae B then 5(D(d))<e, D(A)<=D and L intersects the interior D(A

of D(4).
It is easy to prove the following

(1.11) LemMMA. Let Ly be an arc in the interior DBy of D, and let K be an arc on
the boundary D of D. Then there is an embedding h: D — Y such that h(L)<L,
and h(x) = x for xe K.

Let Dy, Dy, D, be discs such that their union is the 3-book T} and let E be the
edge of T (Do n Dy D, = E).

(1.12) LemmA. Let X, and X, be 1-dimensional compacta such that
dim(X, " X3) = 0. If hy: X;— D, U D, (i=1,2) are embeddings such that
B(X) A hp(Xo) =B and  h(Xy nX)<E fori=1,2,
then for any neighbourhood U of X, n X, in Xy U X, there is an embedding

h: X, 0 X, = T such that h(x) = h(x) for x e X\U.

Proof. For every positive integer #, let ¥, = {V, ;| j = 1, ..., j(®)} be a closed-
open covering of X; n X, and V= {¥V | j=1,...,j(m} be a family of open
subsets of X; U X, such that j(1) = 1, ¥, ;< Vr js Vray > Vi, 01dV, = 0, ¥V, >V,
and 6(V, j)<1/n for nz2. By induction we will define a sequences of embeddings
Byt Xy T (for i = 1,2) and a sequence U, = {U, ;| j =1, s J(@)}, of families
of sets contained in T such that '

(a) U, and V, are isomorphics and U,.,>U,,
() b MUy, )eU and 8(U, ) <1/n for n>2,

© U,,=US,0Ut uU?,, where Uy arc the discs in Dy and U,;nE
= Uf ;A Eis a segment, which we denote by &, ; (k =0,1,2),

d Ay =hfori=1,2,
@ By,u(X0) Ny p(Xa) = G,
(f) hl,n(Vu,j)C“’;i,j S

4 — Fundamenta Mathematicae CXXII/L
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() for every n there exists ke {0,1, 2} such that /1, (X)) n U, ;" D,cE,

I

(h) hi,n+1(Vn J)CU and hr n+l I(X\ U V,, J) = l’: ,,l(X\ U Vu j)

Suppose that we have defined the embeddings /; ,, ({= 1, 2) and families U, for
m<n. We infer that the interval o, ;is not contained in/; (X;) © 1,(X;). Let us observe
that there is a finite family {f; ;} of mutually disjoint segments contained in £ such
that U ﬁ?,j:’hl.n(yn-ﬂ ,j) and “n,jghi,n(Xl) v hz,u(Xz) v U ﬁ‘ig,j and ﬁi,j cd;l.j' if

s s

Var1,;<V,

n, ' .
Let Uysy = {Upr1,4 J = 1,2, ., jn+1)} be a family of mutually disjoint
subsets of 7" which satisfies the conditions (b) and (c) and is such that

o g
Uper,j€ Uy Varg Vo ps

and
Upsr,; 0 (/71 (X)) U hl,u(.XZ) vl ﬁi,j) =0.

There is an open subset U7, ;= ;<= U, ; (for every j) which meets E and which is disjoint
with Ay (X)) U By (X)) U U Bi ;0 U Upyq,;. Thus by Corollary (1.2) there is
J

a finite family {Dj ;} of mutually disjoint discs in T such that
® Di;=U,; if iU,

(i)  one of the components of Dj; N £ is the segment £ ;,
Di,j\ﬁg,j) al (hl,n(Xl) w hz,n(Xz)) =0,

Dijn U,y =0 if j #],

(i)
(iv)

(V) Di;Nay,,;is a segment contained in o, . ;, whose interior is contained

in the interior of the discDj ;,

(vi) there is an /e {0, 1,2}, | # k, such that Df j 0 Upsy,; is contained in the

discUy4y,; 0 (DU Dy) (where k is from condition (g)) (see Fig. 2).

Let {B],;} be a family of mutually dxs;omt discs in the dxsc U, ;\Dy, such that
Bj ; is a neighbourhood of fi ; and i ; (B‘, J): Vi it B Jcoc,, ;- and the boundary
Bi, 5 of B ; is not contained in A; (X)) Let ; ,; be an arc in B} ; which contains the
set B; ,j 0 Py o(X3). By Lemma (1.11), there are embeddings g% i Bl Bi;uDi;
such that g7 j|yi ; is the identity and g} B ) Sy

We define the maps /;,,4+,: X; —» T as follows:

H o I i
]1i,n+1(x) = {z%’j(x)’lh"(X)

if ; ,(x)e B ;,
ift By, W(x)e TN BY ;
Jss

It is easy to see that conditions (a)-(h) are satisfied.
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The map h: X; u X, —» T defned by

A(xy = lim h; (x) ifxekX

W

is a well-defined continuous map which satisfies the condition of our lemma.

§ 2. The main result. Let X be a 1-dimensional compactum. By X we denote
the set of all points of X for which there are flat neighbourhoods; let Xy = X\ X7.
For a family U of subsets of X, by Uy we denote the family of all elements of U which
intersect Xy; let Uy = U\Uy. Let us formulate the following

(2.1) LemMa. If X is a 1-dimensional compactum with dim Xy<OQ then there
is a sequence {A*} of finite families of closed subsets of X such that

(a)  every element of A% is flat,
(b) meshA*<1/k,
(©) ord A5<0, ord4*<1 and ord(4**! U 451,
(d) A is a covering of X,
(©) A" s a covering of U A% and A** refines A%,
(f)  the intersection A’ ~ A" of any two sets A', A" of A" U 4 (or of 4%) is
a 0-dimensional or empty subset of FrA' 0 Frd4”,
(g)  any clement of A“*' intersects at most one element of A%,
(h any element Ae A5 is disjoint with ) 4.
Proof. Since Xy is compact and dim X, <0, there is a finite family U° of open
sets in X such that order U°<0 and meshU°< 1 and | U°> X and every member

of U° intersects Xy. Let U, Xy be a flat neighbourhood of a point x & X5 (in X)
4%
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with the diameter §(U,)<1. There is an open shrinking U* of order <1 of a finite
subcover of the open cover U° U {U,| x e X;} of X. Then there is a closed shrink-
ing A® of the cover U* such that the intersection of any two elements 4, A" of A*
is a 0-dimensional or empty subset of FrAd' n Frd”.

Suppose that we have defined the families 4%, 4%, ..., 4* which satisfies condi-
tions (a)-(h). Let A€ dy. For every xeInt4A\Xy we find a flat neighbourhood
UlcIntA\Xy with diameter S(UH<1/(k+1). Observe that Xy N Frd = @ and
dim(Fr4)<0. Thus there is a family Uj of open subsets of 4 (in 4) such that

i 1

i dUS<0 and mesh U <—,
(€3] ordUy and mesh Uy Tl
() U UisFrd u(4dn Xy),

@iii)  every member B of U} intersects exactly one of the sets Xy or Frd, and B is
flat if Bn Frd = O,

(iv) any element Be Uj intersects at most one element of A},

There is an open shrinking US with order 1 of a finite subcover of the open. cover
US U {U4 xeIntA\Xy}. Then 45" is a closed shrinking of the covering U}
(A5 covers A) such that the intersection of any two elements A’, 4" of A% is
a 0-dimensional or empty subset of Frd’ n Fr4”. The family 4***, which is the
sum of all the families 45"t (4 € 4%), satisfies conditions (2)-(h).

Denote by Ay the sum of all families 4%. If the conditions (a)-(h) of Lemma (2.1)
are satisfied then orddy<1 and U dp = Xz,

(2.2) TuEOREM. If a one-dimensional compactum X is not locally flat at points
composing the set of dimension <0 then X can be embedded in the 3-book T.

Proof. Let {4} be a sequence from Lemma (2.1). We can define a sequence
{D*} of families of discs in T, D* = {D(4)| 4 e 4"}, such that
@  A* and D* are isomorphic,
) dAdnd =@iff D(4) n D(4') = 0 for AeA" A ed”,
(iii) if 4e A" then 5(D(A))<1/k
(iv) if 4 and A’ are elements of 4**! U A% (or of A') then the intersection

D(4) nD(4") is the empty set or a segment contained in En D(A) n D(4),

(v)  if Ae A% then the interior of D(4) meets the edge E,
(vi) if Ae A%t then D(4) is contained in D(A") for some A’ ¢ A%.

Using Lemma (1.1), we can define a family D' satisfying the above conditions
and such that 6 (D (4))< % if 4 € Ay. If we have defined families D!, ..., D* satisfying
the above conditions and such that 6(D(4))<1/(k+1) if 4e A%, then by Corol-
lary (1.6) there is a family D**! of discs in T satisfying the conditions (i)-(v) and
such that §(D(4))<1/(k+2) for 4e A5,
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Observe that if 4 € Ay and Be 4, where I>k+1, then 4 n B = @ and thus
D(A) n D(B) = @. Thus, by (iv), if 4,Bedp, A # B, then D(A) n D(B)
= D(4) n D(B) is the empty set or a segment contained in E. Observe also that
the order of family Dy = {D(d4)| A€ A} is <.

For every A€ Ap we find an embedding /i,: 4 — T such that

() A< U{DB) Bedyand Bn 4 # 0} = D*(4),
(i) if A,Bedy, A+ B then hy(d) A hy(B) = @
(i) if A,Bed;and A B #0, A# B, then hiA n B)cD(4) n D(B).

Let {Fi4, | 4,Bedp, A B+# @, A B} be a family of mutually disjoint
closed subsets of X such that

AnBcIntFy p<d U B.

For every pair 4, Be AF, A # B, An B # O, we change the embedding 7, on

the set IntFy, g N 4 (using Lemma (1.12)) to obtain an embedding ho: Xp— T
such that for every 4 € A% the image l14(4) is contained in the sum of D*(4) and
discs with diameter < 1/k which intersect D(4).

o
If x € Xy, then x = [} 4%, where x € 4% e 4%. We define h: X — T by
k=1

h (\) = nDlD(A:)

ho(x) if xe Xp.

if xe Xy,

One can see that % is a continuous injection; thus % is an embedding.

It is known ([1], p. 44) that for n>2 there exists a universal curve B(n) lying
in the n-book. The Sierpifiski universal plane curve [5] can be used to comstruct
the curve B(n). Suppose that the Sierpifiski curve is obtained as a subset of a square
[0, 1]* by a standard method. The B(x) is a union of » copies of the Sierpifiski
curve with a common segment [0, 11x {0}. B(n) is not locally flat at points of this
segment. :
(2.3) Turorem. There exists a universal space for the class of all one-dimensional
compacta with a zero-dimensional set of points at which the space is not locally flat.

Proof. It is easy to see that a compactum from this class can be embedded
(as in the proof of Theorem (2.2)) in a 3-book in such a way that the edge of the book
does not contain any segment of the compactum. It follows that a union of 3 copies
of the intersection of the Sierpifiski curve and the set [0, 1]1x [0, %] with a common
set from [0, 1]x {4} is the required universal curve. The intersection of the segment
[0, 1]1x {4} and the Sierpifiski curve (the set of points of the universal curve lying
on the edge) is 0-dimensional.

Using the same method as in the proof of Theorem (2.2), one can prove the
following :
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(2.4) TueoREM. If X is a one-dimensional compactum and for every point x € X
there exists a neighbourhood U which can be embedded in a 2-dimensional polyhedron,
then X can be embedded in a 2-dimensional polyhedron.

Now we will give an example of a continuum X which cannot be embedded in
any 2-polyhedron and is such that the set of all points at which X is not locally flat

forms an arc.
[a]

'(2.5) ExaMPLE. Let X = Tu {J S, be a continuum which is a union of an
n=1

arc I and a countable family of mutually disjoint 90161101(.‘8 S, with 6(S,) = 0 and
such that T n S, is a point denoted by &,, and the set {a,| » = 1,2, ...} is dense in L.
Then Xy = I and X cannot be embedded in any 2-polyhedron, since otherwise /
would be contained in an edge of a 2-polyhedron and then some solenoid S, would
be contained in a triangle.

§ 3. Application. Let us prove the following
(3.1) LemMA. Let k be an integer. If X is the inverse limit of an inverse sequence
“{X;, pl} of connected finite 1-polyhedra with at most k points of order =3, then X
has at most k points, at which X is not locally flat.

Proof. Denote by A; the set of all points of X; of order >3. First assume that A;
is not empty for any i. Let x = (x;) be a point of the inverse limit Jim X such thctt
(3.2) there are an integer / and a closed neighbourhood U of x; in X such that

p{(Aj) n U = @ for infinitely many j=1.

Let j; <j,<js;<... be a sequence of 1ntegers such that pf(4;) n U = @. The set
77 1(U) is an inverse limit of the sets (pf*)~*(U) which lies in a disjoint sum of seg-
ments X;N\A;,; thus p;(U) is flat.

If y = (y)e X =1limX, does not satisfy condition (3.2), then
(3.3) for any integer i any neighbourhood ¥V of y; in X; meets almost all sets

‘ .p{(Aj)a Jj=i. .
Let y* = (31), ¥* = (3?), ..., 3 = (}) be (different) points of X which do not satisfy
condition (3.2). There is an index 7 such that y;, y?, ..., 3} are different points in .
Let ¥, Vs, ..., ¥; be mutually disjoint neighbourhoods of points y!, »2, ..., %,
respectively (in X7). Thus by (3.3) p{(Aj) meets every set Vy, k = 1,2, ..., /, for some
integer j. Thus I<k.

The inverse limit of an inverse sequence and its subsequences are homeomorphic.
Thus it remains to prove this lemma in the case where 4; is empty for every /. The
proof in’this case is similar to a part of the above proof.

By Theorem (2.2) we obtain the following

(3. 4) COROLLARY The continuum X which satisfies the crssumptzon of Lemma (3.1)
is homeomoiplzzc to a subset of the 3-book T.

Every (pointed) 1-dimensional compactum X has the shape of the inverse limit
of a (pointed) inverse sequence {X;, p;’} such that X; is a disjoint finite union of
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bouquets of circles and pl maps base points onto base points of bouquets for every
i<j. The set of all points at which this limit is not locally flat has dimension <0;
thus, by Theorem (2.2), we have the following

(3.5) COROLLARY. Every pointed 1-dimensional compactum X has the shape of
a pointed subset of the 3-book T.
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