

On embedding curves in two-dimensional polyhedra

by

Juliusz Olędzki and Stanisław Spież (Warszawa)

Abstract. A 3-book is a union of three discs with a common segment lying on their boundary. It is proved that every one-dimensional compact metric space not locally flat at points composing at most a zero-dimensional set can be embedded in a 3-book. In particular, for every curve there exists a curve of the same shape in a 3-book.

Introduction. It is well known that curves (one-dimensional continua) can be embedded in the 3-dimensional Euclidean space. Some curves cannot be embedded in 2-dimensional polyhedra. For instance the Menger universal curve has this property, since none of point of it has a neighbourhood which is flat (can be embedded in a plane). Some curves which are not flat can be embedded in 2-dimensional polyhedra (see [1], p. 45 and [2], p. 121). An n-book (compare [1], p. 43) is the union of n closed discs such that the intersection of those discs is a segment (called an edge) lying on their boundary and no two of them have any other common points. R. M. Bing [2] has noticed that a solenoid which is not flat can be embedded in a 3-book; a solenoid can be obtained as an intersection of a decreasing sequence of Möbius bands with added discs, everything lying in a 3-book.

In shape theory it is known ([6] or [3], p. 354) that for every curve X there exists a plane curve Y of the same shape as X if and only if X is movable. The results of this paper are connected with the question (due to J. Krasinkiewicz [4]) what shapes are embeddable in an n-book, $n \ge 3$.

We say that a family U of subsets of a space X is isomorphic to a family V of subsets of a space Y iff there is a bijection $f: U \to V$ such that for every subfamily U_0 of U we have $\bigcap U_0 = \emptyset$ if and only if $\bigcap f(U_0) = \emptyset$.

§ 1. Preliminary construction. For every positive integer n we define the following sets:

$$I_n = \{(x, y, z) \in R^3 | x = 1/n, \ 0 \le y \le 1/n, \ z = 0\},$$

$$D_n = \{(x, y, z) \in R^3 | x = 1/n, \ 0 \le y, \ z \le 1/n\}.$$

Let $V = \{(x, y, z) \in \mathbb{R}^3 | 0 \le y \le x \le 1, z = 0\}$. Then the set $W = V \cup \bigcup_{n=2}^{\infty} D_n$ is

100

homeomorphic to a subset of the 3-book,

 $T = \{(x, y, z) | 0 \le x \le 1 \text{ and } ((y = 0 \text{ and } 0 \le z \le 1) \text{ or } (z = 0 \text{ and } -1 \le y \le 1))\}.$

For example W is homeomorphic to the subset $T_0 \subset T$ defined by

$$T_0 = \{(x, y, z) | x \cdot \sin(1/x) - x/2 \le y \le x \cdot \sin(1/x) - x/2 \text{ and } 0 < x \le 1$$
and $(z = 0 \text{ or } (y = 0 \text{ and } 0 \le z \le x))\} \cup \{(0, 0, 0)\}$

(see Fig. 1).

Fig. 1

Let us prove the following

(1.1) LEMMA. Let $\alpha = \{\alpha_i | i=1,2,...,n\}$ be a family of mutually disjoint segments in I_1 . Then there is a family $\{D_{i,j} | 1 \le i < j \le n\}$ of mutually disjoint discs in W such that $D_{i,j} \cap I_1$ is the sum of two segments, one of them contained in α_i and the other in α_i .

Proof. Let f be an injection which maps the set $\{(i,j)|\ 1 \le i < j \le n\}$ in the set of positive integers. Then every disc $D_{i,j}$ can be defined as a union of three discs, two of which are contained in V between I_1 and $I_{f(i,j)}$ and the third in $D_{f(i,j)}$, (see Fig. 1).

Let Y be the union of two discs D and D_0 such that $D \cap D_0 = L$ is an arc lying in $D \cap D_0$.

(1.2) COROLLARY. Let $\{\alpha_{i,j}|\ i=1,2,...,k,\ j=0,1,2,...,j(i)\}$ be a family of mutually disjoint segments contained in L. Let U be an open subset of Y which intersects L and is disjoint with $\bigcup \alpha_{i,j}$. Then there exists a family

$$\{D_{i,j}|\ i=1,2,...,k,\ j=1,2,...,j(i)\}$$

of mutually disjoint discs in Y such that

$$D_{i,j} \subset D_0 \cup U,$$

- (1.4) one of the components of $D_{i,j} \cap L$ is the segment $\alpha_{i,j}$ contained in $\dot{D}_{i,j}$,
- (1.5) $D_{i,j} \cap \alpha_{i,0}$ is a segment contained in $D_{i,j} \cap \overset{\circ}{\alpha}_{i,0}$.

(1.6) COROLLARY. Let A be a finite family of sets with $\operatorname{ord} A \leq 1$. Let B and C be disjoint subfamilies of A such that $\operatorname{ord} B \leq 0$. Then for any family $\{\alpha_A\}_{A \in C}$ of mutually disjoint arcs which lie on the boundary D and for any positive ε there is a family $D = \{D(A)\}_{A \in A}$ of discs contained in Y such that

- (1.7) A and D are isomorphic,
- (1.8) if $A' \in A$ intersects $A'' \in A$ $(A' \neq A'')$ then $D(A') \cap D(A'')$ is an arc which lies in $L \cap \dot{D}(A') \cap \dot{D}(A'')$,
- $(1.9) D(A) \cap D = \alpha_A for A \in C,$
- (1.10) if $A \in B$ then $\delta(D(A)) < \varepsilon$, $D(A) = \mathring{D}$ and L intersects the interior $\mathring{D}(A)$ of D(A).

It is easy to prove the following

(1.11) LEMMA. Let L_0 be an arc in the interior \mathring{D}_0 of D_0 and let K be an arc on the boundary \mathring{D} of D. Then there is an embedding $h\colon D\to Y$ such that $h(L)\subset L_0$ and h(x)=x for $x\in K$.

Let D_0 , D_1 , D_2 be discs such that their union is the 3-book T, and let E be the edge of T ($D_0 \cap D_1 \cap D_2 = E$).

(1.12) Lemma. Let X_1 and X_2 be 1-dimensional compacta such that $\dim(X_1\cap X_2)=0$. If $h_i\colon X_i\to D_1\cup D_2$ (i=1,2) are embeddings such that

$$h_1(X_1) \cap h_2(X_2) = \emptyset$$
 and $h_i(X_1 \cap X_2) \subset \mathring{E}$ for $i = 1, 2$,

then for any neighbourhood U of $X_1 \cap X_2$ in $X_1 \cup X_2$ there is an embedding $h\colon X_1 \cup X_2 \to T$ such that $h(x) = h_i(x)$ for $x \in X_i \setminus U$.

Proof. For every positive integer n, let $V_n = \{V_{n,j} | j=1,...,j(n)\}$ be a closed-open covering of $X_1 \cap X_2$ and $V'_n = \{V'_{n,j} | j=1,...,j(n)\}$ be a family of open subsets of $X_1 \cup X_2$ such that j(1) = 1, $V_{n,j} \subset V'_{n,j}$, $V'_{n+1} \succ V'_n$, ord $V'_n = 0$, $V_{n+1} \succ V_n$ and $\delta(V'_{n,j}) < 1/n$ for $n \ge 2$. By induction we will define a sequences of embeddings $h_{i,n}: X_i \to T$ (for i=1,2) and a sequence $U_n = \{U_{n,j} | j=1,...,j(n)\}$, of families of sets contained in T such that

- (a) U_n and V_n are isomorphics and $U_{n+1} > U_n$,
- (b) $h_1^{-1}(U_{1,1}) \subset U$ and $\delta(U_{n,i}) < 1/n$ for $n \ge 2$,
- (c) $U_{n,j} = U_{n,j}^0 \cup U_{n,j}^1 \cup U_{n,j}^2$, where $U_{n,j}^k$ are the discs in D_k and $U_{n,j} \cap E = U_{n,j}^k \cap E$ is a segment, which we denote by $\alpha_{n,j}$ (k = 0, 1, 2),
- (d) $h_{i,1} = h_i$ for i = 1, 2,
- (e) $h_{1,n}(X_1) \cap h_{2,n}(X_2) = \emptyset$,
- (f) $h_{i,n}(V_{n,j}) \subset \alpha_{n,j}$,
- 4 Fundamenta Mathematicae CXXII/1

(g) for every n there exists $k \in \{0, 1, 2\}$ such that $h_{i,n}(X_i) \cap U_{n,j} \cap D_k \subset E$,

(h)
$$h_{i,n+1}(V'_{n,j}) \subset U_{n,j}$$
 and $h_{i,n+1}|(X \setminus \bigcup_{i=1}^{j(n)} V'_{n,j}) = h_{i,n}|(X \setminus \bigcup_{i=1}^{j(n)} V'_{n,j})$.

Suppose that we have defined the embeddings $h_{l,m}$ (i=1,2) and families U_m for $m \le n$. We infer that the interval $\alpha_{n,j}$ is not contained in $h_1(X_1) \cup h_2(X_2)$. Let us observe that there is a finite family $\{\beta_{i,j}^s\}$ of mutually disjoint segments contained in E such that $\bigcup\limits_{s} \beta_{i,j}^s \supset h_{i,n}(V_{n+1,j})$ and $\alpha_{n,j} \subseteq h_{1,n}(X_1) \cup h_{2,n}(X_2) \cup \bigcup\limits_{s} \beta_{i,j}^s$ and $\beta_{i,j}^s \subseteq \alpha_{n,j}$ if $V_{n+1,j} \subseteq V_{n,j}$.

Let $U_{n+1} = \{U_{n+1,j} | j = 1, 2, ..., j(n+1)\}$ be a family of mutually disjoint subsets of T which satisfies the conditions (b) and (c) and is such that

$$U_{n+1,j} \subset \mathring{U}_{n,j'}$$
 if $V_{n+1,j} \subset V_{n,j'}$,

and

$$U_{n+1,j} \cap (h_{1,n}(X_1) \cup h_{2,n}(X_2) \cup \bigcup \beta_{i,j}^s) = \emptyset$$
.

There is an open subset $\widetilde{U}_{n,j} \subset U_{n,j}$ (for every j) which meets E and which is disjoint with $h_{1,n}(X_1) \cup h_{2,n}(X_2) \cup \bigcup_j \beta_{1,j}^s \cup \bigcup_j U_{n+1,j}$. Thus by Corollary (1.2) there is a finite family $\{D_{i,j}^s\}$ of mutually disjoint discs in T such that

- (i) $D_{i,j}^s \subset U_{n,j'}$ if $\beta_{i,j}^s \subset U_{n,j'}$,
- (ii) one of the components of $D_{i,j}^s \cap E$ is the segment $\beta_{i,j}^s$,
- (iii) $(D_{i,j}^s \wedge \beta_{i,j}^s) \cap (h_{1,n}(X_1) \cup h_{2,n}(X_2)) = \emptyset,$
- (iv) $D_{i,j}^s \cap U_{n+1,j'} = \emptyset$ if $j' \neq j$,
- (v) $D_{i,j}^s \cap \alpha_{n+1,j}$ is a segment contained in $\alpha_{n+1,j}^s$, whose interior is contained in the interior of the disc $D_{i,j}^s$,
- (vi) there is an $l \in \{0, 1, 2\}$, $l \neq k$, such that $D_{i,j}^s \cap U_{n+1,j}$ is contained in the $\operatorname{disc} U_{n+1,j} \cap (D_k \cup D_1)$ (where k is from condition (g)) (see Fig. 2).

Let $\{B^s_{i,j}\}$ be a family of mutually disjoint discs in the disc $U_{n,j} \setminus \mathring{D}_k$ such that $B^s_{i,j}$ is a neighbourhood of $\beta^s_{i,j}$ and $h^{-1}_{i,n}(B^s_{i,j}) \subset V'_{n,j'}$ if $\beta^s_{i,j} \subset \mathring{\alpha}_{n,j'}$ and the boundary $\mathring{B}^s_{i,j}$ of $B^s_{i,j}$ is not contained in $h_{i,n}(X_i)$. Let $\gamma^s_{i,j}$ be an arc in $\mathring{B}^s_{i,j}$ which contains the set $\mathring{B}_{i,j} \cap h_{i,n}(X_i)$. By Lemma (1.11), there are embeddings $g^s_{i,j}: B^s_{i,j} \to B^s_{i,j} \cup D^s_{i,j}$ such that $g^s_{i,j}|\gamma^s_{i,j}$ is the identity and $g^s_{i,j}(\beta^s_{i,j}) \subset \alpha_{n+1,j}$.

We define the maps $h_{i,n+1}: X_i \to T$ as follows:

$$h_{i,n+1}(x) = \begin{cases} g_{i,j}^s \circ h_{i,n}(x) & \text{if } h_{i,n}(x) \in \mathcal{B}_{i,j}^s \,, \\ h_{i,n}(x) & \text{if } h_{i,n}(x) \in T \setminus \bigcup_{j,s} \mathcal{B}_{i,j}^s \,. \end{cases}$$

It is easy to see that conditions (a)-(h) are satisfied.

Fig. 2

The map $h: X_1 \cup X_2 \to T$ defined by

$$h(x) = \lim_{n \to \infty} h_{i,n}(x) \quad \text{if } x \in X_i$$

is a well-defined continuous map which satisfies the condition of our lemma.

§ 2. The main result. Let X be a 1-dimensional compactum. By X_F we denote the set of all points of X for which there are flat neighbourhoods; let $X_N = X \setminus X_F$. For a family U of subsets of X, by U_N we denote the family of all elements of U which intersect X_N ; let $U_F = U \setminus U_N$. Let us formulate the following

(2.1) Lemma. If X is a 1-dimensional compactum with $\dim X_N \leq 0$ then there is a sequence $\{A^k\}$ of finite families of closed subsets of X such that

- (a) every element of A_F^k is flat,
- (b) $\operatorname{mesh} A^k \leq 1/k$,
- (c) ord $A_N^k \leq 0$, ord $A^1 \leq 1$ and ord $(A^{k+1} \cup A_F^k) \leq 1$,
- (d) A^1 is a covering of X,
- (e) A^{k+1} is a covering of $\bigcup A_N^k$ and A^{k+1} refines A_N^k ,
- (f) the intersection $A' \cap A''$ of any two sets A', A'' of $A^{k+1} \cup A_F^k$ (or of A^1) is a 0-dimensional or empty subset of $\operatorname{Fr} A' \cap \operatorname{Fr} A''$,
- (g) any element of A^{k+1} intersects at most one element of A_F^k ,
- (h) any element $A \in A_N^{k+1}$ is disjoint with $\bigcup A_F^k$.

Proof. Since X_N is compact and $\dim X_N \leq 0$, there is a finite family U^0 of open sets in X such that order $U^0 \leq 0$ and mesh $U^0 \leq 1$ and $\bigcup U^0 \supset X_N$ and every member of U^0 intersects X_N . Let $U_N \subset X_F$ be a flat neighbourhood of a point $X \in X_F$ (in X)

with the diameter $\delta(U_x) < 1$. There is an open shrinking U^1 of order ≤ 1 of a finite subcover of the open cover $U^0 \cup \{U_x | x \in X_F\}$ of X. Then there is a closed shrinking A^1 of the cover U^1 such that the intersection of any two elements A', A'' of A^1 is a 0-dimensional or empty subset of $\operatorname{Fr} A' \cap \operatorname{Fr} A''$.

Suppose that we have defined the families A^1 , A^2 , ..., A^k which satisfies conditions (a)-(h). Let $A \in A_N^k$. For every $x \in \operatorname{Int} A \setminus X_N$ we find a flat neighbourhood $U_A^x \subset \operatorname{Int} A \setminus X_N$ with diameter $\delta(U_A^x) < 1/(k+1)$. Observe that $X_N \cap \operatorname{Fr} A = \emptyset$ and $\dim(\operatorname{Fr} A) \leq 0$. Thus there is a family U_A^0 of open subsets of A (in A) such that

- (i) ord $U_A^0 \leqslant 0$ and mesh $U_A^0 < \frac{1}{k+1}$,
- (ii) $\bigcup U_A^0 \supset \operatorname{Fr} A \cup (A \cap X_N),$
- (iii) every member B of U_A^0 intersects exactly one of the sets X_N or Fr A, and B is flat if $B \cap \text{Fr } A = \emptyset$,
- (iv) any element $B \in U_A^0$ intersects at most one element of A_F^k .

There is an open shrinking U_A^1 with order 1 of a finite subcover of the open cover $U_A^0 \cup \{U_A^k | x \in \text{Int} A \backslash X_N\}$. Then A_A^{k+1} is a closed shrinking of the covering U_A^1 $(A_A^{k+1} \text{ covers } A)$ such that the intersection of any two elements A', A'' of A_A^{k+1} is a 0-dimensional or empty subset of $\text{Fr} A' \cap \text{Fr} A''$. The family A_A^{k+1} , which is the sum of all the families A_A^{k+1} $(A \in A_A^k)$, satisfies conditions (a)-(h).

Denote by A_F the sum of all families A_F^k . If the conditions (a)-(h) of Lemma (2.1) are satisfied then ord $A_F \le 1$ and $\bigcup A_F = X_F$.

(2.2) THEOREM. If a one-dimensional compactum X is not locally flat at points composing the set of dimension ≤ 0 then X can be embedded in the 3-book T.

Proof. Let $\{A^k\}$ be a sequence from Lemma (2.1). We can define a sequence $\{D^k\}$ of families of discs in T, $D^k = \{D(A) | A \in A^k\}$, such that

- (i) A^k and D^k are isomorphic,
- (ii) $A \cap A' = \emptyset$ iff $D(A) \cap D(A') = 0$ for $A \in A^k$, $A' \in A^{k'}$,
- (iii) if $A \in A^k$ then $\delta(D(A)) < 1/k$,
- (iv) if A and A' are elements of $A^{k+1} \cup A_F^k$ (or of A^1) then the intersection $\dot{D}(A) \cap \dot{D}(A')$ is the empty set or a segment contained in $E \cap D(A) \cap D(A')$,
- (v) if $A \in A_N^k$ then the interior of D(A) meets the edge E,
- (vi) if $A \in A_N^{k+1}$ then D(A) is contained in D(A') for some $A' \in A_N^k$.

Using Lemma (1.1), we can define a family D^1 satisfying the above conditions and such that $\delta(D(A)) < \frac{1}{2}$ if $A \in A_N^1$. If we have defined families $D^1, ..., D^k$ satisfying the above conditions and such that $\delta(D(A)) < 1/(k+1)$ if $A \in A_N^k$, then by Corollary (1.6) there is a family D^{k+1} of discs in T satisfying the conditions (i)-(v) and such that $\delta(D(A)) \le 1/(k+2)$ for $A \in A_N^{k+1}$.

Observe that if $A \in A_F^k$ and $B \in A^l$, where l > k+1, then $A \cap B = \emptyset$ and thus $D(A) \cap D(B) = \emptyset$. Thus, by (iv), if $A, B \in A_F$, $A \neq B$, then $D(A) \cap D(B) = \dot{D}(A) \cap \dot{D}(B)$ is the empty set or a segment contained in E. Observe also that the order of family $D_F = \{D(A) | A \in A_F\}$ is ≤ 1 .

For every $A \in A_F$ we find an embedding $h_A: A \to T$ such that

- (i) $h_A(A) \subset \bigcup \{D(B) | B \in A_F \text{ and } B \cap A \neq 0\} = D^*(A),$
- (ii) if $A, B \in A_E$, $A \neq B$ then $h_A(A) \cap h_B(B) = \emptyset$.
- (iii) if $A, B \in A_F$ and $A \cap B \neq 0$, $A \neq B$, then $h_A(A \cap B) \subset D(A) \cap D(B)$.

Let $\{F_{(A,B)}|\ A,B\in A_F,A\cap B\neq\emptyset,A\neq B\}$ be a family of mutually disjoint closed subsets of X such that

$$A \cap B \subset \operatorname{Int} F_{\{A, B\}} \subset A \cup B$$
.

For every pair $A, B \in A_F$, $A \neq B$, $A \cap B \neq \emptyset$, we change the embedding h_A on the set $IntF_{\{A, B\}} \cap A$ (using Lemma (1.12)) to obtain an embedding h_0 : $X_F \to T$ such that for every $A \in A_F^k$ the image $h_0(A)$ is contained in the sum of $D^*(A)$ and discs with diameter <1/k which intersect D(A).

If $x \in X_N$, then $x = \bigcap_{k=1}^{\infty} A_x^k$, where $x \in A_x^k \in A_N^k$. We define $h: X \to T$ by

$$h(x) = \begin{cases} \bigcap_{n=1}^{\infty} D(A_x^n) & \text{if } x \in X_N, \\ h_0(x) & \text{if } x \in X_F. \end{cases}$$

One can see that h is a continuous injection; thus h is an embedding.

It is known ([1], p. 44) that for n>2 there exists a universal curve B(n) lying in the n-book. The Sierpiński universal plane curve [5] can be used to construct the curve B(n). Suppose that the Sierpiński curve is obtained as a subset of a square $[0, 1]^2$ by a standard method. The B(n) is a union of n copies of the Sierpiński curve with a common segment $[0, 1] \times \{0\}$. B(n) is not locally flat at points of this segment.

(2.3) THEOREM. There exists a universal space for the class of all one-dimensional compacta with a zero-dimensional set of points at which the space is not locally flat.

Proof. It is easy to see that a compactum from this class can be embedded (as in the proof of Theorem (2.2)) in a 3-book in such a way that the edge of the book does not contain any segment of the compactum. It follows that a union of 3 copies of the intersection of the Sierpiński curve and the set $[0,1] \times [0,\frac{1}{2}]$ with a common set from $[0,1] \times \{\frac{1}{2}\}$ is the required universal curve. The intersection of the segment $[0,1] \times \{\frac{1}{2}\}$ and the Sierpiński curve (the set of points of the universal curve lying on the edge) is 0-dimensional.

Using the same method as in the proof of Theorem (2.2), one can prove the following

(2.4) THEOREM. If X is a one-dimensional compactum and for every point $x \in X$ there exists a neighbourhood U which can be embedded in a 2-dimensional polyhedron, then X can be embedded in a 2-dimensional polyhedron.

Now we will give an example of a continuum X which cannot be embedded in any 2-polyhedron and is such that the set of all points at which X is not locally flat forms an arc.

(2.5) Example. Let $X = I \cup \bigcup_{n=1}^{\infty} S_n$ be a continuum which is a union of an arc I and a countable family of mutually disjoint solenoids S_n with $\delta(S_n) \to 0$ and such that $I \cap S_n$ is a point denoted by a_n , and the set $\{a_n | n = 1, 2, ...\}$ is dense in I. Then $X_N = I$ and X cannot be embedded in any 2-polyhedron, since otherwise I would be contained in an edge of a 2-polyhedron and then some solenoid S_n would be contained in a triangle.

§ 3. Application. Let us prove the following

(3.1) LEMMA. Let k be an integer. If X is the inverse limit of an inverse sequence $\{X_i, p_i^i\}$ of connected finite 1-polyhedra with at most k points of order $\geqslant 3$, then X has at most k points, at which X is not locally flat.

Proof. Denote by A_i the set of all points of X_i of order ≥ 3 . First assume that A_i is not empty for any *i*. Let $x = (x_i)$ be a point of the inverse limit $\lim X_i$ such that

(3.2) there are an integer i and a closed neighbourhood U of x_i in X_i such that $p_i^j(A_j) \cap U = \emptyset$ for infinitely many $j \ge i$.

Let $j_1 < j_2 < j_3 < ...$ be a sequence of integers such that $p_i^{j_k}(A_{j_k}) \cap U = \emptyset$. The set $p_i^{-1}(U)$ is an inverse limit of the sets $(p_i^{j_k})^{-1}(U)$ which lies in a disjoint sum of segments $X_{l_k} \times A_{l_k}$; thus $p_i^{-1}(U)$ is flat.

If $y = (y_i) \in X = \underline{\lim} X_i$ does not satisfy condition (3.2), then

(3.3) for any integer i any neighbourhood V of y_i in X_i meets almost all sets $p_i^j(A_j), j \ge i$.

Let $y^1 = (y_1^i)$, $y^2 = (y_1^i)$, ..., $y^l = (y_l^i)$ be (different) points of X which do not satisfy condition (3.2). There is an index i such that $y_1^1, y_1^2, ..., y_l^i$ are different points in X_l . Let $V_1, V_2, ..., V_l$ be mutually disjoint neighbourhoods of points $y_1^i, y_1^2, ..., y_l^i$, respectively (in X_l). Thus by (3.3) $p_l^l(A_l)$ meets every set V_k , k = 1, 2, ..., l, for some integer j. Thus $l \le k$.

The inverse limit of an inverse sequence and its subsequences are homeomorphic. Thus it remains to prove this lemma in the case where A_i is empty for every *i*. The proof in this case is similar to a part of the above proof.

By Theorem (2.2) we obtain the following

(3.4) COROLLARY. The continuum X which satisfies the assumption of Lemma (3.1) is homeomorphic to a subset of the 3-book T.

Every (pointed) 1-dimensional compactum X has the shape of the inverse limit of a (pointed) inverse sequence $\{X_i, p_i^i\}$ such that X_i is a disjoint finite union of

bouquets of circles and p_i^j maps base points onto base points of bouquets for every i < j. The set of all points at which this limit is not locally flat has dimension ≤ 0 ; thus, by Theorem (2.2), we have the following

(3.5) COROLLARY. Every pointed 1-dimensional compactum X has the shape of a pointed subset of the 3-book T.

References

- [1] G. H. Atneosen, One-dimensional n-leaved continua, Fund. Math. 74 (1972), pp. 43-45.
- [2] R. H. Bing, Embedding circle-like continua in the plane, Canad. J. Math. 14 (1962), pp. 113-128.
- [3] K. Borsuk, Shape Theory, Monografie Matematyczne 59, Warszawa 1975.
- [4] J. Krasinkiewicz, On pointed 1-movability and related notions, Fund. Math. 114 (1981), pp. 29-52.
- [5] W. Sierpiński, Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée, Comptes Rendus Acad. Sci. Paris 162 (1916), pp. 629-632.
- [6] A. Trybulec, On shape of movable curves, Bull. Acad. Polon. Sci. 21 (1973), pp. 727-733.

INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY PKIN, 00-901 Warszawa INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES Sniadeckie 8, 00-950 Warszawa

> Received 24 April 1980; in revised form 15 March 1982