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On expandability of models of arithmetic and set theory to models
of weak second-order theories

by

Matt Kaufmann (W. Lafayette, In.)

Abstract. In a previous paper we showed how to construct o,-like recursively saturated mo-
dels of PA and ZF, in which all classes are definable. In this paper we strengthen this result slightly,
and use it to answer two questions of Bell, Marek and Srebrny. That is to say, we show that there is
1o class of Lae Sentences which defines the class of {€}-reduct’s of models of Kelley-Morse class
theory (ov even Z}-comprehension), and similarly for Z1Peano Arithmeric. Both thcorems remain
true when one extends the language L to the language of models HYPay. This contrasts with the case
of countable models, for which the Barwise Completeness Theorem applies.

In this article we answer negatively questions 2 and 3 of Marek and
Srebrny [MS]. This is an application of a theorem from Kaufmann [Ka], for which
Shelah [She] eliminated our hypothesis of Oy, .

We will begin by summarizing some notation. Then we will recall the pertinent
results of [MS] and generalize them in Theorem 1. Our main theorem is Theorem 2,
which follows from [Ka] and [She]. We use this to prove Corollaries 2A and 2B,
which answer negatively questions 2 and 3 of [MS],

Notation. PA is Peano Arithmetic. KM is Kelloy-Morse set theory with classes;
see for example Marek and Mostowski [MM] for a number of results on KM.
Actually, in [MS] the authors consider KM to include the class choice schema.
However, their Theorem 5.1 (see below), as well as the negative results that we
present here, are trug for either version of KM. :

If M is a model of KM, then XM is a class of M if for all me M,
{aeX: MEaem) is definable in M (with parameters); similarly for MM FPA,
where < replaces e above. In particular, if (%, M) E GB (Godel-Bernays set theory),
then every X & & is a class of M. For other notation see Barwise [Bl

In [MS] one finds the following related theorems, all involving expandability
of countable models to models of second-order theories.

THEOREM 3.3 [MS]. There exists a single finitary sentence & such that for count-

able models St E P we have: MM is extendable to a model of ZF iff HYPy k @.
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THEOREM 4.2. Let 0<n<w. There is a single finitary sentence ®, such that for
countable models M & P we have: M is expandable to a model of AL-comprehension +
(the class form of induction) iff HYPy k @,.

THEOREM 5.1. There exists a single finitary sentence @ such that for countable
models Mk ZFC, M is KM-expandable if HYPy F ©.

In fact, these results all follow from the following general “soft” result. It
has basically the same proof as the proofs given in [MS] of the results stated above.
The reader may prefer to think of the case SE7, and of 9" as N} (language of S).

TueoreM 1. Let S and T be recursively enumerable theories, and suppose I'is an
interpretation of S in T. Then there exists a finitary sentence ® (in fact it is IT) such
that for all countable ME S:

‘ M= N"T  for some MFT
iff HYPy F @.
Proof. & says that the following infinitary theory of HYPy, is consistent. One
has a constant symbol fii for each m e M. The theory contains:

T
{I()(Fiy, .o, W) ME @[y, oy m]};
Vxl(x =" <V x = ml).
meM
By Barwise Completeness, such a IT; sentence ¢ does indeed exist. M

Notice that this answers a small part of question 1 from [MS]: that is, their
Theorem 5.1 does hold for KM even without class choice.

Now question 3 (of [MS]) asks if the conclusions of Theorems 3.3, 4.2, and 5.1
(stated above) also hold for uncountable models. Question 2, which is attributed
to J. Bell, asks if there is an infinitary sentence characterizing KM -expandability.
We answer all of these questions negatively by proving Corollaries 2A and 2B below,

which follow from the following theorem. We will prove this theorem after proving
the corollaries. But first; we review some notation.

Notation, T}-P is Peano arithmetic, with the class form of induction and the
Z}-comprehension axiom. For any language L, L* is the language of admissible
sets &gy, where M is an L-structure. Finally, a model M of ZF is w,-like if M is
uncountable but for all ae M, {be M: MFE b ea} is countable,

THEOREM 2. Let MM be any countable recursively saturated model of P or ZF.
Then there exists a model Bt with the following properties:

(i) M< 009N
(i) M is un w,-like end extension of M.

(iii) M is recursively saiurated.
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(iv) Every class of M is first-order definable with parameters in N.
v) HYPM’< no I'[YPSK .

COROLLARY 2A., Let T be any consistent extension of 2}-1’, or more generally,
any consistent theory which interprets £ L.P. Then there is no class @ of L., Sentences
such that for all W& P, M is expandable to a model of T iff Mk . In fuct, there is
no class ® of sentences of LY, such that for all M P, M is expandable to a model
of T iff HYPy k @,

Proof. The former conclusion follows immediately from the latter, so we prove
the latter, Let 9 be any countablerecursively saturated model of P, which is expand-
able to a model of 7. Choose 9 satisfying the conditions (i) through (v) of Theorem 2.
Suppose ¢ has the property that we are trying to refute. Then M F P, so since
M= I by (v), R E D, A contradiction arises if we can show that 9 is not expand-
able to a model of Z{-P. ’

To that end, suppose N* F Z 1P, where 9t = 9t* } L. Now it is well known that
there exists a X+ formula SAT (3, Xy, X,) (with no parameters) having the following
property: .

For all formulas ¢ (x;, ~3) of L, if T 1is the Goédel number of ¢ then

I1-P VXV, lply, x,) < SAT(T 1, xp, 3.
Using %-comprehension we may then form in 9t* the following class:
X = e 3pdEz[v = (L 2> ASAT(p, ¥, 01}

(Here, {-, -> is a canonical onc-one pairing function in P.) Since X is a class of 9,
then by property (iv), we may choose a formula ¢ of L and a sequence a of para-
meters from 9t such that
X ={xeN: NE@(x, 0} .

‘We may assume that « is a single element, using the canonical pairing function. Now
in Mt et b = <", up. Then

be X iff

9 = ISAT(Te ™, b, @) (by choice of b and X)) iff

N (b, o) (by choice of SAT), iff

bé X (by choice of @),
and this is a contradiction. M

The same proof shows:

COROLLARY 2B. If we replace P by ZE and Zi-P by Gddel-Bernays set
theory + 3 -comprehension, then Corollary 2A. holds. B

We turn now to the task of proving Theorem 2. In [Ka] we showed that assum-
ing O, this theorem holds, with (v) deleted and (i) replaced by IM<N. Let us derive
Theorem 2 from that result.
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LEMMa 1. Let M and N be recursively saturated structures for ¢ countable language,
MeN. Then M< ., N iff HYPy< 0, B YPy;.

Proof. (<=) is clear. For (=), first suppose 9t and N are countable. Then for
all finite m from M, (M, m)=., O, m), so (M, n)y= (N, m); therefore
(HYPgy,, m) = (HYPg, m). Since every element of HYPy, is definable with par-
ameters in M, this shows HYPy< ., HYPy,. The countability assumption is elim-
inated by Lévy absoluteness: see for example Barwise [B, 119.2]. W

LemmA 2. Let (Thm. 2)' denote Theorem 2 with (v) deleted and (i) replaced by
(i) M<N. ‘
Then ZEC t (Theorem 2) > (Thm. 2)'.

Proof. (—) is clear. For («), first notice that (v} is superfluous, by Lemma 1.
Since recursively saturated models are homogeneous (Schlipf [Sch, IT1.8(i)]), it
suffices to show that 9 and N realize the same types. But this is well known; we
thank Jim Schmerl for pointing this out, as it simplifies the proof of Theorem 2.

To prove this, first choose m € M greater than all elements definable in 9. Then ’

given 71 from 9, we find @ in M such that & and 7 realize the same type. Just choose &
in N to realize the type {p(x) e o(): @ €L} U {x;<m: x; occurs in x}. W

Proof of Theorem 2. Actually, (Thm. 2)" is just the theorem of [Ka]. Now >,
is assumed for that result, but Shelah [She] has shown how to eliminate this added
hypothesis. So by Lemma 2, we are done.
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Smooth dendroids without ordinary points
by

J. J. Charatonik (Wroclaw)

Abstract. Smooth dendroids are constructed which are composed of end points and of rami-
fication points. only.

Let X be a metric continuum. If for every two points a¢and b of X there exists
in X an arc (i.e. a continuous and one-to-one image of the closed unit interval
[0, 17 of reals) with end points « and b, then X is said to be arcwise connected. For
an arcwise connected continuum X we accept the following three definitions. A point p
of X is called an end point of X if p is an end point of every arc containing p and
contained in X. A point p of X is called an ordinary point of X if there are in X
exactly two. arcs with p as the common end point and which are disjoint out of p.
A point p of X is called a ramification point of X if there are in X three (or more)
arcs with p as the common end point and which are disjoint out of p. In other words
end points, ordinary points and ramification points of X are exactly points of or-
der 1, 2 and n»3 in the classical sense respectively (see [17], pp. 219-221; [9],
Chapter IV, T, pp. 63-64; compare [12], pp. 301302 and [3], pp. 229-230). Thus,
given an arcwise connected continuum X, we can distinguish three disjoint sets of
its points: the set E(X) of end points of X, the set O(X) of ordinary points of X,
and the set R(X) of ramification points of X, and we have

X = E(X)v 0X)u R(X).

It is easy to construct some particular examples of arcwise connected con~
tinua X with the property that some of these sets are empty. ‘

A continuum is called hereditarily unicoherent if the intersection of any two its
subcontinua is connected. A. dendroid means an arcwise connected and hered'itarily
unicoherent metric continuum. A dendrite means a locally connected metric cont'muym
that contains no simple closed cutve, The concept of a dendroid is a generalization
of one of a dendrite: every dendrite is a dendroid, and every locally connected den-
droid is a dendrite (see [14], X, 2, Theorems 1 and 2, p. 306).

It is easy to observe, using the Menger n-spoke theorem ([14], VI, 1, pp. 213-214;
[2], Theorem 13.20, p. 478; cf. [11], § 51, I, p. 277) that for locally connected con-
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