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Abstract. Let X be a metric continuum and let C(X) denote the hyperspace of subcontinua
of X. The following question is investigated: When does X have thie property that for each non-
empty closed subset 4 of X there exists a continuous function F: X —- C(X) such that x e F(x)
if and only if xeA?

1. Introduction. By a continuum we mean a nonempty compact connected metric
space. If X is a continuum, then ZX(C'(X )) denotes the hyperspace of closed subsets
(subcontinua) of X, cach with the Hausdorff metric.

A Peano contimmm is a locally connected continuum. By a mapping we mean
a continuous function. If X is a space and f* X — X is a mapping, then the fixed
point set of fis {x e X1 f(x) = x}. In [16] L. E. Ward, Jr. defines a space X to have
the complete invarianee property (CIP) provided that for each nonempty closed
subset 4 of X there exists a mapping f: X — X such that 4 is the fixed point set
of /. Some spaces known to have CIP are one-dimensional Peano continua [9],
convex subsets of Banach spaces [16], compact n-manifolds [14], locally compact
metrizable groups [8], and polyhedra [3]. In [16] Ward asked if every Peano conti-
nuum has CIP, This question was answered negatively in [7]. A rather complete
bibliography of the litcrature on fixed point sets and CIP may be found in the survey
article by M. Schirmer [14]. )

Part of the literature on the fixed point property has been concerned with multi-
valued (set-valued) mappings. However, the question of which sets can be fixed
point sets of multi-valued mappings has not been investigated before. If X is a con-
tinuum, #: X - 2% is 2 mapping, and x € X, then x is said to be a fixed point of F
provided x & F(x). The fixed point set of Fis {xe X: xe F(x)}. By a continuum-
valued mapping we mean a mapping F: X - C(X).

In this paper we introduce and study the following generalization of CIP to
the setting of multi-valued mappings. A continuum X is said to have the complete
mvariance property for continuum-valued mappings (MCIP) provided that for each
nonempty closed subset 4 of X there exists a mapping F: X — C(X) such that 4 is
the fixed point set of F.
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We make the following initial observations regarding MCIP. If 4e2¥ and
f: X - X is a mapping such that the fixed point set of fis A, then the induced
function F: X — C(X) defined by F(x) = {f(x)} for each xe X is a continuum-
valued mapping with fixed point set 4. It follows that if X has CIP, then X has
MCIP. If 4 2%, then the mapping F: X — 2¥ defined by F(x) = 4 for cach x e X'
has fixed point set 4. This shows why we require F to be continuum-valued in the
definition of MCIP. Also, this shows that if X is any continuum and Ae C(X),
then A is the fixed point set of a continuum-valued mapping. Next, et X be any
continuum, let 4 € 2%, and let p & 4. Then the function F: & — C(X) defined by

L {p} fx¢A,
Flxy = {X if xeAd

is an upper semi-continuous function and the fixed point set of Fis 4. This shows
why we require F to be continuous rather than upper semi-continuous in the defini-
tion of MCIP. Finally, we remark that since we prove in (2.2) that every Peano
continuum has MCIP, our generalization of CIP to MCIP provides a setting in which
the answer to Ward’s question [16] is affirmative.

In Section 2, in addition to showing that Peano continua have MCIP, we also
prove an extension result, (2.3), and a general result which implies that any nonempty
finite subset of any continuum is the fixed point set of a continuum-valued mapping
(see (2.5)). This finite set theorem is not necessarily true for single-valued mappings
(see the paragraph following (2.6)). Also, as is shown in (2.8), this result can not be
generalized to countably infinite compacta. We also give an example in (2.7) of
a continuum X and a closed subset 4 of X such that 4 has exactly two components
and such that 4 is not the fixed point set of any mapping from X into C(X).

In Section 3 we prove a number of lemmas which are needed to prove our main
results in Section 4. Let L be a connected, locally connected, locally compact, non-
compact, separable metric space and X = L U R be a metric compactification of L
with a compact mettic space R as remainder. Our main result in Section 4 is (4.1),
which states that if 4 € 2¥ and 4 N L # @, then A is the fixed point set of a mapping
F: X = C(X). As is shown in (4.2), this result is.a generalization of (2.2). We
also prove in.Section 4 that if the dimension of L is >2 or if L contains a simple
closed curve, then X has MCIP. We show that X need not have MCIP when L is
one-dimensional and does not contain a simple closed curve.

We will assume that the reader is familiar with basic facts and terminology about
hyperspaces. Information about hyperspaces may be found in [4] and [12].

If X is a continuum, we will let d denote the metric on X and H denote the
Hausdorff metric on 2%, If A< X, then int 4 and 4 will denote the interior of A and
the closure of A4 respectively.

2. Tnitial results and examples. Our first lemma will be used in the proofs of (2.2)
and (4.1). It also provides the basic motivation for much of the material in Section 3.
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(2.1) LEMMA. Let X be a contimmm and let p e X. Let {y(£): t € [0, 1]} be a path
in C(X) such that y(0) = {p} and J {y(1): 1€ (0,11} = X. Define 1: X — [0,1] by

©(x) = inf {t [0, 1]: x e y(1)}

Jor each x e X. If v is continuous and A is a closed subser of X such that p € A4, then

there is a continuous function I'' X — C(X) such that A is the fixed point set of F.
Proof. We may assume that the metric d on X has been normalized so that
d(x, <1 for all x, ye X. Define F: X — C(X) by

Flx) = p ([l —d(x, A)]-2(x)

for each x € X. Since y and T are continuous, F is continuous. Let x € X. Since y is
continuous, {t& [0, 1]: x & y(#)} is a closed subset of [0, 1]. Hence, (#) x & y(r{x)).
If x e 4, then F(x) = y(r(x)). Thus, by (3), x e F(x). If x ¢ 4, then x s p. Since
2(0) = {p}, we have by () that 7(x)>0. Thus, [1—d(x, A)]t(x)<z(x). It follows
from the definition of t that x ¢ F(x). Hence A is the fixed point set of F.

We now prove that the class of continua which have MCIP includes the Peano
continua.

(2.2) TueoreM. If X is a Peano continuum, then X has MCIP.

Proof. Let Ae2%, Iet pe 4, and let ¢ be a convex metric fo} X such that for
all x, ye X, o(x,»)<1 ([1] or [11]). For each ¢ e[0, 1], let

p(1) = {xe X: o(p, )<t} .

Since g is convex, {y(t): r€[0,1]} is a path in C(X) (in fact, by [10, Lemma 5],
{p): 1e]0,11} is an order arc in C(X)). It is clear that 9(0) = {p} and
U {p(®): te]0,1]} = X. Define 7: X — [0, 1] as in (2.1). Then, for each x € X,
©(x) = o(p, x). Hence < is continuous. It now follows from (2.1) that X has MCIP.

The next lemma provides a method for extending certain continuum-valued
mappings and will be applied several times in the paper.

(2.3) LeMMA. Let Z be a continuum and let Y be a proper subcontinuum of Z.
Let G: Y — C(Y) be @ mapping with fixed point set A (possibly, A = @) such that
@ = {G(y): ye Y} is contained in a locally commected subcontinuum £ of C(Y).
Let & = {x(t): 1€ [0, 11} be an order arc in C(Z) from Y to Z and let K be a compact
subset of Z— \J {n(t): t<1}, Then, G can be extended to a mapping F: Z — C(Z)
such that the fixed point set of Fis A UK, F(2) = Z for all z€ K, and

F = {F(2): zeZ}
is contained in a locally connected subcontinuum of C(Z).

Proof. By [17], (1) C(£) is an absolute retract. By [4, 1.1 and 1,2], (2) the union
function o: 22% — 22 is continuous and ¢ maps C (&) into C(Y). Let ¥ = ¢[C(£)].
By (1) and (2) we see that (3) & is a locally connected subcontinuum of C(Y). Let
&: Y > C(¥) be the mapping defined by G(y) = {G(;)} for each ye 7. First
assume that K = @. By (1), & can be extended to a mapping y: Z - C(&). Let


GUEST


88 1. T. Goodykootz, Jr. and S. B. Nadler, Jr.

F = oo . Since i is an extension of @, we see that Fis an extension of G. It follows
casily using (2) and (3) that F has the properties required in the lemma. Thus, from
now on, we assume that K # @. Since #(0) = ¥, K n Y = @. Thus, there exist
nonempty open subsets U,, n = 0,1,2, ..., of Z such that Uy n ¥ = &, U, 5T, ,

o0
for each n=0,1,2,.., and (YU, =K. For each n=0,1,2,.., we define
n=0

mappings F, as follows. By (l), there is a mapping [t Z—Uq ~ C(£) such
that I'(y) = G(y) for all ye Y and I'(z) = & for all ze Uy—Uy. Let Fy = oo Tl
Since I' is continuous and, by (2), ¢ is continuous, F, is continuous. Thus, F, is
a mapping from Z—U, into &. Note that Fy is an cxtension of ¢ and that
Fy(z) = o(&) for all ze Uy~ U,. Since there is an order arc in C(Y) from ¢ (%)
to Y (unless Y = o(%)), it follows easily that there is an order arc
o = {a(t): te[0,1]} in C(Z) from ¢(¥) to Z such that &/>4. We assume
that (4) « is a homeomorphism from [0, 1] onto & such that a(0) = ¢(Z) and
a(1) = Z. Hence, (5) KcZ— {J {x(t): t<1}. Let t, = 0. Since each U, is a non-
empty open subset of Z, we see that, for each n = 1, 2, ..., the following numbers ¢,
exist:

ty=inf{te[0,1]: a) nU,_; # &} .

Tt follows easily from (5), the properties of ¢, and the properties of the sets U,, that
t,_y<t,foreachn = 1,2, ..and that(6)z, - 1 asn — oo, Foreachn = 1,2, ..., let

o, = {a(t)y: 1., <1<},

For each n=1,2,..., U,_y—U,_y and U,—U, are disjoint nonempty closed
subsets of U,_,—U, and , is an arc. Hence, there exists, for each n = 1,2, ...,
a mapping F,: U,_,—U, - o, such that F(z) = a(t,_,) for all ze U,_;— U,
and F,(z) = a(1,) for all ze U,—U,. Note that for each n=10,1,2, ..., F(2)
= F,.(2)forall ze U,— U,. Thus, it follows easily using (4) and (6) that the following
formula defines a continuous function F from Z into & U of:

Foz), ifzeZ-U,,
F(z)= <F(z), ifzeU,_,—U, for some n=1,2,...,
' lZ, if ze K.

Since Fj is an extension of G, Fis an extension of G. Thus, since each point of 4 is
a fixed point of G, each point of 4 is a fixed point of F. Since F(z) = Z for cach z € K,
each point of K is a fixed point of F. Thus, letting B denote the fixed point set of F,
we have that 4 U KcB. We show that B = 4 U K. Since Fy(z)e ¥ <C(Y) for
each ze Z— U, and since F; is an extension of G, we see that the only possible fixed
points of F, are points of 4. From the properties of the sets U, and the definition of
the numbers t,, it follows easily that, for each n = 1,2, ...; (D a() " U,_, =B
if 1,y <t<t, and (8) «(f,~1) N U,—, = @. By using (7) and (8) we see that F, has
no fixed point for any n = 1, 2, ... Therefore, it follows that B = 4 U K. Now, to
complete the proof of (2.3), it remains to show that & U &/ is a locally connected
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subcontinuum of C(Z). But this follows from (3), the fact that s is an arc, the fact
that & N of # @ [since 6(F)eS N &), and [5, Thm. 1, p. 230]. Therefore, we
have proved (2.3).

If X is a continuum and B e C(X), then B is said to be buried (in X) provided
that whenever Y'e C(X) such that Y n B @ and Y n (X—B) # O, then Yo B.
We note that if B is nondegenerate and buried, then C(X)~{B} is not arcwise con-
nected ([13, 4.4]). If B is decomposable, then B is buried if and only if C(X)~{B}
is not arcwise connected ({13, 4.4]).

(2.4) THEOREM. Let X be a continuum. Let A be a nonempty compact subset of X
such that A has only finitely many components A, , ..., A,. If each A;, except possibly
one, is buried, then there is a mapping F: X — C(X) such that the fixed point set of F
is A and such that F = {F(x): x € X} is contained in a locally connected subcontinuum
of C(X).

Proof. If n =1 (i.e., 4 = 4;), then the mapping F: X — C(X), defined by
F(x) = A for all x € X, bas the properties required in the theorem (since # = {4},
F itself is a locally connected subcontinuum of C(X)). Thus, we assume for the
purpose of proof that n>1. Also: If one of the components of 4 is not buried, then
we assume without loss of generality that 4, is the non-buried component of A.
Since 7> 1, there is an order arc &, = {f*(¢): te [0, 1]} in C(X) such that f1(0) =4,
BN A = Ay for all t<1, and p(1) N 4 # 4;. Let X, = B'(1) and let

Ky o= U{d;: B)n4,;# @ and i #1}.

Since A4, is buried for each i # 1, K;c X, — U {B*(): t<1}. Also note that K|
is compact. Thus, defining G: 4; - C(4,) by G(») = A, for all ye 4;, we have
by (2.3) that G can be extended to a mapping Fy: X; — C(X) such that the fixed
point set of Fy is 4, U K, and such that &#; = {F;(x): x € X} is contained in
a locally connected subcontinuum of C(X;). If X;# A4, then there is an order
arc B, = {B*(1): te[0,1]} in C(X) such that p*(0) = Xy, f(ynd=4An X,
(= A4, U K,) for all t<1, and f*1) n 4 # AnX;. Let X, = (1) and let

Ky=U{dy: PPN A4, # D and 4,0 X; = O} .

Since 4, =X, each 4, which makes up the set K is buried. Thus, we see that
KyeX,~ U {B*(t): t<1}. Hence, by (2.3), F; can be extended to a mapping
Fy: X, = C(X,) such that the fixed point set of F; is 4; UK; U K, and such
that &, = {Fy(x): x€ X,} is contained in a locally connected subcontinuum
of C(X,). By continuing the process indicated above, we obtain, after a finite number
of steps, a subcontinuum X, of X and a mapping Fy: X, - C(X;) such that the
fixed point set of Fy is 4 and such that &, = {F(x): x € X;} is contained in a locally
connected subcontinuum of C(X). If X; = X, then F = F; has the properties
required in (2.4). Assume that X # X. Then, using the properties of F, and letting
the set K in (2.3) be the empty set, we see from (2.3) that F, can be extended to a map-
ping F: X — C(X) such that F satisfies (2.4). This completes the proof of (2.4).
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(2.5) COROLLARY. Let X be a continuuni. If A is a nonemply finite subset of X,
then there is a mapping F: X — C(X) such that the fixed point set of F is A and such
that F = {F(x): x € X} is contained in a locally connected subcontinuum of C(X).

Proof. Since any one-point set is buried, (2.5) is a special case of (2.4).

Let P denote the pseudo-arc. In [8, 5.7] it was shown that any two-point subset
of P is a fixed point set of a mapping from P into P and in [8, 5.7} it was asked if P
has CIP. We do not know if P has MCIP. However, in this connection, we have
the following:

(2.6) COROLLARY. Let X be an hereditarily indecomposable contimuum. If A € 2X
such that A has finitely many components, then there is a mapping F: X — C(X)
such that the fixed point set of F is A and such that F = {F(x): x e X} Is contained
in a locally connected subcontinuum of C(X).

Proof. Since any subcontinuum of X is buried, (2.6) is a special case of (2.4),

We now give our first example of a continuum X such that X does not have
MCIP. We verify that X does not have MCIP by showing that there is a closed
subset A4 of X with exactly two components such that 4 is not the fixed point set
of any mapping from X into C(X). Thus, the condition in (2.4) that all but one com-
ponent be buried is necessary. We also make the following observations. Schirmer [14]
has asked if every chainable continuum has CIP. Let Z be the usual sin(1/x)-con-
tinuum (Z = Wy u J; where Wy and J; are as in (2.7)). Let p = (0, —1) and let
p' = (l,sin[l]). An easy argument shows that {p,p’} is not the fixed point set
of any mapping f from Z into Z (since f would have to map J, onto J; and have
fixed point set {p} — see [15, p. 564]). Thus, the answer to Schirmer’s question is no.
The next two examples show that there are chainable continua which do not even
have MCIP. We note that, by (4.6), the sin(1/x)-continuum Z does have MCIP.

(2.7) ExampLE. Let (see Fig. 1)

Wy = {(x, sin[l/x]): 0<x<1},

Wy = {Q—x,3): (x,y)e Wi},

Wy = {(—x,y=2): (x,y)e Wy},

Wy ={(x+2,y-2): (x,¥)e W},

Jr = {0, ~1<y<1},

o ={@2,y): 1<y},
J5={0,5): —=3<y<~1}, and
Ju =4{(2,y): -3<y<—1}.

Let X=191(Wi uJy). Let 4 =WyulJ;u W,ulJ, We show that 4 is not the
fixed point set of any mapping from X into C(X). For this purpose, let p = (0, —1),
let ¢ = (2, —1), and, for any nonempty compact subset K of X, let

g(K) = glb{x: (x,y)eK}.

Suppose that there is a mapping F: X — C(X) such that the fixed point set of F
is A. Since (Wyu Wy) nd =@, it follows using the continuity of F that

1

1
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W3 p q W
J: 3 J4
X
Fig. 1

x<g(F(x,)) for all (x,y)e Wy LU W, or x>g(F(x,)))forall (x,))e Wy U W,.
Assume, withdut loss of generality, that (1) x<g(F (x, ) for all (x, ) e Wy u W,.
Since p € F(p), we see using (1) and the continuity of F that (2) F(p) nJ; = {p}.
Suppose that F(p) % {p}. Then, using (2) and the continuity of F, it follows that
(x, ) ¢ F(x, y) for points (x, y) € W, sufficiently close to p. This contradicts the fact
that W;cA. Hence, F(p) = {p}. Thus, since F has no fixed point in J, —{p}, it
follows easily that (0, 1) ¢ F(0, y) for any point (0, y) € J;. Therefore, by the con-
tinuity of F, there is a continuum Z (near J;) such that Z=Jy, Zn W, # @, and
(0,1) ¢ F(z) for any ze Z. Let M = |) {F(2): ze Z}. Since {F(z): zeZ} is a sub-
continuum of C(X), we have by [4, 1.2] that M is a continuum. Since peZ N 4,
peM. Since Z n Wy # &, we have by (1) that there is a point (xo, yo) € M such
that x>0. It now follows easily that M=J;. Thus, (0, 1) e M. This contradicts
the fact that (0, 1) ¢ F(z) for any z € Z. Therefore, there is no mapping F: X - C(X)
such that the fixed point set of F is 4. This completes (2.7).

We now give another example of a continuum X such that X does not have
MCIP. In this example we show that a certain countably infinite subset of X is not
the fixed point set of any mapping from X into C(X). Thus, the condition that 4
in (2.5) be finite is necessary.

(2.8) ExampLE. Let W, J;, Ws, J5, and p be as in (2.7) and let X' = W, v
UJ, U W, UJs. For each n=0,1,2, ..., let p, e W, and pye W3 be the points
defined by p, = (2/[3n+4nn], —1) and p, = (2/[—3n—4nx], —1). Let

d={p;:n=0,1,2,.}u{prn=0,12,.3u{p}.

Suppose that there is a mapping F: X — C(X) such that the fixed point set of F
is 4. Note that p e F(p) € C(X). Thus: If F(p)>J; U J3, then, using the continuity
of F, it follows that points in (J; U J5)—{p} sufficiently close to p would be fixed
points of F. Hence, since F has no fixed points in (J, U J5)—{p}, we have that
F(p)J, U J3. Therefore, (0, —3) ¢ F(p) or (0, 1) ¢ F(p). Without loss of generality,
assume that (0, 1) & F(p). Then, since F has no fixed point in Jy—{p}, it follows
easily that (0, 1) ¢ F(0, y) for any point (0, ) J,. Hence, by the continuity of F,
there is a subcontinuum Z (near Jy) of J; U W, such that Z=J;, Zn Wy # a,
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and (0,1)¢ F(z) for any zeZ. Let M = ) {F(z): zeZ}. Since {F(2): zeZ}
is a subcontinuum of C(X), we have by [4, 1.2] that M is a continuum. Since
reZn A4,pe M. Since Zis a subcontinuum of X suchthat ZoJ, and Z n W, # O,
we see that p, e Z for some i (large enough). Thus, since p; & F(p;), p, € M. Hence,
M is a subcontinuum of X such that p, p; € M. Therefore, we see that M =J;. Thus,
(0, 1) € M. This contradicts the fact that (0, 1) ¢ F(2) for any z € Z. Therefore, there
is no mapping F: X — C(X) such that the fixed point set of F is 4. This com-
pletes (2.8).

(2.9) Remark. The example in (2.8) can be modified to'show that there exist
continua of all dimensions which fail to have MCIP. Observe that each of W U J;
and W, uJy is a compactification of a half-line with an arc as remainder. If we
replace each of W; and W; by the product of a half-line and an n-cell (or the product
of a half-line and a Hilbert cube) and compactify on J; and J; in the analogous
manner, then the resulting continuum will be (r+1)-dimensional (or infinite-
dimensional) at every point. Using essentially the same argument as in (2.8), it can
be shown that these continua fail to have MCIP.

3. Existence of certain order arcs. In the proof of (2.2) we showed that if X
is a Peano continuum and A e 2%, then there exists a mapping F: X —~ C(X) such
that A is the fixed point set of F and such that {F(x): x € X} is an order arc in C(X).
If {y(t): te[0,1]} is an order arc in C(X), then there is an associated function
7: X — [0, 1] defined by

‘ 7(x) = inf {t€ [0, 1]: x ey (®)}.

In view of (2.1), it is of interest to know when 7 is continuous. In this section we
will prove a number of technical lemmas ((3.1) through (3.6)) concerning the existence,
when X is a Peano continuum, of a special class of order arcs in C(X) for which the
associated function 7 is continuous. Our main lemma (3.7) will be used in Section 4
to prove (4.1), which is a generalization of (2.2), and to prove (4.3), which shows
that a large class of continua have MCIP. '

(3.1) LEMMA. Let X be a Peano contimuum, let Y € 2%, and let Be C(X). Let u
be a Whitney map for C(X). For each (y,t)e Yx[0, +c0), let

g, ) = U{den (0, 1): ye d}
and, for each te [0, +), let
f(B, ) =U{4den*([0,1]): 4 B #* T},
Then, g is a uniformly continuous function from ¥Y'x[0, +c0) into C(X) and f (B, )
is a uniformly continuous function from [0, +o0) into C(X).

Proof. Let (p,t)e ¥Yx[0, +co0) and let & (p,1) = {Adep™X[0,7]): yed}.
Note that «7(y,?) is a collection of connected sets and, since {y}e (y,1),
N #(y,t) # 3. Hence, | & (1) is connected. Since & (y, 1) is a compact subset
of C(X), U &(y,1) is compact [4, p. 23]. Thus, since g(y,) = |J & (y, 1), we
have proved that g (y, t)e C(X).In the proof of [4, 4.1] it is observed that any Peano
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continuum satisfies [4, 3.2]. Hence, it follows from the proof in [4, 3.3] that g, which
is G in the proof of [4, 3.3], is continuous. Therefore, g is uniformly continuous
since Y is compact and since, for some #o, g(p,t) = X for ¢, and for all y & 7.
To verify the properties of f(B, -), let ¥ = B and, for each te [0, +o0), let

I(t)= {g(b,t): be B}.

Note that f(B,t) = | I'(f) for each te[0, +00). Fix t =1 [0, +c0). Since
g(-,1,) is continuous on B, since Be C(X), and since g(b,7,) € C(X) for each
b e B, we see that I'(#,) € C(C(X)). Hence [4, 1.2], U I'(t;) € C(X). Thus, we have
proved that f(B, f) e C(X) for each t& [0, +o0). Since g is uniformly continuous
on Bx [0, +a0), it follows easily that I' is continuous on [0, +co). Hence, since
union is continuous [4, p. 23] and since f(B,¢) = U I'(t) for each t& {0, +o0),
f(B, ") is continuous on [0, + o). Therefore, since f(B, 1) = X for sufficiently
large ¢, (B, ") is uniformly continuous on [0, +00). This completes the proof
of (3.1).

(3.2) LeMMA. Let X be a continuum and let 2 [0, 1] = C(X) be an order arc.
Assume that whenever ty, 1, €[0, 1] with t;<t,, then a(ty)cint[w(z,)]. Then the
function ©: o(1) - [0, 1], defined by

1(x) = inf{te [0, 11: x e a(2)}
Sor each x € a(1), is continuous.
Proof. Let x, ea(l). We show that t is continuous at x,. Let 7o = 7(xo)-
First assume that 0<fy<1. Let ¢>0 such that 0<#,—¢ and fo+e<l. Let
V = int[a(ty+e)]—a(to—e) -

Since ¥ is an open subset of X and V<a(l), ¥ is an open subset of w(1). Since
lo = t(xg), %o ¢a(fo—e) and, by the continuity of o, xo € a(tp). Thus, since
a(ty) cint[a(ty+8)], we have that x, e V. It follows easily that for any yeV,

to—e<t(y)<to+e.

Hence, we have proved that = is continuous at x, in the case when 7o # 0, 1. Next
assume that #, = 0. Let &>0 such that e<I. Then xg € int[x(g)], int[x(£)] is an
open subset of «(1), and ©(y)<s for any y eint[a(e)]. Finally assume that £, = 1.
Let >0 such that e<1. Let

W=a(l)—a(l—8).
Then x, € W (since t(xo) = 1), W is an open subset of a(l), and 7(y)>1—e¢ for
any y € W. This completes the proof of (3.2).

(3.3) LemMA. Let X be a Peano continuum and let B be a proper subcontinuum
of X. Let p be a Whitney map for C(X). For each t=0, let

fB,0)=U{den([0,1): 4nB#2}.
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Let T = inf{t>0: f(B,t) = X}. Then:
m {f(B,t):‘ tel0, T} is an order arc in C(X) from B to X;
2 ift,t,e[0,T] and t;<t3, then f (B, t)) <int[f (B, t,)];
(3)  the function © is continuous where ©: X — [0,T] is defined by
t(x) = inf {re [0, T1: xef (B, 1)}
for each x e X.

Proof. By (3.1), (B, -) is a continuous function from [0, + o) into C(X).
Thus, letting

I ={f(B,1: tel0, T},

we have that I" is a subcontinuum of C(X). Furthermore, it is clear that f (B, t,)
< f(B, t,) whenever 1y, I, € [0, T] and #; <t,. Hence [10, Lemma 5], I" is an order
arc in C(X) from B to X. This proves (1). To prove (2), let ¢, #, € [0, T'] such that
t,<t,. Let x€f(B,t,). Then there exists 4 p~*([0,1,]) such that 4 n B+ @
and x € A. Since u(4)<t, and X is a Peano continuum, there is a closed connected

neighborhood ¥ in X of x such that u(4'v Vy<t,. Thus, since (4 U V)~ B # @, ‘

A U Vef(B,t,). Hence, since x € int[V], we have that x & int[ f (B, 1,)]. Therefore,
we have proved (2). It follows from (1) and (2) that we can use (3.2) to see that (3)
holds. This completes the proof of (3.3).

(3.4) LemMma. Let M be a Peano continuum andlet Y, Z & 2™, Let i be a Whitney
map for C(M). For each (y,t)e Yx[0, +c0), let

gy, 1y =U{dep™([0,7]): ye 4}.
Deﬁne k: Y- [0, +o0) by

t

k(y)=inf{re[0, +o0): g(y,t)nZ # Q}
for each ye Y. Then k is continuous.

Proof. Let y, e Y and let ¢>0. Since M is a Peano continuum, there are arbi-
trarily small closed connected neighborhoods in M of y,. Using these neighborhoods,
compactness of C(M), and a sequence argument, it follows that there is a closed
connected neighborhood ¥ in M of y, such that

(#) if AeC(M) and 4V # @, then p(d v V)spu(d)-+e.

We show that k(yo)—e<k(»)<k(y,)+e for each yeV Y. Let yeVn'Y.
-Bach g(y,, 1), being the union of a compact subset of C(M), is compact [4, p. 23].
Hence, since Z is compact, it follows easily that g(y,, k( J’o)) N Z # @. Thus, there
exists 4eu '([0,k(y)]) such that yoe 4 and 4nZ # @ Since yoednV,
ANV #@. Hence, by (#), (4 v V)<k(yo)+e. Also, since y e V,yeduV.
Thus, 4 U V=g (y, k(yo)+&). Hence, since 4 N Z # &, g(v, k(y)+e)nZ # @.
Therefore, k() <k(y¢)+s. Now suppose that k(p)<k(y,)—e. Then there exists
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1y <k(yo)—e such that g(y,1)NZ # @. Hence, there exists Aep™ ([0, #])
such that yed and AnZ +# @. Since yeAn V, A nV # @. Hence, by (),
u(d v V)<t +e Also, since yoeV, yoedu V. Thus, 4v Veg(yo, ti+6).
Hence, since A nZ # &, g(yo, 1 +8 NnZ # @. Hence, k(y)<t;+e. This con-
tradicts the fact that #; <k(y,)~e¢. Therefore, k(y);k(yo)—-é. This completes the
proof of (3.4).

(3.5) LEMMA. Let M be o Peuno continuum, let q be a noncut point of M, and
let B be a subcontinuum of M such that q ¢ B. Let U be an open subset of M such
that g€ U and U v B = @. Then there exists an order arc {B(#): €0, T1} in C(M)
such that

(1 BO) =B
(@) BIM)>M-U;

(3) q#BD);
(4)  the function t is continuous where t: B(T) - [0, T] is defined by

7(x) = inf{re [0, T]: xe B(1)}
for each x € B(T).

Proof. By [5, Thm. 3, p. 257}, M is the union of finitely many locally connected
continua M, My, ..., M, such that U {M;: ge M} = U. Assume (by changing the
indexing if necessary) that g € M; if and only if 724, for some io. Since M—{q} is
a connected open subset of M, it follows using [5, Thm. 1, p. 254] that, for each i <iy,
there is an arc 4, M —{q} from a point of M, to a point of M;. Then [5, Thm. 1,
p. 230, letting '

X =U{Mu4d;i<i},
X is a Peano continuum. Note that ¢ ¢ X and X>M—U. Let py be a Whitney map
for C(M) and let p, = j;|C(X). Note that p, is 2 Whitney map for C(X). For
each =0, let
f(B,1)=U{4ep;([0,1): AnB#}.

Let 7 = inf{t=0: f(B, ) = X}. Since UAB=@ and XoM~U, B is a proper
subcontinnum of X, Hence, by (1) of (3.3), {rf(8,t): tel0, T]} is an order arc
in C(X) from B to X. Let ¥ = (M—X)n X and define j: ¥~ [0,T] by

j() = inf{te [0, TL: yef (B, O}
for each y e ¥, Since j is the restriction to ¥ of the mapping in (3) of (3.3), we have
that j is continuous. For each (y, 7)€ Y% [0, +00), let
g ) =U {deu (0, 1): yed}
and define k: ¥ — [0, +00) by
k(y) = inf{re[0, +o0): geg(y,1)}.
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By (3.4), with Z = {gq}, we have that k is continuous. Let us note for future use
that g and f (B, *) are uniformly continuous by (3.1). We now define 8, Note that
if ye Y nf(B,1), then 1—j(»)>0. Hence, since T'>0, we see that the following
formula for § “makes sense”: For each e [0, T, let
Bty =f(B,nUL [U {g<y,t ;,(y)'k(y)): yeYnf(B, f)}]-

We first show that S(¢) e C(M) for each ¢ [0, T]. Let #, € [0, T']. Let S(15) denote
the part of fB(z,) in the square parentheses — thus, f(1,) = f (B, t,) U S(fy). Since g
maps into C(M) by (3.1), S(t,) is the union over a collection (possibly empty) of
subcontinua of M each of which intersects f (B, to). Thus, since f(B, #,) is a con-
nected subset of B(t,), it follows that B(z,) is connected. Since ¥  f(B, 1) is com-
pact and since j, k, and ¢ are continuous, we see that S(z,) is the union. over a com-
pact collection. Hence [4, p. 23], S(#,) is compact. Thus, ff(#,) is compact. Therefore,
we have proved that f(f,) € C(M). Next we show that f is uniformly continuous.
Since f(B, *) is uniformly continuous on [0, T], there exists §,>0 such that if
t.,t,€[0,T] and |t —1,|<d,, then )

@ H(f B, 1),/ (B, t2))<}s.

Note that, since k is continuous on the compact set Y, k is bounded. Also note that
g(y,0) = {y} for each y e Y. Hence, by the uniform continuity of g, there exists
8,>0 such that if #;,1,€[0,T] and |t, —1,| <J,, then

(b) H({y},g(y,ﬁ;—til‘k(y)>><%s for each ye Y.

Let 5o = inf{te[0,T]: ¥ nf(B,t) # B}. Using the uniform continuity of j, k,
and g, we see that there exists ;>0 such that if |z, —1,| <55 and s, <t; <1, <T,
then

£, —i( i

© H(g<y, : ;y"km),g(y,ia{—@ -k(y)))<s for cach ye ¥ nf (B, 1).
Let 6 = min{dy, 6,, 83}. Let ¢, 1, €[0, T] such that |t;—1t,| <6 and assume that
1, <ty Let z e B(%,). If ze f(B, 1), then by (a) there exists x e (B, ¢,) such that
d(z, x)<%}e. Hence, xeﬂ(ti) and d(z, x)<e. So, assume that z ¢ f(B, t,). Then,
since z € B(#;), there exists ye ¥ n f(B, t,) such that

zeg(y,trj(y)'k(y))-

T

If y¢ YNnf(B, 1), then #<j(y). Since ye ¥Ynf(B,t), j())<t, Hence,
1,—j(¥)<ty—1;<8<J,. Thus, we can apply (b) to conclude that d(z,y)<%e
Since y €f (B, t,), there exists by (a) a point xef(B, t;) such that d(y, x)<%e.
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Thus, x € f(t;) and d(z, x)<e. If ye Y nf(B,1,), then s4<t,. Hence, we can
apply (c) to obtain a point

~ 21—‘.1'(}’)' ;
.\Eg(y, T k())>

such that d(z, x)<e. Hence, x € i(t,) and d(z, x)<e. Therefore, we have proved
that each point z € f(7,) is within & of some point x & f(t;). It is easy to see that
B(t)=p(t,) since t;<t,. Hence, we have proved that

H(ﬁ(’:.)a ﬁ(iz))<5

and, therefore, we have proved that f is (uniformly) continuous. Since f is a conti-
nuous function from [0, T} into C(M), {B(z): t [0, T1} is a subcontinuum of C(M).
Hence, since (i) <pf(t,) whenever 1,,%,€[0,T] and ry<t,, {f(1): te[0,T]}
is an order arc in C(M) by [10, Lemma 5]. Now we verify (1) through (4) of the
lemma. By hypothesis, U n B = @. Hence, since M—XcU, ¥ n B = &. Hence,
since f(B,0) = B, Y nf(B,0) = @. Thus, p(0) = f(B,0) = B. This proves (1).
Since f (B, T) = X and since X>M— U, we see that f(T)=M — U. This proves (2).
To prove (3), suppose that ge f(T). Then, since f(B,T) = X and q¢ X, there
exists ye ¥ n f(B, T) such that

q eg(y, T,—jj;(y) 'k(y)) .

Since YN B =0, j())>0. Since g¢ X, ¢¢ ¥ and thus, since g(y,0) = {»},
k(y)>0. Hence,

T—j(y
IO k() <kt
T
and therefore, by definition of k,
T-j(y
qség(y,*—zjr—l-k(y))

which is a contradiction. Therefore, g ¢ (T) and we have proved (3). To prove (4),
we show that f# satisfies the following:
() if t,,1,&[0,T] and t; <1, then Bt =int [B(t2)].

To prove (), let #;, t, € [0, T] with 2; <?; and let x € B(t,). First assume that there
exists y € ¥ nf(B, #;) such that

(%) xeg(y,ﬂtl_;(y)'k(y)).

Be replacing the mapping f (B, 1) in (3.3) with the mapping g(y,t), we see that,
by (2) of (3.3), g(y, s;)<int[g (¥, s5)] whenever s; <s,. Thus, by (%),

7 — Fundamenta Mathematicae CXXII/1
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x eint [g(y, 2—71(12 -k(y))}

and therefore, since y € ¥ n f (B, t,), we see that x e int[$(z,)]. Next assume that ()
does not hold for any y € Y n f(B, t,). Then, since x & fi(t,), it follows easily that
xef(B,t;)— Y. Hence, xe X—Y, Let W denote the interior, in X, of f(B, ,).
Since x ef (B, t;), we have by (2) of (3.3) that x € W. Thus, since x € X— ¥ and since
X—Y is an open subset of M, it follows that x e int[#]. Hence, x & int[f (B, £,)]
which implies that x € int[B(#,)]. This completes the proof of (x). By (x) we can
apply (3.2) to conclude that (4) holds. This completes the proof of (3.5).

(3.6) LemMMA. Let M be a Peano continuum, let q be a noncut point of M, and let B
be a subcontinuum of M such that q & B. Then there exists an order arc {a(t): t [0, 1]}
in C(M) such that

n a0 =5

@) «l) =M,

() qé¢a®) for any t<1;

@) the function t is continuous where ©v: M — [0, 1] is defined by .

7(x) = inf{te [0, 1}: xea(})}

for each xe M.

Proof. For each i = 1,2, ..., let 5, = 1=2'"" let J; = [5;, 5;41], and let U

be an open subset of M of diameter <2~ ' such thatge U;and U; n B = @. By (3.5) -

there is an order arc {e,(t): t€ I} in C(M) such that o;(s;) = B, a;(s,) > M—Uyj,
qdas(sy), and o (i) cinto;(7;)] whenever s;<t#;<f,<s, Assume inductively
that we have defined an order arc {&,(t): t € 1,} in C(M) such that o,(s,, )= M—U,,
q & a,(sye1), and o,(t,) cintfe,(t,)] whenever s,<f;<f3<$,11. Since g é ot,(5,+1)»
there exists j(m)=n+1 such that Uy, N o,(s,4+,) = @. Thus, by (3.5), there exists
an order arc {o,4,(?): relyq} in C(M) such that o41(S41) = (She1)s
O 1(Sn ) DM —=Ujpys T8 Gs1(Snra)s and o () cinto41(22)]  whenever
Spi1 St <3 €Sppa Thus, by induction, we have defined «; for each i=1,2, ..
such that o, 4(5;41) = a(s;+1). Hence, by letting o'(2) = a,(t) if tel; for cach
te[0,1), we see that o' is a continuous function from [0, 1) into C(M). From
the construction we see that if ¢ & I; for some i2, then H(x'(t), M)<2'~". Hence,
the function «: [0, 1] — C(M) defined by

[, if o<,
“(”"{M, if1=1

is continuous. Tt is evident from the construction that o satisfies (1), (2), and (3).
It is also clear from the construction that
* a(ty) cint{e ()]

whenever 0t <t,<1.
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By (%), « is one-to-one. Hence, {«(f): f & [0, 1]} is an arc which, by (), is an order
arc (in C(M)). Hence, again using (#), we can apply (3.2) to conclude that o satis-
fies (4). Therefore, we have proved (3.6).

(3.7) MAIN LEMMA. Let L be a comnected, locally connected, locally compact,
noncompact separable metric space. Let X = L U R be a metric compactification
of L with a compact metric space R as remainder. Let B be a subcontinuum of X such
that BeL. Then there exists an order are {a(t): te [0, 1]} in C(X) such that

() al®)=5

(2 all) = X;

(3) Rny@) =@ for any 1<1;

(4)  the function < is continuous where t: X — 10,11 is defined by

t(x) = inf{re [0, 1]: xey()}
for each xe X.

Proof. Let M denote the quotient space obtained from X by identifying all
points of R to one point (denoted by) ¢. For each x e X we let [x] denote the member
of M containing x; thus, [x] = {x} if x¢ R and [x] = g if xeR. Letv: X > M
denote the quotient map, i.e., v(x) = [x] for each x e X. Since L is connected, X is
a continuum. Hence, since v is continuous, M is a continuum (M is metric by
[5, Thm. 1, p. 64] and [5, Thm. 3, p. 21]). Let us note for future use that

(*) v|L is a homeomorphism from L onto (L) = M—{q}.

It follows from (%) that M is locally connected at each point other than g and, hence
[5, Thm. 3, p. 247], at g. Thus, M is a Peano continuum. Since L is connected, g is
a noneut point of M. Since B is a subcontinuum of L, v (B) is a subcontinuum of M
such that ¢ ¢ v(B). Therefore, we can apply (3.6) to M, g, and v(B) to obtain an
order arc {a(t): 1€[0,1]} in C(M) such that «(0) = v(B), a(l) = M, qéa(t)
for any <1, and v': M — [0, 1], defined by

([x]) = inf{te [0, 1]: [x]ea(}
for cach [x] e M, is continuous. For each t€ [0, 1], let
y(t) = v Ha ).

Since () is a subcontinuum of v(L) for each #<1, it follows from (*) that, whenever
0<gt<l, y(#)e C(X) and y is continuous at #. Since a(l) = M, y(1) = Xe C(X).
To prove continuity of y at ¢ = 1, let {t,}2, be a sequence in {0, 1] converging
to t = 1. Assume without loss of generality that £,<t,,,<1 for each n. Since o
is continuous at =1 and since a(l)=M, D=U{alt):n=1,2, Y
a dense subset of M. Thus, since géa(t,) for any n, D is a dense subset of
M—{q} = v(L). Hence, by (x), v"(D) is a dense subset of L. Thus, since
L= X, v"X(D) is a dense subset of X. Thus, since v e () =y (@) for

Mo
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each n, {v"*(0(t,))}n, converges to X as n — oo. Therefore, since y{l) = X, we
have proved that y is continuous at ¢ = 1. This completes the proof that y is a con-
tinuous function from [0, 1]into C(X). Since {a(?): 7€ [0, 1]} is an order arc in C(M)
and since 7 is a continuous function from [0, 1] into C(X), it follows easily using the
formula for y that {y(#): e [0,1]} is an order arc in C(X). Since a(0) = v(B)
and BcL, y(0) = B. Since g ¢a(f) for any t<1, Rny(t) = @ for any 1<l It
remains to prove (4). Let 7 be as defined in (4): A simple computation using the for-
mulas for 7, 7, and ' shows that t(x) = (z" e v)(x) for each x € X, Therefore, the
continuity of = follows from the continuity of " and v, This completes the proof of (4)
and, therefore, we have proved (3.7).

4, Main results. Throughout this section L will denote a connected, locally
connected, locally compact, noncompact, separable metric space, and X =L U R
will denote a metric compactification of L with a compact metric space R as remainder.

(4.1) THEOREM. If A is a closed subset of X such that A N L # &, then there is
a continuous function F: X — C(X) such that A is the fixed point set of F.

Proof. Let pe AnL. Let y and © be as in (3.7) for the case when B = {p}.
Since 7 is continuous, it follows from (2.1) that there is a continuous function
F: X - C(X) such that 4 is the fixed point set of F.

(4.2) Remark. Let us note that (4.1) is actually a generalization of (2.2). Let M
be a Peano continuum, let 4 € 2™, and let ¢ be a noncut point of M [5, Thm. 5, p. 177].
Then L = M—{q}, R = {¢}, and X = M satisfy the assumptions at the beginning
of this section. If 4 N L # &, then, by (4.1), there is a continuous function from X
into C(X) with fixed point set 4. If 4 n L = @, then 4 = {g} and, thus, 4 is the
fixed point set of the mapping F: X — C(X) defined by F(x) = {¢} for each x € X.
Therefore, M has MCIP. i

(4.3) THEOREM. If L contcins a simple closed curve, then X has MCIP.

Proof. Let Ae2*. If A "L # @, then, by (4.1), 4 is the fixed point set of
a mapping from X into C(X). If 4 n'L = @, then A=R, Let S be a simple closed
curve such that ScL. Let y be as in (3.7) for the case when B = S. Let g: S — §
be a fixed point free mapping and let G: S — C(S) be the induced mapping defined
by G(x) = {g(x)} for each xeS. Then the fixed point set of G is empty and
9 = {G(x): xeS} is 4 locally connected subcontinuum of C(S). Since
{y(®): te[0, 1]} is an order arc in C(X) from S to X and since A is a compact sub-
set of X— U {y(#): t<1}, it follows from (2.3) that G can be extended to a mapping
F: X — C(X) such that the fixed point set of F'is 4. This completes the proof
of (4.3).

(4.4) CorOLLARY. If the dimension of L is 22, then X has MCIP.

Proof. From the assumptions about L made at the beginning of this section,
and by using [5, Thm. 1, p. 254] and [5, Thm. 5, p. 253], we see that L is the union
of countably many nondegenerate locally connected continua L, L,,...,L,,
Suppose that L does not contain a simple closed curve. Then [5, p. 300], each L, is
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a dendrite and, thus, is one-dimensional. Hence, by the Sum Theorem [2, III, p. 30],
L is one-dimensional, a contradiction. Thus, L contains a simple closed curve. There-
fore, (4.4) follows from (4.3).

(4.5) THEOREM. If' R is a continuum and R has the property that for each nonempty
closed subset A of R there exists a mapping G: R — C(R) with fixed point set 4 such
that % = {G(y): y € R} is contained in. a locally connected subcontinuum £ of C(R),
then X has MCI?,

Proof. Use (4.1) and (2.3) (with K = @).

(4.6) COROLLARY. If R is a Peano continuum, then X has MCIP.

Proof. It follows from (2.2) that R satisfies the hypotheses of (4.5).

We remark that the examples in (2.8) and (2.9) show that the connectedness

" of L is necessary in (4.3), (4.4), (4.5), and (4.6).

The continuum X = L U R need not have MCIP when L is one-dimensional
and does not contain a simple closed curve. We conclude by giving several examples
which illustrate the situation when L is one-dimensional and does not contain a simple
closed curve. .

(4.7) ExameLE. Let L = [0, c0), let R be the continuum X in (2.8), and let
X = L U R be a metric compactification of L with remainder R. Let 4 be as in (2.8)
and suppose that F: X — C(X) is a mapping with fixed point set 4. By the result
in'(2.8), F can not map R into C(R). Let ro € R such that F(ry) N L # @ and let
to = inf{teL: t€ F(ry)}. Let Ube a connected open subset of L such that foe U
and U R = @, Let t, = sup(U). Since F is continuous at ro, there exists a point
t, & L such that F(t,) n U % @ and #,>#,. Since F(1,) is compact and connected
and since 1, ¢ F(ty), t,>sup(F(t,)). It now follows easily that F has a fixed point p
such that 0< p<t,, which is a contradiction. Hence X does not have MCIP.

(4.8) ExaMpLE. Let X be as in (4.7). Let L, = (—00,0], Ry be an arc, and
X, = L, U R; be a metric compactification of L; with remainder R;. Let Y be

X=LuR.

Fig. 2
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the space obtained by taking the disjoint union of X and X, and then identifying
the point 0 in X and the point 0 in X, (see Figure 2). Let A be as in (2.8) and suppose
that F: Y — C(Y) is a mapping with fixed point set A. Since F can not map R
into C(R), an argument similar to the argument in (4.7) shows that there exist
ty,t, € L such that #; <t, and such that F(f,)=R, U L; U [0,#]. Since F has no
fixed points in Ly U L, it follows easily that for each ¢zeL; u [0, 1,] there exists
t'<t such that F(f)c R, U (—o0, ']. Consequently, F must map R, into C(R).
Since R, has the fixed point property for continuum-valued mappings [15], it follows
that F has a fixed point in R,, which is a contradiction. Hence ¥ does not have MCIP.

We now show that the example in (4.8) can be modified slightly so that the re-
sulting continuum will have MCIP.

(4.9) ExampLE. Let X and L, be as in (4.8). Let R, be any Peano continuum
which is not a dendrite and let X, = L; U R, be a metric compactification of L,
with remainder R,. Let Z be the space obtained by taking the disjoint union of X'
and X, and then identifying the point 0 in X and the point 0 in X,. We will show that Z'
has MCIP. Let 4 2% By (4.1), we may assume that AcR, U R. If 4 n R, # @,
then, by (2.2), there exists a mapping G: R, — C(R,) with fixed point set 4 N R,.
If A n R, = @, then, by [6], there exists a fixed point free mapping G': R, — C(R,).
It is clear that there exists an order arc {x(r): 7 € [0, 11} in C(Z) from R, to Z such
that 4 n ReZ— J {x(1): t<1}. Since C(R,) is locally connected, it now follows
from (2.3) that G (or G’) can be extended to a mapping F: Z - C(Z) such that the
fixed point set of F is A. ' '
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