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On indecomposable subcontinua of surfaces *
by

Z. Karno (Bialystok)

Abstract. Let X be an indecomposable subcontinuum of a surface. It is proved that the union
of all external composants of X is an F,-set of the first category in X. This result generalizes an anal-
ogous theorem of Krasinkiewicz.

1. By a surface we shall mean a compact connected 2-dimensional manifold
(without boundary). Let X be an indecomposable continuum. By a composant of
a point x € X we understand the union of all proper subcontinua of X containing x.
Consider X as a subset of a surface M. A composant C of X is called external if
there exists a continuum L< M such that L n C # @, L& C, and L does not intersect
all composants of X. A composant of X which is not external is called internal [2].

If M = S?, then by a theorem of Krasinkiewicz we have:

TueoreM ([3], 3.2). The union of -all external composants of X is an F -set of the
first category in X.

In this paper we generalize this result to all surfaces (see Section 4).

2. The homology (cohomology) theory used in this section is the singular one
with coefficients in the R-module Z,, where R = Z,. The.Z,-module H, (X, 4; Z,)
will be denoted briefly by H, (X, 4). Similar notation applies to cohomology

For a surface M we have

Z, for g =0 and g =2,
0 HY(M) =:277* forg=1,
0 for g >2,

where y(M) is the Euler characteristic of M (see [1], p. 141). The number
c(M ) = 2—x(M) is called the connectivity of M. ‘

" A continuum homeomorphic to a 1-dimensional polyhedron is called a graph
A simply connected graph is called a tree.

* This paper contains some tesults from the author’s M. Sc. thésis which was written during
1981/1982 under direction of Dr. J. Krasinkiewicz at- the Division of :the Warsaw Umversuy in
Bialystok. .
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For a graph G we have

Z, for ¢ =0,
(++) HYG) = 32,79 forg=1,
0 forg>1,

(see [1], p. 141). Put ¢(G) = 1—x(G) and call ¢(G) the connectivity of G. It G is

a tree then ¢(G) = 0.
Now suppose the graph G is a subset of the surface M. Since G € ANR, from

the Lefschetz duality theorem (see [5], p. 290 and p. 297) we get
2.1. LemMa. H(M\G) = H*~YM, G), for =0 (an isomorphism of Z,-modules).
Tn particular dimg, H*(M, G) is-equal to the number of components of the set M\G.
All results of this paper héavily depend on the following
2.2. LEMMA. Let n be the number of components of the set MN\G. Then we have

c(G)—c(M)+1<n<c(G)+1.

Proof. Let i: GeM and j: M=(M, G) and consider the exact cohomology
sequence of (M, G):
jq
L g, 6)— s g s G — B, G) s
(see [5], p. 240). By () and (**) a portion of the sequence locks like this:

zso0 L ge0 2, gy 6y Esz, g

This is a sequence of Z,-modules and Z,-morphisms.
For a Z,-module H set r(H) = dimg, H. The exactness of the sequence implies
the following relations:

r(H¥M, G) = 1+r([imé,)<1+¢(G),
r(imé,) = ¢(G)—r(imif)=c(G)—c(M) .
Hence 1+¢(G)—c(M)<r(H*(M,G)<1+c¢(G). Applying 2.1, we get the con-
clusion of 2.2.
2.3. COROLLARY. If ¢(G)>c(M), then G separates M.
2.4. COROLLARY. No tree in M separates M.

3. Separation of surfaces by certain collections of subcontinua. Throughout this
section by M we denote a closed connected surface. If D is a disk, then by D we
denote its interior and by D its boundary. By an n-od we mean a continuum homeo-
morphic to the cone over an n-point set. We say that an n-od T< D is regularly
embedded in D provided T n D is the set of the endpoints of T.

3.1. LemMA. Let Dy and D, be disks in M with disjoint interiors. Let ¢ = ¢(M)+2
and let T; be a g-od regularly embedded in D;, i = 1,2. Let (a;) be the endpoints
of Ty and let (b;) be the endpoints of T,. Let Ay, ..., A o be a collection of mutually

[

icm

On inde 11, 5

1P inua of surfaces 119

disjoint subcontinua of MN\(D, u By) such that a;, bjed;, j=1,..
B=T, 0T,V 4 ...0 4, separates M between two points of D\Ty.

Proof. There is a ﬁmte set E< D,\T, which has exactly one point in common
with each component of Dl\T, Let us observe that the lemma holds true in the
special case where

,q. Then

(1)  4; is an arc g;b; (or the point a; in case a;=b),j=1,..,q

In fact, under this assumption the set B is homeomorphic to the suspension over
a g-point set. It follows that each point xe M\B can be joined with e, e E by
an arc lying in M\B. Moreover, B is a graph such that ¢(B) = c(M )+1. By 2.3
there exist x, y & M\B such that B separates M between x and y. Then e, # ey,
which completes the proof.

Let us return to the general case. Since MN\(D, U B,) is a locally connected
continuum, there exist g sequences {d,}, j=1,..,q, n=1,2,.., such that

2) Aj,,c:M\(f)1 U B,)is an arc joining @; and b; (and is the point a; in the case
a; = bj):

(3)  for each neighborhood of 4; almost all sets {4;,};2, are contained in this
neighborhood,

4 4;,n A4y, =@ for j, #j, and each n.

Put B, =T, 0T, U Ay, vdyv..u A gy According to (2) and (4) we may apply
the special case (1) to the set B,. Hence B, separates M between two points e,, ¢, € E.
But E is a finite set, hence there exist e, ¢’ € E such that (e,, e) = (e, ¢’) for infinitely
many n. We claim that B separates M between e and ¢’. Just suppose there is an arc
ee’ < M\B. Then by (3) there is an index n such that (e,, e) = (e, ¢’) and ee’ « M\B,.
This is a contradiction, which completes the proof.

3.2. CoroLLARY. Let Dy, D, be disks in M with disjoint interiors. Let
g = 2(c(M)+2). Let {a},...,a}cD, and let {b,...,b.}=D, and suppose there
is a collection F,, ..., F, of mutually disjoint subcontinua of MN(D, u B,) such that
aj,bjeFy, j=1,..,q. Then there exist a collection

{d', 4", Ay, Az, ., Aoonyra} <{F)}
and continua TyD,, i = 1,2, such that
TNy U .o U depgyra) =Dy

and Ty T, V4, u..

Proof. Let a;<a,<...<a, be a cyclic ordering of the set {af, ..., 2} on the
simple closed curve D,. Let 4, be the unique element of {F;} such that ay € 4,,
where k = 1, ..., ¢(M)+2. Let b, be the unique element of {b]} belonging to A4,.
Let T; be a g/2-od with endpoints {a,,} regularly embedded in D, and let T, be
an analogous g/2-od in D, corresponding to the set {b,}. By applying 3.1 to the set
4 — Fundamenta Mathematicae CXXIII, 2

U Acay+o Separates M between A' and A",
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B=T,UT, U Ay U..U Ay, it is easy to determine 4" and 4" such that
the conclusion of 3.2 is satisfied.

The following two lemmas are variations of a lemma due to Mazurkiewicz
(see [4]).

3.3. LeMMA. Let Y be a continuum irreducible between a and b. Let F and D be
closed subsets of Y such that a, be Fand F U D = Y. Let V be a nonvoid open subset
of Y disjoint with F. Then there exists a continuum 4 < D intersecting V and irreducible
between points a', b’ € F.

NoTATION. We write 4 e (F, D, V) to indicate that 4 is a continuum satisfying
the conclusion of 3.3. i

3.4. LEMMA. Let Y be as in 3.3. Let F,, F, be two closed disjoint subsets of Y such
that ae F; and be F,. Let D be a closed subset of ¥ such that F; 0 F, 0 D = Y.
Let V be an open nonvoid subset of Y separating Y between Fy and F,. Then there
exists a continuum AcD intersecting V and irreducible between a' € Fy and b’ € F,.

NoOTATION. We write A4 e (F;, F,, D, V). to indicate that 4 is a continuum
satisfying the conclusion of 3.4.

3.5. LEMMA. Let X be an indecomposable continuum, let C be a composant of X,
let F be a closed subset of X with finitely many components and let U and V. be two
nonvoid open subsets of X. Then there exists a continuum in C digjoint with F and
intersecting both U and V. :

Proof. Let W be a nonvoid open subset of ¥\F such that W =V (the set V\F is
nonvoid because F is nowhere dense). Let F* be the union of components of X\W
each of which meets F. Then F* is a closed set with an empty interior. So UNF* % @.
Let E be a component of X\# which intersects C\F*. Then E is a subcontinuum
of C intersecting both U and ¥ and disjoint with F.

In the following two lemmas we denote by X an indecomposable continuum
lying in M.

3.6. Let D and D' be disks in M with disjoint interiors. Assume X n D # @
# X D' Let R be anuncountable collection of composants of X. Then there exists
a closed set Fe |J'R (with at most ¢(M)+2 components) which separates MN\D'
between two points of D n X.

Proof. Let Ce R. Using a standard trick (see [4] and [2]), one can construct
a continuum Bec C\D' irreducible between ag, by e I, which intersects D (first
we construct a continuum Y<C irreducible between two points from 1’ which
intersects D and then apply 3.3 to the triple (Y n D', "D', Y n D)). Since D’
intersects all composants of X, we have D’¢ X. Hence there is an arc L <D’ which
contains D' N X. Thus ac, be € L for each C e R. Without loss of generality we may
assume 'that ac<bg for each Ce R, where < is one of the natural orders on L.
Since R is uncountable, there is a point d € L and an uncountable subcollection R =R
such that ag<d<b¢ for each Ce R'. Let e e D'\NL and let ed be an arc regularly
embedded in D’. Then there exist two disks D;, D, such that D' = D; U D,,
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D, N D, = ed, ace D; and bge D, for each CeR’. Applying 3.2 to Dy, D, and
2(c(M)+2) elements of {Bc: Ce R’} we obtain a collection {4', 4", 4; , ...
<{B;: Ce R’} and continua T;c D; such that

> Ac(M)+2}

T\(4; v ... v AC(M)“);f)i

and T3 UT, U 4, U...U dgne, separates M between 4’ and A". Since
ANnD#B#A" nD, setting F=A; U ..U Aqn+2 We obtain a closed set
with the required properties. :

The following lemma is of fundamental importance in the next section.

3.7. LemMa. Let D, D’ and X be as in 3.6. Let C be a composant of X. Then
there exists a continuum EcC such that END separates M\D between two points
of B'n X.

Proof. Applying 3.6 to the collection of all composants of X distinct from C,
we infer that there exists a closed set F’ disjoint with C which separates MDD
between x,y € D n X. Hence there exist two disks Dy, D, such that

(1) D;UD,cDNF, -

@ DinX#0,i=1,2,
(3) F’ separates M,/D’ between D, and D,.

By arepeated application of 3.5 (using(2)) we construct a sequence C1:Cas s Careay 2y
of mutually disjoint subcontinua of C such that C; meets both D, and D,. By (3) we
have D, n D, = @. Hence by 3.4 we may also assume that

@ CyeC\(D; v By) is irreducible between a; € D, and bje D,.

1t follows from (3) that for each j we have
(). CnD#8a.
By 3.2 and (4) there is a collection {4', 4", 4, ..., Agony2} ={C;} such that
F= A4, U...U A+, separates MN\(Dy © D,)between 4" and A" Henﬂce from (1)
and (5) it follows that F separates M~D between two points a,be (D' n X)NC.

There is a continuum EcC containing F: Thus E satisfies the conclusion of our
lemma.

4. On internal composants. Let X be an indecomposable continuum lying in
a surface M. Denote by E the collection of all external (relatively to M ) compo-
sants of X. The notion of an external (internal) composant of X was introduced
and studied in [3] in the case where M = S*.

_ For this case the Main Theorem in [2] states the following theorem (and we

shall show below that the same statement is valid for arbitrary surfaces):

4.1, TreOREM. The union of all external composants, i.e., the set ) E, is of the
first category in X.
o
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Proof. We follow the ideas used in the proof of the Main Theorem. Most of
the argument is the same, and so we shall not repeat it here. An analysis of that
proof shows that the property of M contained in our Lemma 3.7 is all we need to
extend the proof to the general case. This completes the proof.

Now we make a comment on the possibility of extending the properties of
internal composants established in [3] (for indecomposable continua lying in S?)
to the general case. An easy inspection shows that the properties listed in Section 3
of [3], except 3.6, follow from property 3.6, from the Main Theorem [2] (4.1 extends
it to all surfaces) and from the general results on indecomposable continua.

Now we are going to state a property of indecomposable subcontinua of surfaces
which is a generalization of 3.6 from [3] (proved only for the sphere S?). We can
prove the generalization proceeding in the same way as in the proof of 3.6 in [3],
applying our Lemma 3.7 in place of 2.2 of [3].

4.2, LeMMA. Let Le M be a continuum intersecting all composants of X and let C
be an arbitrary composant of X. If XL, then there exist an open neighbcrhood U
of L in M and a continuum A< C which separates U between two points of L.

Having this lemma, we can extend all the properties 3.1-3.9 from [3] to the
general case. In particular, we have the following generalization of 3.2 from [3]:

4.3. THEOREM. The set \) E is an F,-set in X. Consequently, the union of internal
composants of X is a Gg-set dense in X.
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L..~elementary equivalence of o,-like models of PA
by
Roman Kossak (Warszawa)

Abstract. We show that two recursively saturated, w,~like models of PA are Lege,-¢lementarily
equivalent iff they are elementarily equivalent and have the same standard systems. On the other
hand, for every countable model M of PA we construct a continuum of pairwise non-isomorphic,
wy~like, recursively saturated, elementary end extensions of M.

Any two recursively saturated models of PA (Peano Arithmetic) are L,,-€le-
mentarily equivalent iff they are elementarily equivalent and have the same standard
systems. This result was first noted by Craig Smorysiski in [8] but its roots go back
to some earlier works of George Wilmers and Alex Wilkie (see [8] for historical re-
marks).

For the purpose of this paper let us call elementary equlvalent models with the
same standard systems similar.

The result mentioned above is particularly important in the case of countable
models of PA since it says that any two recursively saturated countable similar
models are isomorphic. The situation is different when we consider uncountable
models and, as usual, the first counterexamples can be found among ,-like models. -
Take for instance a “rather classless” model M of M. Kaufmann [3] (the existence
of a rather classless model is provable in ZFC, <f [7]) and a recursively saturated
o,-like model similar to M but not “rather classless”, hence not isomorphic to M.
In the last section of this paper we show that there is at least a continuum of pairwise
non-isomorphic w,-like recursively saturated similar models. But our main theorem
says that o,-like recursively saturated similar models are still very similar, namely
they are L,,,-clementarily equivalent.

1. Preliminaries. We assume the readers’ acquaintance with the basic properties
of recursively saturated models of PA (Smorynski [8] is a perfect survey of this sub-
ject). With some minor changes we are going to follow the terminology and notation
of [8] and [10].

Models of PA are called shortly models. As usual, x € D, is an abbreviation
for an arithmetical formula expressing that x is an element of a set coded by y and ();
denotes the ith element of this set (in increasing order).

If b is an element of a model M then

={xeM: MerD,}
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