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Proof. We follow the ideas used in the proof of the Main Theorem. Most of
the argument is the same, and so we shall not repeat it here. An analysis of that
proof shows that the property of M contained in our Lemma 3.7 is all we need to
extend the proof to the general case. This completes the proof.

Now we make a comment on the possibility of extending the properties of
internal composants established in [3] (for indecomposable continua lying in S?)
to the general case. An easy inspection shows that the properties listed in Section 3
of [3], except 3.6, follow from property 3.6, from the Main Theorem [2] (4.1 extends
it to all surfaces) and from the general results on indecomposable continua.

Now we are going to state a property of indecomposable subcontinua of surfaces
which is a generalization of 3.6 from [3] (proved only for the sphere S?). We can
prove the generalization proceeding in the same way as in the proof of 3.6 in [3],
applying our Lemma 3.7 in place of 2.2 of [3].

4.2, LeMMA. Let Le M be a continuum intersecting all composants of X and let C
be an arbitrary composant of X. If XL, then there exist an open neighbcrhood U
of L in M and a continuum A< C which separates U between two points of L.

Having this lemma, we can extend all the properties 3.1-3.9 from [3] to the
general case. In particular, we have the following generalization of 3.2 from [3]:

4.3. THEOREM. The set \) E is an F,-set in X. Consequently, the union of internal
composants of X is a Gg-set dense in X.
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L..~elementary equivalence of o,-like models of PA
by
Roman Kossak (Warszawa)

Abstract. We show that two recursively saturated, w,~like models of PA are Lege,-¢lementarily
equivalent iff they are elementarily equivalent and have the same standard systems. On the other
hand, for every countable model M of PA we construct a continuum of pairwise non-isomorphic,
wy~like, recursively saturated, elementary end extensions of M.

Any two recursively saturated models of PA (Peano Arithmetic) are L,,-€le-
mentarily equivalent iff they are elementarily equivalent and have the same standard
systems. This result was first noted by Craig Smorysiski in [8] but its roots go back
to some earlier works of George Wilmers and Alex Wilkie (see [8] for historical re-
marks).

For the purpose of this paper let us call elementary equlvalent models with the
same standard systems similar.

The result mentioned above is particularly important in the case of countable
models of PA since it says that any two recursively saturated countable similar
models are isomorphic. The situation is different when we consider uncountable
models and, as usual, the first counterexamples can be found among ,-like models. -
Take for instance a “rather classless” model M of M. Kaufmann [3] (the existence
of a rather classless model is provable in ZFC, <f [7]) and a recursively saturated
o,-like model similar to M but not “rather classless”, hence not isomorphic to M.
In the last section of this paper we show that there is at least a continuum of pairwise
non-isomorphic w,-like recursively saturated similar models. But our main theorem
says that o,-like recursively saturated similar models are still very similar, namely
they are L,,,-clementarily equivalent.

1. Preliminaries. We assume the readers’ acquaintance with the basic properties
of recursively saturated models of PA (Smorynski [8] is a perfect survey of this sub-
ject). With some minor changes we are going to follow the terminology and notation
of [8] and [10].

Models of PA are called shortly models. As usual, x € D, is an abbreviation
for an arithmetical formula expressing that x is an element of a set coded by y and ();
denotes the ith element of this set (in increasing order).

If b is an element of a model M then

={xeM: MerD,}
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If I, M (I is an initial segment of M) then a subset 4 of I is coded in M
if 4 = In DY for some b in M. The set of subsets of o coded in M is called the
standard system of M and is denoted by SSy(M). For information about L, ~logic
we refer to [1]. We will use the following characterization of L,,,-¢lementary equiv-
alence.

THEOREM (Kueker [6]). dssume M and N are models (of any theory in a countable
language) of power wy; then M =, N iff M and N can be written as the unions of
chains {My}y <y, and {Ng}e<o, Of countable submodels such that

(Mé’ Mv) = (NE’ Nv)

and in fact there are non-empty sets Gy of isomorphisms of My with Ny, for all £ <o,
such that any isomorphism in G, extends to one in Gy, for any v<E<w;.

We are going to use only the easy part of the above equivalence, proved by the
standard back and forth criterion for L,,-elementary equivalence (cf [6]).

Suppose we have models M and N, I= M, J<,N, and fis an isomorphism of J
with J. If there is an isomorphism g: M = N extending f then the image of every
subset 4 of Icoded in M, written f * 4, must be coded in N. This leads to the following
definition:

Dermvtion. If f is an isomorphism of I with J and I, M and J<,N, then
we say that fis an (M, N)-isomorphism if, for any 4<I coded in M and B<J coded
in N, f+A and f~' x B are coded in N and M, respectively.

Observe that if fis an (M, N)-isomorphism and M <, M; and N < N, then fis
an (M,, N,)-isomorphism.

We will be interested in the following problem. Let M and N be countable,
recursively saturated similar models and let M,<,M and Ny<,N be recursively
saturated. In this situation all four models are pairwise isomorphic. Suppose we have
an isomorphism f: M, = N,. When is it possible to extend f to an isomorphism
of M with N? There are two necessary conditions:

1. f must be an (M, N)-isomorphism,

2. the structures (M, M,) and (N, N,) must be isomorphic.

So now the question is: for which pairs of models are these conditions also suf-
ficient? A partial answer is given in the next section.

whenever v<&<o,

2. Models coded by ascending sequences of skies. First we recall some terminology
from Smorynski [10]. If a and b are elements of a model M then we write a<b if,
for every parameter-free Skolem function F, F(d)<b. We say that b codes an
ascending sequence of skies, b e ASS(M), if b codes a sequence of a non-standard
length and, for every i< j<lh(b), (b);<(b);.

If be ASS(M) then

M(w,b) = sup(b), = {xe M: Inew x<(®),} .
neEw
Itis not difficult to check that if M is recursively saturated then, for every b € ASS (M),
M@, b)<.M and M(w, b) is recursively saturated.
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2.1. THEOREM (Smoryhski [10]). If M is countable and recursively saturated then
for every a,be ASS(M)

(M, M@w,a)) = (M, Mw,b)). &

As a corollary we have the following theorem.
2.2. TueorREM. If M and N are countable recursively saturated similar models,
ae ASS(M), be ASS(N), then

(M, M, ) = (N, Nw,b).

Proof. Let f be an isomorphism of M with N and let ¢ = f(a). Then by 2.1
(N, N(w, b)) = (N, N(w, ¢)) since ce ASS(N), but (M, M(w, a)) = (N, N, )
and the result follows. M

2.3. COROLLARY. If M, N, a and b are as in2.2 then the set of (M, N)-isomor-
phisms of M(w, a) with N(w,b) is non-empry. B

Now we will refine Smoryfski’s arguments (cf [10] Theorem 2.4) to prove
a stronger result. First we will prove a basic back and forth lemma. Recall that
if I<,M then we say that I has cofinality @ in M if, for some be M, I = sup(d),

new
(b is not assumed to be in ASS(M)).

2.4. LEMMA. Let M and N be recursively saturated similar models and let Mo~ .M
and No=< N have cofinality . Suppose f is an (M, N)-isomorphism of My with No
and for two sequences of parameters A€ M, b e N and for all formulae ¢ with an ap-
propriate number of free variables we have

Vxe Mo, ME (@, x) iff NFo(b,f().

Then for every a € M there exists a b€ N such that for all formulae ¢ with an appro-
priate number of free varigbles we have

Vxe M, MEo(@,a,x) iff NEo(b,b,f(x).
Proof. Let ae M and e N be such that M, = sup (), and Ny = sup (B -

new new
Since fis an (M, N)-isomorphism, we may assume that f((®),) = (ﬁ),,'(this assumption
is not essential for the proof: we make it for notational convenience).
For a given a € M let s(v) be the set of formulae of the form

Vx<(@),o@, c,x) < ,x>eD,,
where ¢ is a formula with an appropriate number of free varial.ales, ’—cp_" isa gddel
number of ¢ and n € w. It is clear that s(v) is recursive and finitely reahzab}le in M;
let y be its realization. Since f is an (M, N)-isomorphism, the set f* (Dy N M)
must be coded in N; let & be its code.
Now we consider the set t(v) of formulae of the form

Vx<(Bao®,v,x) ¢, x>eDs,
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where ¢ has an appropriate number of free variables and n € w. We claim that #(v)
is finitely realizable in N. Take ¢ and n e w. There are y, € M, and 8, € N, such
that ; ) .
MEVx<@),< o x>eD, < (o, x>eD,,
NEVx<B), o LxdeD; & <o LxdeD; ..

By the definition of § we can choose Yy, 04 such that f(y,) = §,. Observe that the
following two statements are equivalent:

NEIVx<B), 0(b,v,%) < o LxdeD,,,
MEDVx<(@), 0@, v,x) < o Lx>eDd,,

and the latter is obviously true, which proves our claim.

To finish the proof notice that any element b realizing 7(v) in N satisfies the
condition of our lemma. M

2.5. COROLLARY. Let M, N, My, Ny be as in 2.4. If M and N are countable,
then every (M, N)-isomorphism of M, with N, can be extended to an isomorphism
of M with N.

Proof. By the standard back and forth construction. B

The above corollary is still not sufficient for our subsequent applications. What
we need is the following theorem:

2.6. THEOREM. Let M, N, Mo, N, be as in 2.4 with M and N countable. If
aeASS(M) and be ASS(N) are such that My<(d), and No<(b)o then every
(M, N)-isomorphism of M, with N, can be extended to an isomorphism of (M s M(w, a))
with (N, N(w, b)).

Proof. First we will construct a sequence d,: n € w of elements of N such that,
for every formula ¢ and every ne o,

Vxe My, MEo((@, ..., (@),, x) iff NEo(dy, ..., d,, f(x)

and (b),<d,<(b),+1-

If we have found dy, ..., d, with the above properties then we proceed as follows.
Let t(v) be the type from the proof of 2.4 corresponding to @ = (), ..., (@),,
b=dy,..,d, and @ = (a),,,. Parameters § and & can be chosen arbitrarily low
in N—N,, and so we may assume that 8, § <d, (For the 0-step in our construction
observe that we can change B and § after d, realizing t(v) has been found.)

Now, since (5),+1<€(b),42, We can find a recursively saturated model K< N
such that (b),.; € K<(b),,,. So the type £(v) can be realized also in X and, since
(@), <€(@)y+41, for any element d' realizing #(v) in X we must also have d,<d'.
But then it is not difficult to show that () can be realized arbitrarily high in K
(cf [10]), and so finally we can get d, , ; realizing £(v) such that (b, <d, 41 <)y -

To continue the proof of our theorem let us denote a code of a set

{z: Ji<yz = (x))}
by x} y and for every formula ¢(v) let ©*v, w) be ot w).

iom®
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Again let fe N be such that N, = sup (8), and let § & N be as in the proof

of 2.4 corresponding to a witha = b = ”Eim Let u(v, w) be the set of formulae of
the form: . )

L Vx<(B), ¢*(v,w,2) < <'—§D*—l, {x, w>>e D;, where ¢(v) is a formula
with an appropriate number of free variables and 7 € w.

2. n<w<c;, where new and ¢, is a fixed non-standard element of No.

3. (b),<(v),<(b)y+1, Where ne w.

By the existence of d,’s, u(v, w) is finitely realizable in N: let d; and e realize it.
Now if we put ¢ =f"*(¢) and d = d, } e then we have

VxeM,, MFo(a}c,x) iff NE o(d,f(x).

To finish the proof we enumerate M— (M, U {a} c}) and N—(N, U {d}), and using
the standard back and forth procedure together with Lemma 2.4 we construct an
isomorphism g of M with N extending f such that g(a} ¢) = d.

Since M(w, a) = sup(a} ¢), and N(w, b) = sup (d),, it also follows that for

new new

any xe M

xeM(w,a) iff g(x)eN(w,b),

which completes the proof. M

2.7. COROLLARY. Let M and N be countable recursively saturated similar models.
Suppose a, € ASS(M), b, e ASS(N), for ne w are such that

M= supa,, N=supb,

M(@,6)SM@, 0 and  N(@,b)SN@,byss) .
Then
(M5 {M(C{), an)}nc:a)) = (N’ {N(w> bn)}nsw) .

It would be nice if in the above results models of the form M (w, a) could be
replaced by recursively saturated models with cofinality . As has been pointed out
to me by Henryk Kotlarski, this can be done at least when  is strong in M, since
in this situation if My~ M is recursively saturated and has cofinality w in M then
there is an « & ASS(M) such that M, = M(w, a). (*)

Briefly, the proof of this goes as follows. With the help of a suitable satisfaction
class on M (see Section 4 for remarks about satisfaction classes) we may formalize
a definition of the following function f: M? — M:

f(x,y) = the maximal number i such that for all Skolem functions F<i,
F(x)<y.

() In fact it turns out that the last statement is true only when w is strong in M.
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Now assume that b € M is such that M, = sup (b),. Since o is strong in M it is

new
possibleto find a non-standard d € M such that foralln € o, f ((®)n» (B4 1) is standard
i f (B> (B)+ 1) <d. This allows us to define a subsequence ¢,: new of (b),: new,
coded in M such that, for all ne o, ¢,<€¢,+,. Then, for ce ASS(M) such that for
all new, (¢), = ¢, we have My = M(w, ¢).

3. Main theorem and an open problem. Now we are ready to give a quick proof
of the main theorem. First let us mention a lemma which shows that for any re-
cursively saturated model M the set ASS(M) is non-empty.

3.1. LEMMA. If M is a recursively saturated model then for every a & M there is
a be ASS(M) such that a<(b),.

" Proof. The lemma follows from the fact that a recursive type

1) = {()y<€@p+1: n€ 0} U {@0o>a}

is finitey  -lizable in M. B

Recall that a model M is said to be ,-like if M is of power @, but every initial
segment of M is countable.

3.2, THEOREM. Let M and N be w,-like recursively saturated models. The following
are equivalent:

1. M and N are similar,

2. M =40, N. ‘

Proof. Since every two L., -clementarily equivalent models are similar, all
we have to do is to show that 1 implies 2.

Let M and N be ;-liké recursively saturated and similar. According to
Lemma 3.1 we can find two sequences {as}e<o, 8nd {bg}z<q, Such that, for every
E<wy, are ASS(M), bye ASS(N), and if My=M(w,ay), N;= N(w,by) then
M= Myiq, Ny<.Ngyy and M= U My, N= U Ne.

§<wy <oy

For é<wy let G; be the set of all (M, N)-isomorphisms of M, with Ng. All
Mys and Nys are countable; hence, by the results of the preceding section, M,’s,
Nys and Gy's satisty the conditions of Kuekers theorem, and so we are done. M

A few words should be said about arbitrary models of power w,. Here we
only have one negative result. Smorysiski observed in [9] that for any countable
recursively saturated model M and any initial segment I of M which is closed under
addition and multiplication there is a (countable) recursively saturated mode! N such
that M<,N (N is a cofinal extension of M) and I is the greatest common initial
segment of M and N. Starting from M and I and repeating this wy-times, we will
obtain a recursively saturated model N of power w, such that M< N and I is the
greatest countable segment of N. Starting from two different non-standard initial
segments I; and I, we will obtain two similar models ¥, and N,. Now it is fairly easy
to write down a formula ¢ of L, such that in every model N ¢ defines either the
greatest countable segment of N, if such a segment exists, or the w,-like part of N.
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So if Ny =0, Ny then Iy =, I, and, since I; and I, are countable, I, =J,. But
it is well known (cf [2]) that in any countable model M there is a continuum of
pairwise non-elementary equivalent initial segments which are models of PA.

Summing this up, we get the following theorem

3.3. THEOREM. For any countable model M of PA there is o continuum of pairwise
non=L e, elementarily equivalent, recursively saturated similar elementary extensions
of M of power w,.

To end this section let us mention the following open problem.

Before I noticed that models coded by ascending sequences of skies fit perfectly
the proof of 3.2. T had been considering another natural class of isomorphic pairs of
recursively saturated models, namely recursively saturated pairs. By the resplen-
dency argument, in every countable recursively saturated model M there are pairs
of submodels, say M, and M, such that My<,M, <M and the structure (M, M)
is recursively saturated.

If M and N are recursively saturated, w,-like similar models, then it is possible
to write M and N as sums of elementary chains of their recursively saturated sub-
models {My}eco, and {Ng}ecq, such that for every v<&<ay:

L. M§'<6ME+]<eMs N§<eN§+1<eN’

2. (Mg, M,), (Ny, N,) are recursively saturated,

3. (Mg, M) = (N, N,);
hence ’

4. (My, M,) = (N, N,).

A proof similar to the proofs of 2.4 and 2.5 gives the following theorem.

3.4. TueoReM. If M and N are countable, recursively saturated similar models,
My< M, No<.N, and structures (M, My), (N, No) are recursively saturated, then
every (M, N)-isomorphism of M, with N, can be extended to an isomorphism of M
with N.

The existence of an (M, N)-isomorphism of Mo with Ny is equivalent to the el-
ementary equivalence of (M, M) to (N, Np). B

OPEN ProBLEM. Let M and N be w,-like recursively saturated similar models.
Is it possible to write M and N as sums of elementary chains of submodels {M,}r<w,
and {Ng}s<p, such that for all v<{<wy:

1. M= My =M, Npe<Ney 1 <N,

2. (My, M,), (Ng, N,) are recursively saturated,

3. (My, M,) = (N, N,) and every (M, N)-isomorphism of M, with N, can be
extended to an (M, N)-isomorphism of M, with Ne.

Observe that structures of the form (M, M (o, b)) are obviously not recursively
saturated.

4. Non-isomorphic similar models. As was noted in the introduction, there are
non-isomorphic e,-like recursively saturated similar models. Now we show how to
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construct a continuum of such models. For this purpose we will apply some results
concerning satisfaction classes on models of arithmetic. We will just list the relevant
results omitting their proofs, since they can be found in the literature and also are
rather easy, and so may be treated as exercises.

A subset X of a model M is said to be inductive in M if the structure (M, X)
satisfies the induction schema in the language of M with an additional predicate
symbol to be interpreted in (M, X) as X. A subset X of M is called piecewise de-
finable if, for-every ain M, X n {x e M: x<a} is definable (with parameters) in M.
Clearly every inductive set is piecewise definable.

4.1. PROPOSITION. Every non-standard model possessing an inductive satisfaction
class is recursively saturated. B

4.2. ProrosiTiON. If S, S, are satisfaction classes over M and the induction
schema holds in the structure (M, Sy, Sy) then S; = S,. (%) W

4.3, THEOREM. If M is a countable model and S is an inductive satisfdction class
over M, then there is an o,~like model N and an inductive satisfaction class S over N
such that M<,N, (M, S)<(N, S) and every piecewise definable subset of N is de-
finable in (N, S). B ‘

The next theorem was suggested to me by Henryk Kotlarski.

4.4, THEOREM. For every countable recursively saturated model M there is a con-
tinuum of inductive satisfaction classes over M such that for any two such classes Sy
and S,

(M, S,) #(M,S;). 1

The proof of the above theorem follows the main line of the proof of the well-
known Jensen—Ehrenfeucht theorem and will appear in [4]. Finally we have the main
result of this section. ‘

4.5. THEOREM. For every countable recursively saturated model M there is a con-
tinuum of pairwise non-isomorphic recursively saturated w,-like elementary and exten-
sions of M. .

Proof. Let 4 be the family of satisfaction classes over M given by 4.4. For
any Se A we produce (N, S) as in 4.3. We claim that, for different S,, S, € 4,
the models N; and N, corresponding to them are non-isomorphic (but it is clear
that they are similar). Suppose on the contrary that f is an isomorphism of N,
with N,. Consequently f» S; = §, is an inductive satisfaction class on N,, but
then, by 4.3, S; is definable in (N,, S,); hence the structure (N,, S,, S3) satisfies
the induction schema. So by 4.2 we have S, = I, which is impossible. M

(¥ This proposition is true only when S'is a full satisfaction class on M, thus the proof of Theorem
4.5 given below is valid for M’ s which have full inductive satisfaction classes. A full proof of even
a more general version of 4.5 will appear in [5].
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