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Exact covering systems for groups
by

M. M. Parmenter * (St. John’s, Newfoundland)

Abstract. A system of cosets aiGy of subgroups of a group G is said to be an (exact) covering
system if every element of G belongs to (exactly) one of the cosets. When G is cyclic, we are really
talking about arithmetic sequences, and problems concerned with such system have been studied
by Erdds and others.

In this note, we prove that if [a;G;]?:l is a covering system of a finite solvable group, then
either G has a subgroup of index <z or all of the G; are conjugate. As a corollary, we extend some
earlier results of Curzio.

A system of cosets a,G; of subgroups of a group G is said to be an (exact)
covering system if every element of G belongs to (exactly) one of the cosets. For
the case where G is cyclic, we are really talking about arithmetic sequences, and
problems concerned with such systems were first stated by Erdds. One of the nicest
results is the following:

THEOREM [2]. Let oy +14Z, ..., a+n,Z be an exdact covering system of the integers
where ny<n,<...<ng. Then ng_y = n,.

There are a number of easily stated but seemingly intractable open problems in
the cyclic case, and these can be found in [3].

A major paper in this area was written by Stein [S], and he was the first to suggest
that investigations should be carried out on groups more general than infinite cyclic
and to observe that partial results of this type had been obtained by Curzio [1].
Work on the more general case has since been done by Korec and Zndm [4].

Curzio’s theorems apply only to a few special cases. In this note, we show that
an analogue of his result can be obtained for all solvable groups, and use these tech-
niques to generalize and extend the cases which he discussed.

Our main result is the following:

TreoreMm 1. Let G be finite solvable and say G = a;Gy U a,Gy U ... U 0,Gy,
where G, is a proper subgroup of G. Then either

(i) G has a subgroup of index <n or

(i) all of the G, are equal.

Proof. Assume (i) is not true. Then [G: G;] = n for each i and we must have
a,Gna;Gy =G if i)

* This work was partially supported by NSERC grant A-87175.
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Note that we can assume () G% = 1, forif weput N = () Gj,and consider
1<ign 1sign
xeG xe

G = G|N, then (i) will still not be true in G and we will still have G being finite
solvable and G = @,G, U ... v &,G, with [G: G] =n for each i (since N=G,
for each i). If we could prove that the G; were all equal, then it would follow that
the G; would all be equal, again since N&G; for each i.

Hence we assume from now on that [} G} = 1. This implies that for a sub-
1<i<n
xeG

group C of prime order p there exists a ‘subgroup G5 such that C n Gf = {1}, thus
p<n. Since G is solvable |G/G’| is divisible by some nontrivial prime which is less
than or equal to n, and hence G has a subgroup of prime index <». Since (i) is not
true, we are left with case wheie n is a prime.

Hence we are assuming that n = p is prime and that )
1<i<n

Gi=1.
xeG
Now consider the case where G,<|G for some i. We may assume that a; = 1
(multiplying by a;%). If G; # G;, we must have G,G; = G since G;G; is a sub-
group of smaller index than G;. Hence we have a; = xy where x € G; and y € G;.

(*) . 4;G; = xyG; =.xG; .

But then xe€a;G;n G;=2a;G; n a;G; which is a contradiction. Thus we must
have G; = G; for all j # i and (i) holds.

We are now reduced to the case where Ng(G,) = G; for. each i

Let P be a p-Sylow subgroup of G. Since ([G : P],p) ='1, we must have
[P: G;n P] = p for each . Co

Now P = (Pna;G) U (P nayGy)u..u(Pna,G,) and, for each i, either
PnaG, =8 or Pna,G;,=x{PnG,) for some x;e€P. Since [P:PnG)]=p
for each 7, and there are only p sets in the union, we must have P n ¢;G; = x,(P n G))
for each i
(%) P=x(PnG)uUxyPnG)u..uxPnGy).

But P is a p-group and P N G, is maximal in P for each i, so we must have
P n G;< P for each i. Hence, we are in the case discussed earlier and we must have
PnG =PnGy=..=PnG,.

Now the above argument holds for any covering of the type

G=0aG v..VvaG,

where [G : G;] = p for each i. In particular, if we start with a right coset decom-
position of G with respect to one of the G,

G=G,UGbhL..UGh, = G Ubyny'Giby) U ... U by(b;1G,b,)

and observe that any conjugate xG;x™* is of the form b; 'G,b, for some k, we then
conclude that P n G; =P n xG;x~! for any x€G and any 7. Let T,=PnG,.
Then T,= () Gi =1 and therefore we must have |P| = p.

1<€i<p
xeG

e
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But this means that Gy, ..., G, are Sylow-p complements in the solvable group G,
and hence Gy, G, ..., G, are all conjugate, hence equal since p divides |G/G'|.
Remark. It is easy to find examples of exact covering systems where the sub-
groups are not of minimal index and are.not all conjugate. For instance, let G be
the dihedral group oh eight eleménts, i.e. Lo :

G = {a,b| a* =p? = 1, ba = a®b) .

Then .
G = {1,b} uafl,ab} a1, ab} U a®{l, b}

but {1, b} and {1, ab} are not conjugate.

We now show how to apply the type of argument seen in Theorem 1 to obtain
Curzio’s results, and to extend these results to the case n = 5.

TuroreM 2 [1]. Let G = ;G U ay Gy L ...V a,G, ‘where the G; are proper
subgroups of G, are not all equal and n = 3 or 4. Then G has a subgroup of index
2 (if n = 3) or of index 2 or 3 (if n = 4). . v ‘ )

Proof. As before, we can assume that () G = 1. Hence we have |G| = 2°3°
1:?:)1 V )
and thus G is solvable.

THEOREM 3. Let G = ¢, Gy U ... U asGs, where Gy is a proper subgroup of G.
Then either all the G, are conjugates of each other or G has a subgroup of index
<5. .

Proof. Let us assume that G has no subgroup of index <5.

As before, we can assume that () Gf = 1, and we note that |G| = 29.3b.5,

1855

If G were solvable, we would be done by Theorem 1, so assume G is not solvable.

Say we have N<{G. If 5 divides |N{, then G/Nwould be solvable of order 2*3”
and we could find a subgroup of index 2 or 3. Hence we can assume |N| = 243,
in which case N would be solvable. Therefore, N has a non trivial characteristic abelian
subgroup T of order 2! or 3™, so we have I'{G and |T| = 2' or 3™. Hence T is con-

tained in all 2-Sylow or 3-Sylow subgroups of G.

(%) Te () Gf=1 and this is a contradiction.
xaG
1€1<5
Hence we conclude that G is a simple group of order 2°-3"-5, However, IQGG’I
is a normal subgroup of G and hence (| GI = 1. But, letting G act on the conjugates
of G, by conjugation, we have thatxGGG/JCQGG;c is isomorphic to a subgroup of Ss.

Hence we must have G 45, but the subgroups of index 5 in A5 are all conjugate.
Remarks. 1. It is not true that, in Theorem 3, the G, have to be equal. As
seen in the prool of Theorem 1, whenever you have Ng(H) = H, you can re-express
a right coset decomposition of G in terms of H as a Jeft coset decomposition of G in
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terms of the conjugates of H. In the case of 4s, if [H| = 12 then N (H) = H,
but 45 has no subgroup of index <3.

2. A natural place to look for an example showing that these results cannot b
.extended would be PSL(2, 7), which has two conjugacy classes of subgroups of
fndex 7. Unfortunately, this group does not yield a counterexample, but I will not
inflict my unpleasant calculations upon the reader. For a nice listing of the properties
of this group, see [6].
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On span and chainable continua
by

Lex G. Oversteegen (Birmingham, Ala.)
and E. D. Tymchatyn (Saskatoon, Sas.) (¥)

Abstract. Tn 1964 Lelek [8] defined the notion of the span of a metric continuum and proved
that chainable continua have span zero. He asked if the converse is also true, i.e., if continua with
span zero are chainable. Recently, (see [10] and [13]) Lelek proved that continua with span zero are
atriodic and tree-like. In [13] the authors gave some new characterization of continua with span zero
and proved that continua with span zero are continuous images of the pseudo-arc. In this paper
we prove that if a hereditarily indecomposable metric continuum has span zero and is an inverse
limit of finite graphs with in some sense not too many branch-points or simple closed curves, then X'
is a pseudo-arc. In particular, it follows that if Xis a continuum which is the’ continuous image of
the pseudo-arc and such that all proper subcontinua of X' are pseudo-arcs, then X itself is a pseudo-
arc.

1. Introduction. All spaces considered in this paper are metric, A. compactum
is a compact metric space. A continuum is a connected compactum. We write
f: X-» Y to indicate that f is 2 mapping of X onto Y. We let I denote the closed unit
interval and Q the Hilbert cube with a fixed but arbitrary metric d. Every continnum
is a subspace of Q.

If AcX and e>0 we let S(4, &) denote the open g-ball around 4 in X. We
let Cl(4) denote the closure of 4 in X. ‘ ) ;

If X and Y are continua we let ;. Xx¥ > X and 7,: X% ¥ — Y denote
the first and second coordinate projections, respectively. We let 4X denote the
diagonal in X'x X. We define (see [9]) the surjective span of X, o™(X), (resp. the
surjective semi-span, oe(X)) to be the least upper bound of all real numbers & for
which there exists a subcontinuum Zc X x X such that n,(Z) = X = n,(Z) (resp.
74(Z) = X) and d(x, )¢ for each (x,¥)eZ. The span-of X . :

o(X) = sup{a*(4)| 4 is a subcontinuum of X' }
and the semi-span of X
0o(X) = sup{c§(4)| 4 is a subcontinuum of X} .-

' (*) The first author was supported in part by NSF grant number MCS-8104866 and the second
author was supported in part by NSERC grant number AS5616. .o .
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