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Mapping theorems for compacta with an arbitrary involution
by

S. Stefanov (Sofia)

Abstract. Compacta on which acts an arbitrary involution with fixed points are considered.
Two invariants (8-index and 8k-index) of such a space are introduced. They indicate its “proximity”
to some Buclidean ball and are analogous to Yang’s B-index and to the Smith index, respectively.
(The last two concepts concern spaces with a fixed-point free involution.) Mapping theorems for [
and 6k are proved. As a corollary, estimates of the mapping set for maps from a Euclidean ball
into another one are obtained. ‘

Introduction. Properties of compacta on which acts some fixed-point free involu-
tion have been studied by many authors. An instrument for obtaining Borsuk—
Ulam type theorems in such spaces is the concept of B-index introduced by
‘C.T. Yang in [5], and also the Smith index, which appears in the theory of homeo-
morphisms of finite period developed by P. A. Smith in [3].

We shall study in this paper compacta on which acts an arbitrary involution
with fixed points. In order to obtain mapping theorems in this case, we introduce
in part I the concept of the §-index of such a space, which indicates, in a manner,
its “resemblance” to some Euclidean ball (considered together with the central
symmetry). In part II another index is introduced — this is the homological §-index
(or 8h-index), which appears after consideration of the invariant homological struc-
ture modulo Z, of a space with involution. Our investigations in-part I make use
of Smith’s theory. We establish the relations between 3, i and dim and prove
mapping theorems for § and 8. As a corollary to these theorems we obtain a mapping
theorem for maps from a Euclidean ball into another one, as well as several genera-
lizations of a theorem due to K. Borsuk.

I. The concept of §-index

1. Definition of the 5-index of a pair. Throughout this and the remaining sections
by a space we mean a compact metric space (compactum), by a map we mean a con-
tinuous one.

A T-space is a space X on which acts the involution T X — X. The notation
(X; T) means “X is a T-space”.
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A subset Y of the T-space X is said to be invariant if TY = Y.
Recall first the concept of B-index of a T-space.
) DepNiTiON 1.1 (Yang [5]). Let X be a T-space, where T is a fixed-point free
involution. We say that the B-index of X is not greater than n if there exists a map
f: X - R**! such that
F(Tx) # fx)

We tllen write B(X; T)<n.
The B-index of X is equal to n iff B(X;T)<n and B(X;T) £ n—1. In the
case X = & we set for convenience B(X;T) = —1,

for all xe X.

It is easy to prove that B(X; T)<co for any T-space X. Indeed, let X = [j F;
i=0

be a decomposition of X into closed subsets such that TF,nF;=@ for
i=0,1,..,n Put fi(x) = g(x, F) and f = foxf, x...x f, (where ¢ is the metric
on X). Then f: X - R™* is a map such that f(Tx) s f(x) for any x e X; thus
B(X; T)<n. '

We shall make use of some other well-known equivalent definitions of this
concept, which can be found for example in [5] or [6].

Note that the Borsuk-Ulam theorem is equivalent to B(S™; Ty) = n where T,
is the central symmetry with respect to the origin To(x) = —x. It is not difficult
to prove that this equality holds for any other involution acting on S”,

It has been shown in [6] that

B(X;T)<dimX
for any T-space X.
Let X be a T-space. We shall denote by @ (T) the set of all fixed points of T'
O(T) = {xeX| Tx = x}.
Apparently, @(T) is an invariant compact subset of X.
A pair (X, Y) is said to be a T-pair if
i) is.a T-space,
ii) ¥ is a closed invariant subset of X nonintersecting @ (T').
We shall now introduce the concept of & index of a T - pair.

DerNiTION 1.2. We say, that the § index of the T-pair (X, Y) is not greater

than n if there exists in X an invariant partition C between O(T) and Y such that
B(C;T)<n—1. Then we shall write

S(X, Y TY<n.

The §-index of a T-pair (X, ¥) is equal to » iff (X, Y;T)<n and 8(X, Y; T)

#&n—1.Ifat least one of the sets O(T), X, Y is empty, we define for the sake of con-
venience 6(X, ¥;T) =

Note that the equality
8B, S" Ty =n

£
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has been established by K. Borsuk. (Here B" is the n-dimensional unit ball, St
is its boundary and To(x) = —x.) He has proved that if C is an invariant partition
in R" between the origin and co, then for any map f: C — R*™! there exists an
X € C such that f(—x,) = f (%), which is equivalent to §(B", S "1 To)=n (the
converse inequality is trivial).

It is clear that each inequality of type §(X, ¥; T)=n may be formulatcd as
a mapping theorem. We shall give in part II several generalizations of Borsuk’s
theorem.

2. Two elementary propositions. A. closed invariant subset F of the T-space X
is said to be an antipodal partition in X if for any x e X\F it is a partition in X
between x and Tx. Evidently, F is an antipodal partition in X iff X\F = U, v U_,
where U, and U_ are disjoint open subsets of X such that TU, = U_. Note that
every antipodal partition in X contains @ (T).

Let X be a T-space and let X’ be a T’-space. A map ¢: X = X' is called
equivariant if

oTx) =T o(x)

The ‘notation ¢: (X;7T) — (X'; T') means “p is an equivariant map from X
into X, If (X, Y)is a T-pair and (X', Y')is a T'-pair, a map ¢: (X, Y)~>(X’ Y’
is an equivariant map ¢: X — X’ such that (Y)Y’

The following two lemmas are elementary.

LeMMA 1.1. Let F be a closed invariant subset of the T-space X and let ¢: F - R"
be an equivariant map (R" is considered with the involution To(x) = —x). Then ¢ ladmits
an equivariant extension ¢: X — R".

Proof. Let @;: X — R be an arbitrary extension of ¢. Then

Gx) = ’}((h(x)";oj (Tx))
is an equivariant extension of ¢.

LeMMa 1.2. Let Y be a closed invariant subset of the T-space X and let F be an
antipodal partition in Y. Then there exists such an antipodal partition Fin X that
FnY=F

Proof. Let ¥NF = V, U V. where ¥, and V_ are open disjoint subsets of ¥
such that TV, = V_. Set

olx, F)
P(x) = {_Q(Tx,F)
(¢ is the metric in X).

Then ¢: Y — R' is an equivariant map w1th ©~*0) = F. According to
Lemma 1.1 ¢ admits an equivariant extension ¢: X — R*'. Clearly, the antipodal
partition F = ¢~*(0) meets the case.

3. Several properties of §, the relationship with dim.

Levma 13. Let ¢: (X, Y) > (X', Y') maps the T-pair (X, Y) into the
T'-pair (X', Y'). Then

for any xe X.

for xeV,ULUF,
for xeV_

§(X, Y;T)S(X', Y3 T7).
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Proof. Indeed, if C' is an invariant partition in X” between @ (7") and Y/,
‘then C = ¢~*(C’) is an invariant partition in X between ©(T) and Y; hence
B(C; T)SB(C'; T") since there exists' an equivariant map ¢|c: C — C’. The
required inequality holds by the definition of 4.

LemMa 1.4, For any T-pair (X, Y) the following inequalities hold:

a) §(X, ¥; T)<dimX,

b) §(X, YV;T)SB(Y; T)+1.

Proof. a) Suppqse that dim X'<n. One can find in X an invariant partition C
between @(T) and YV with dimC<n~1. Then B(C;T)<dimC<n—1; thus
8(X, Y;T)<n.

b) Suppose that B(Y;T)<n, i.c., that there exists an equivariant map
¢@: Y— 8" (see for ex. [6]). According to Lemma 1.1, ¢ admits an equivariant
extension $: X — B"*. Denote by X the sphere X = {x € B"*!| ||x|| = £}. Then
C = $*!(2) is an invariant partition in X between O (T) and Y with B(C; T)<n.
Therefore (X, Y¥; T)<n+1.

Remark. As a corollary to b) we get

dmY=5(X, ¥;T)—1,

b) implies also that §(X, ¥; T)<co for any T-pair (X, Y).

LemMa 1.5. The following two conditions are equivalent:

a) d(X, Y;T)<n.

b) There exists in X such an antipodal partition F that §(F, F n Y; T)y<n—1,

Proof. a) = b) Let C be an invariant partition in X between @(T) and ¥ with
B(C; T)<n~—1. Then we can find in C an antipodal partition C, with B(Cy; T)
<n—2 (see [6]). According to Lemma 1.2, there exists in X an antipodal partition F
such that F n C = C;. Obviously §(F, Fn Y; T)<n—1.

b) = a) Denote by C an arbitrary invariant partition in F between O(T) and
Fn Y with B(C; T)<n—2. We can find in X such a partition C, between o(T)
and Ythat C; n F= C 'Set & = C, U TC,. Then € is an invariant partition in X'
betvzcen O(T) and Y such that & A F = C. Evidently, C is an antipodal partition
in C; hence B(C; T)<n—1. Therefore 6(X, Y; T)y<n.

4. The mapping theorem for 5. Let X be a T-space. Given a map f* X - M,
denote as usual l
A(fy={xeX| f(Tx) = f(x)} .
The following theorem states that if the pair (X, ¥)is of a great d-index and M

i_s alow dimensional Euclidean space, then the &-index of the pair (4 (F), A(f)n ¥ )
is large enough for any f. -

TuroreM 1.1. Let 3(X, Y; T)=n. Then for any map f: X — R* the inequality

S(A(), A(f) 0 Y T)=n—k
holds.

s

icm°

Mapping theorems for compacta with an arbitrary involution 173

Proof. We shall carry out the proof by induction on k. The case k = 0 is trivial.
Assume the inequality to be true for k = s and consider the case k¥ = s+1. Let
i X - R**! be an arbitrary map. Denote by m,;: R°** — R° the orthogonal projec-
tion defined by

ns(xh X25 wees xs+1) = (xzy e xs+1) .

Consider the composition f; = 7, f: X — R°. Then the inequality

8(A(S), A(f) N Y T)2n—s
holds by the induction hypothesis. Clearly, 4 (f)=A(f;). We shall prove that A(f)
is an antipodal partition in A4(f,). Denote by m;: R**' — R' the projection
T1(X1s X2y ooy Xsp) = %3 and put A(x) = 7y f(x)—mn, f(Tx) for any xe A(f))-
Then A: A(f,) = R' is an equivariant map and one can easily check that A7H0)
= A(f). Therefore 4 (f) is an antipodal partition in A(f;). According to Lemma 1.5

S(A(S), A(f)n Y; T)zn—s—1.

The theorem is proved.
COROLLARY. Let §(X, ¥; T)=n. Then for any map f: X — R
dimA(f)zn—k.
This inequality holds by Theorem 1.1 and Lemma 1.4,
In the case X = B", Y = S"~! the corollary together with Borsuk’s theorem

gives the following
THEOREM 1.2. Let f: B" — R* be an arbitrary map and

A(f) = {xeB" f(x)=f(—x)}.
Then dimA(f)zn—k.

5. Definition of 5-index of a single space, the mapping theorem. .
DEFINITION 1.3. We say that the §-index of the T-space X is not less than n if
there exists in X such a closed invariant subset Y nonintersecting @(T) that
8(X, Y; T)=n. Then we write
HX;T)yzn.

The equality §(X; T') = n means as usual that §(X; T)>n and 6(X; T)En+1.
Evidently, §(X;T) = —1 iff @(T) = O or 6(T) = X.

Note that §(B"; To) = n, where To(x) = —x. It is not difficult to give an example
of a T-space X with 6(X;T) = co.

LemMA 1.6. Let @ X — X' be an equivariant map such that ¢~ (&(T")) = € (T).
Then 6(X; T)<6(X', T').

Proof. Suppose that (X, Y)isaT-pairand ¥’ = ¢(Y).Then ¥’ n @(T") = &,
so that (X', Y") is a T'-pair. According to Lemma 1.3 6(X, ¥; T)<8(X", ¥'; T").
whereby §(X; T)<6(X'; T).
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Lemma 1.7. 8(X; T)<dim X for any T-space X.

This inequality. follows immediately from Lemma 1.4.

TreoREM 1.3. Let §(X;T)=n. Then for any map f: X — R* the inequality
S(A(f); T)=n~k holds.

Proof. There existsa Y« X such that 6(X, ¥'; T)>n. According to Theorem 1.1
3{A(S), A(f) n ¥; T)2n—k, which implies 5(4(f); T)=n—k.

ExampLE. Denote by T the involution T': B"* — B" defined by

T(X15 e Xy X1 ees Xp) = (=205 oy =Xy X5 000y Xig)

Then §(B"; T) = k. Indeed, consider B* with the involution To(x) = —x. There
exists an equivariant projection 7: B" — B* such that n~*(6(T,)) = @ (T); hence
8(B"; T)<6(B*; Ty) = k (see Lemma 1.6). On the other hand, there exists an equi-
variant embedding j": B¥ - B” such that j~Y(@(T)) = O(T;); hence &(B";T)
28(BY Ty) = k.

IL. Homologijcal approach to compacta with an arbitrary involution — the
concept of Si-index. :

* 1. Preliminaries. In the second part we shall study the special homological struc-
ture of a space on which acts an involution with fixed points, considering only the
chains modulo Z,, whose simplexes are permuted with one another by the involu-
tion. ‘We introduce in Section 3 the concept of the homological 5-index of such
a space (0i-index). Its definition is based on the theory of the index of a periodical
transformation acting on a topological space, developed by P.A. Smith in [3].
A detailed exposition of Smith’s theory applied to involutions is given by Yang [4].
We shall list only those definitions and propositions which will be directly used here,
and refer the reader to [4] for details. ‘

Let P be a simplicial space which is the body of a finite simplicial complex,
and let T: P — P be a fixed-point free involution. Then P is said to be a simplicial
T-space if the simplexes of P are permuted with one another by T, i.e., if T is a sim-
plicial map. It is easy to see that Tt n © = @ for any simplex t of P. T'induces a chain
mapping of the chains modulo Z, of P into themselves, which we also denote by T.
An n-chain « is called a T-invariant n-chain, or simply a (T, n)-chain, if T% = .
All the (T, n)-chains in P form a group C,(P; T). An n-chain  is a (T, n)~chain iff
% = A+T) for some n-chain /.

Define as usual

Z(P;T)={xeC(P;T)| o = 0},
B(P;T)=08C,y(P;T),
H(P;T) =Z(P;T)[B(P;T).

An equivariant simplicial map ¢: P —» P’ defines a chain mapping

¢: CP;T) — CP'; T
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and then induces a homomorphism
Pw: H(P;T) ~ H(P';T').
For any simplicial T-space P there exists a homomorphism
vi ZP;T)— 2,

defined by recurrence as follows:
Let z = x+Tx% be a (T, n)-cycle. Then

jl(%) if n=0;
\v(@x) ifn>0

where I(x) is the index of the 0-chain x (in our case I(x) = 1 iff the number of ail
simplexes of x is odd.)

A) v is independent of the choice of % and vB,(£; T) = 0. Then v induces the
so-called index homomorphism

v(z) =

vi H(P;T) = Z,
such that, if {e H,(P;T) and z is a (T, n)-cycle in ¢,
() =v@).
B) If ¢: P —~ P’ is an equivariant simplicial map, then
v(e«0)) = (©)

C) For any simplicial T-space P there is an integer n such that

for any { e H(P;T).

Z, for O0<s<n;
VH(P;T) = {0 for s>n.

The integer n is called the Smith index of P and it is written in(P; T).
D) in(S"; T,) = n (where To(x) = —x) for any invariant simplicial subdi-
vision of S™.

2. The simplicial case. We shall extend the concept of simplicial 7-space to the
case of an arbitrary T.

Let P be a simplicial space which is the body of a finite simplicial complex and
let T: P — P be an arbitrary involution. We say that P is a simplicial T-space if the
following two conditions are satisfied:

i) T is simplicial,

ii) if = = [ap, ..., a,] is a simplex of P such that It = 1, then Ta, = a; for
i=0,..9

It is easy to see that the set @ (7") of all fixed points of T is a simplicial subspace
of P. Indeed, if x € @(T) and 7 is the minimal simplex (with respect to inclusion)
of P containing x, then 7 n Tt is a simplex containing x; hence T’z = , so that
1< @(T) (as follows from i)).
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By an invatiant n-chain in P, or (T, n)-chain, we mean an n-chain » modulo Z,
in P such that Tk = x. A (T, n)-chain % is a (T, n)-cycle if 8% = 0. Two (T, n)-chains
%, and %, are homologous if there exists a (T, n+1)-chain x such that 8x = 5, ~x,.

The pair (P, Q) is said to be a simplicial T-pair if P is a simplicial T-space and Q
is its invariant simplicial subspace nonintersecting @ (T).

Let F be a closed invariant subset of the T-space X. We say that F is a weak
antipodal partitionin X if X\F = U, u U_ u U, where U,., U_ and U, are disjoint
open subsets of X such that TU, = U_ and Uy=O(T).

The following lemma is the key tool for our investigations in part II

Lemma 2.1. Let (P, Q) be a simplicial T-pair, dimP<n, and let z be a (T, n—1)-
cycle in Q with v(z) = 1 homologous to zero in P. Suppose that F is an (n—1)-dimen-
sional simplicial subspace of P which is a weak antipodal partition in P. Then there
is a (Tyn—2)-cycle { in F oy Q with v({) = 1 homologous to zero in F.

Proof. Since F is a weak antipodal partition in P, PN\F= U, u U_ v U,
where U, , U_ and U, are disjoint open- subsets of P such that TU, = U_ and
U,<@(T). There exists in P a (T, n)-chain x such that % = z. Then % = %, +

+%_ +u,, where x, (resp. x_, %) consists of all simplexes of x contained in U,
(resp. U_, U,). For an arbitrary simplex 7 of P denote by b..(z) (resp. b_(7), by(7))
the number of all simplexes of x, (resp. x_, x%,) containing T.

Denote by 1 the (n—1)-dimensional chain containing all (n—1)-dimensional
simplexes ©"~* of P such that

bo(z""Y) = l(mod2) and ‘b_(T"HI)'E 1(mod?2).

We are going to establish several properties of A.

i) TA = A. This equality holds by Tx%, = %_ and b.(T%) = b_(1).

ii) All simplexes of A lie in F. Indeed, if ="~ is a simplex of A, then b ("~ *)#0
and b_(t""1) # 0, whence 7" "' cF.

iii) Denote by z, (resp. z_) the chain containing all simplexes 7"~* of z with
bi(r™Y) = 1(mod2) (resp. b_(r""!) = 1(mod2)). Then =z=z,+z_ since
byo(t" 1) = 0 for any simplex 7"~ of z, so that the number of all n-dimensional
simplexes of 3 containing "% is b, (7" 1)+b_(""!) = 1(mod2). Obviously,
Tz, = z_. Consequently v(0z,) = 1 (see A) in the previous section). We shall
prove that

0\ = 0z, .

Let 72 be an arbitrary (n—2)-dimensional simplex of P. Set

p = the number of all simplexes of 1 containing 7"~%,
g = the number of all simplexes of z, containing "2 .

It is enough to prove that p = g(mod2). Let 777, ..., 2! be all (n—1)-dimen-
sional simplexes of P containing t"~2. Consider the sum

N =iZ:1b+(7:}"1).

L
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Clearly, N is even since every n-dimensional simplex 1" of %, containing ¢"~2 has
exactly two (n—1)-dimensional faces, ¢j* and <}~*, containing 7"~2, so that " is
counted in N exactly twice. Consider the set 4 of all (n—1)-dimensional simplexes
"% containing 7""* and such that b,(z""') = 1(mod2). Then 4 = 4’ U 4",
where .

A = {r""ted| b_(""!) = 1(mod2)} .

A" = {t"" Ve d] b_(r""") = O(mod2)},

It is easy to check that
[ =p, |4"]=4q.

The first equality holds by the fact that t"~* € A’ iff both b,(z""%) and b_(z""%)
are odd numbers, i.e., iff ©"”! takes part in 1. Pass to the second equality. Let
" led”, ie, bi(x""!) is odd and b_(z""") is even. We shall prove that 7!
takes part in z. Note that by("~') = 0. Indeed, suppose that by("~1) # 0. Then
To"~! = 7"~! and if 1" is a simplex of %, containing ¢!, 7" is a simplex of x_
containing t"”!, so that b,(t""') = b_(z""*), which is a contradiction. Since
bo(z"~*) = 0, the number of all simplexes of » containing "~ is b..(<" =) +b_(z" ")
= 1(mod2); hence t"~ ! is a simplex of z = dx. It is clear that ="~ * ez, (b, (z""%)
is odd). Conversely, if ¢"~* is a simplex of z,, then by(z"™Y) =0, b, (z" 1)+
+b_(x""1) = 1(mod2) and b.(=""!) = 1(mod2), whence b_(z""') = O(mod2),
i.e., ©""'e A". Consequently [4"] = g.

Obviously, - N = (p+q)(mod2), so that p = g(mod2) whereby 04 = dz,.
Set { = 84 = 0z,.. Then { is a (T, n—2)-cycle in F n Q homologous to zero in F
(A lies in F) and v({) = v(dz,) = 1.

The lemma is proved.

3. Definition of the §/-index. Let X be a compact metric space with involution 7.
Fix ¢>0. An n-dimensional e-chain % in X modulo Z, in the sense of Vietoris is
a linear form % = t,+...+1, where the simplexes 7; = (q¢, ..., @,) are Systems of
n-+1 points of X with diam<t;<e. The vertices of a simplex are not assumed to be
different points of X. The vertices of % are the vertices of all of its simplexes. For
a simplex 7 = (qq, ..., a;) put Tt = (Tay, ..., Ta). An n-dimensional e-chain »
is said to be invarigant (or (T, n, £)-chain) if

i) a simplex 7 takes part in x iff so does T,

i) if Tt = 1, where t© = (qy, ..., ag) is a face of some n-dimensional simplex
of %, then Ta; = a; for i =0,...,5.

Evidently, if % is a (T, n, §)-chain, then 0x is a (T, n—1, £)-chain.

By an n-dimensional invariant true chain, or a (T, n)-true chain, we understand
a sequence x = {x;} of (T, n, g)-chains x; such that lim g; = 0. Define as usual

i o0 .

%+3%" = {»;+x}} and d» = {0x;}. Two invariant true chains % and s’ are said to
be homologous if there exists an invariant true chain A such that 04 = x—x'. An
invariant true chain z is an invariant true cycle if 8z = 0. An invariant closed subset F
of X is a carrier of the invariant true chain x if all vertices of x; lie in F for any i.
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A carrier of an invariant true chain is always assumed to be invariant. For a (T, n, &)
chain % denote by #% the body of the simplicial complex containing all simplexes of %,
as well as all their faces. Clearly, T induces an involution T: % — % and % is a simplicial
T-space. Then % may be regarded as a (T, n)-chain in %. Suppose now that x is a cycle
and ©(T) = @. Then the number v(x) is defined.

Let z = {z;} be a (T, n)-true cycle with a carrier Y such that ¥ n @ (T) = @.
Then v(z,) is defined for every i. We shall write v(z) = 1if v(z;) = 1 for i large enough;
otherwise v(z) = 0. Recall that the Smith index of a T-space Y with O =9
is not less than n (in(¥; T)>n) if there exists in ¥ a (T, n)-true cycle z with
v(z) = 1.

© We are ready to introduce the concept of the homological §-index (84-index)
of a Ttspace. As in part I, we shall do this for T-pairs first.

DepNrTioN 2.1, Let (X, ¥) be a T-pair (so that ¥’ n @(T) = ). We say that
the homological &-index of the pair (X, Y) is not less than n if there exists an
(n—1)-dimensional invariant true cycle z in Y with v(z) = 1 homologous to zero
in X. Then we shall write

Oh(X, Y;T)=n.

The equality 6h(X, Y;T)=n is equivalent to 6h(X,Y;T)>n and
Sh(X,Y; T)#n+1. I at least one of the sets X, Y, @(T) is empty, set
Sh(X, Y; T) = —1. It follows from the definition that 6i(X, ¥; T)>n implies
in(Y; zn-1. ,

DEermITION 2.2, Let ‘X be a T-space. We say that the homological §-index
of X is not less than n if there exists in X such a closed invariant subset ¥ non-
intersecting @(T) that 8h(X, Y; T)=n. Then we write ‘

Sh(X; TY=n.
As usual, 6h(X;T) = n iff Sh(X; T)=n and Sh(X; T)En+1.
ExaMPLE. Sh(B", S"~'; T,) = n, where Tp(x) = —x. It is enough to take for

every natural { an invariant subdivision of B” of mesh<1/i and to denote by x; the
invariant 1/i-chain containing all of its n-dimensional simplexes. Then z = {0}
is an invariant true (n—1)-cycle in S"! with v(z) = | (see D)). Therefore
Sh(B", S*"1; Ty) = n.

4, Several properties of dh. The next two lemmas are similar to Lemmas 1.3
and 1.6:

LemMA 2.2. Let ¢: X — X' be an equivariant map which maps the T-pair (X,Y)
into the T'-pair (X', Y'). Then Sk(X, Y; T)<Oh(X', Y'; T").

Proof. Suppose that 6i(X, ¥; T)=n and let z be a (T, n—1)-true cycle in ¥
with v(z) = 1 homologous to zero in X. Then ¢(z) is a (T", n—1)-true cycle in ¥’
homologous to zero in X* and v(¢(2)) = v(z) = 1 (see B)). Hence §h(X’, Y'; T") 2n.

LemMa 2.3. Let ¢: X — X be an equivariant map such that =40 (T")) = ().
Then Sh(X:T)<oh(X'; T7).
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Proof. Suppose a(X; T)=n. There exists such a closed invariant Y« X that
Sh(X, Y;T)zn. Then Y' = @(Y) is a closed invariant subset of X’ such that
YnOT) =, and according to Lemma 2.2 Sa(X’, Y';T')=n, so that
Sh(X'; T =n. :

Denote by ¢ the metric in X and by O,F = {x e X[ ¢(x, F)<6} — the closed
d-neighbourhood of F in X. .

LEMMA 2.4. Let (X, Y) be a T-pair and let F be a closed invariant subset of X.
If for any closed invariant neighbourhood OF ¢ of Fin X we have 6h (O_F, OF n Y;T)=n,
then the inequality Sh(F, F n Y;T)=n holds.

Proof. Fix ¢>0. Since X is compact, there exists such a positive y<4e that
o(x, y)<vy implies ¢(Tx, Ty)<%e for any x, y € X. We shall prove that there exists
a §>0 such that xe O?F_m Y implies ¢(x, F n Y)<y. Suppose the contrary. Then

for any & = 1/i there exists an x;€ O;;Fn Y with g(x;, Fn Y)>y. We may
assume that x; - x, € Y. Then ¢(xy, F n Y)=v. Since x; & 0—1;? N Y, there exists
a y, e F with o(x;, y;)<1/i; hence y, — x,, so that x4y € F n ¥, which is a contradic-
tion.

Set f = min(y, §). Since 5/1(5[15’., 5;7’0 Y; T)>=n, there exists in 5,,7*‘{‘\ Y
a (T,n—1)-true cycle z = {z;} with v(z) = 1 homologous to zero in OT,F Let
9% = z, where % = {x,} is a (T, n)-true chain in 5;;. Take i so large that all simplexes
of %; have a diameter <}eand v(z;) = 1. Let 4, be a vertex of %, which is not a vertex
to Ox;. There exists a point a;e F such that g (a,, a)) < f<y<te. Then o(Ta,, Tag) <}s.
Set (Ta,)’ = Ta,. In the case where 4; is a vertex of dx; we have g, € b_pf n Y. But
B<d; consequently there exists an aje Fn Y with o(a, a)<y<te. Thus
0(Tay, Tay)<%e and we shall set as above (Ta,) = Ta; (note that Ta,e Fn T).
In this way, to every simplex of x; © = (@, ..., a,) corresponds some 7’ = (g, ..., dy)-
We will show that diam+’<e. Indeed, for any two vertices aj, a; e 1" we have

olat, d})gg(a;, a)+o(a;, aj)"i'g(aj; a})<3'%6 =&.

If %; = 7y3+...471,, set %; = 1+..+7,. Then x; is a (T, n, g)-chain in F.
It is not difficult to prove that (dx,)’ = x}, so that zj = 8x} is a (T, n—1, g)-cycle
in F A ¥ homologous to zero in F. Since z} is the image of z; under an equivariant
map, v(z;) = v(z;) = 1 (see B)).

Clearly, when & — 0 we obtain a (T, n—1)-true cycle z’ = {z{} in F n Y with
v(z") = 1 homologous to zero in F. Hence 8h(F, Fn Y;T)zn.

One can prove in the same way next lemma.

LeMMA 2.5. Let (X, Y) be a T-pair. If, for any closed invariant neighbourhood O'Y.
of Y, in(OY; TYzn, then in(Y; T)=n.

If we replace the simplicial T-pair in Lemma 2.1 by an arbitrary 7-pair, we
obtain the following important
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LEMMA 2.6. Let F be an antipodal partition in the T-space X and Sh(X, Y; T)=n.
Then
Sh(F,Fn Y;T)=zn-1.

Proof. Let z be a (T, n—1)-true cycle in Y with v(z) = 1 homologous to
zero in X. Denote by OF an arbitrary open invariant neighbourhood of F in X.
As follows from Lemma 2.4, it is enough to prove that

Sh(OF, OF A Y; T)zn—1.

There exists in X a (T, n)-true chain » = {x;} with 8 = z. Let i, be so large
that v(z;) = 1 for i>i,. Consider the simplicial space P; = #;. Denote by F; the
union of all simplexes of P; contained in OF. Then F; is an invariant subset of P;
which is an antipodal partition in P; for i large enough. Indeed, X\F = U, v U_,
where U, and U_ are disjoint open subsets of X such that TU, = U.; hence

}—’i_\E = P;" U P; where P;" (resp. P;) is the union of all simplexes of P, intersecting
U, \OF (resp. U_\OF). But P}’ nP{ = @& for i laige enough and TP{ = P],
i.e., F;is an antipodal partition in P;. It is easy to see then that its (n—1)-dimensional
skeleton F§"_1) is a weak antipodal partition in P;. Denote by Q, the body of z;.
Then Q; is an invariant simplicial subspace of P; and z; is a (T, n—1)-cycle in Q;
with v(z;) = 1 homologous to zero in P;. According to Lemma 2.1, there exists
a (T, n—2)-cycle {; in F"™ 1 ~ Q, with v({;) = 1 homologous to zero in F"™P,
Consider the (T, n—2)-true cycle { = {{;}. Evidently, { lies in OFn Y, v({) = 1,
and { is homologous to zero in OF. Hence 6h(OF, OF n Y; T)>n—1 whereby
S(F,FnY; T)=n—1.

We shall now establish the relationship with 8.

LemMa 2.7. a) Sh(X, Y; T)<8(X, Y; T) for any T-pair (X, Y).

b) 6h(X; TV<S6(X; T) for any T-space X.

Proof. 'a) We shall prove that Sh(X, Y; T)=n implies §(X, ¥; T)=n by
induction on n. The case n = 0 is trivial. Assume that the lemma is true for n = k
and let 6A(X, ¥; T)=k+1. Then for any antipodal partition F in X we have
Sh(F,Fn Y; T)=k; hence 6(F, Fny; T)=k. According to Lemma 1.5 6 (X, Y; T)
=2k+1.

b) follows immediately from a).

Note that the inverse inequalities are not always valid -— see the example in the
last section.

COROLLARY. a) Sh(X, Y; T)<dim X for any T-pair (X, Y).

b) 6h(X; T)<dimX for any T-space X.

5. The mapping theorems. The next two theorems are the main results in part I1.
They give estimates of the 6%-index of the set

AS) = {xe X| f(Tx) = f(x)}

where f maps X into a Euclidean space.

o
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THEOREM 2.1. Let (X, Y) be a T-pair with Sh(X,Y;T)=n and f: X — R*
maps X into the k-dimensional Euclidean space. Theri the following inequality holds:

Sh(A(f), A(f) N Y3 T)=n—k.

Proof. The proof is identical with the proof of Theorem 1.1 in part I. The only
difference is that we must refer to Lemma 2.6 instead of Lemma 1.5.
As a corollary, we easily obtain a famous theo;rem due to Yang (see [4]).

COROLLARY. Let in(X; T)=n. Then for any map f: X — R* holds the inequality
in(4(f); T)zn—k .

Proof. Denote by X; = CX the cone over X with a vertex a. Clearly, T may be
extended to Ty: X; — X; with @(Ty) = {a}. There existsi in X a (T, n)-true cycle z
with v(z) = 1. Then 8h(X;, X; T)>n+1, since z is homologous to zero in X,.
Denote by f;: X; — R* an arbitrary extension of f. According to Theorem 2.1

Sh(A(f1), A(f) 0 X; T)zn+1—k .

But A(f) = A(f1) n X, whence in(4(f); T)zn—*k.

THEOREM 2.2. Let 6h(X; T) =n. Then for any map f: X — R* holds the inequality
Sh(A(f); T)=n—k.

Proof. There exists in X such a closed invariant ¥ that Sh(X, ¥; T)>n. Accord-
ing to the previous theorem 6a(A(f), A(f) N Y; T)=n—k, whence dh(A(f); T)
>n—k.

The following theorem is a generalization of Borsuk’s theorem mentioned in
part I and gives an estimate of the Smith index of a wide class of T-spaces. In the case
X=5" Y=5"" we get a theorem due to D.G. Bourgin (see [2]).

THEOREM 2.3. Let (X, Y) be a T-pair with Sh(X, Y; T)=n and C be an invariant
partition in X between ©(T) and Y. Then in(C; T)=n—1.

Proof. There exists in ¥ a (T, n—1)-true cycle z = {z;} with v(z) = 1 homo-
logous to zero in X. Let dx = z. As follows from Lemma 2.5, it is enough to prove
that in(OC; T)2n~1 for any open invariant neighbourhood OC of C such that
O0C n O(T) = @. Consider an arbitrary OC. T induces an involution T: P; —» P, in
the simplicial space P; = %;. Denote by C; the subset of P, containing all of its sim-
plexes lying in OC. Then, for i large enough, C, is an invariant partition in P, between
Q; = Z;'and O(T). Indeed, since C is a partition in X between @(T) and Y,
XN\C = U; v U,, where U; and U, are non-intersecting open invariant subsets
of X such that U; 2@ (T), U, Y. Evidently, for i large enough, E:a = P} U P},
where P} and P? are disjoint invariant simplicial subsets of P; such that P} > @ (T)
and P?5 Q,. P! (resp. P?) contains all simplexes of P, intersecting U;NOC (resp.

U,\OC). Let 4, denote the (T}, n)-chain containing all simplexes of P}. Note that
X0 O(T) = @. Set

(i =0li+z,;.
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Then ¢; is a (T}, n—1)-cycle homologous to z;; thus v({;}) = v(z)) = 1 (see A)).
We shall prove that all simplexes of {; lie in C;. Suppose that ©""* is an (n—1)-sim~
plex of P} which does not lie in C;. Then all n-simplexes of P; containing 771 take
part in 1;. There are two possibilities:

i) @~ does not take part in z;. Then ¢"~* is not a simplex of {;, since the number
of all n-simplexes of 1; containing "~* is even.

i) 7! takes part in z;. Then "' takes part in 8A;, and therefore it is not
a simplex of {;. . .

Clearly, { = {{;} is a (T, n—1)-true cycle in OC with v({) = 1, i.e., in(OC; T)
>n—1, whence in(C; T)zn—1.

Remark. The inequality in(C; T)=n—1 for any partition C between O (T)
and Y is not sufficient for 6h(X, ¥; T)=n. Let (X, Y) be the 2-dimensional T-pair
constructed in Section 6. Then 6(X, ¥; T) = 2, so that for any invariant partition C
in X between O (T) and Y we have B(C; T) 21, whence in(C; T) =1 (it is not difficult
to prove it). On the other hand, dA(X, Y;T) = 1.

The last two theorems give other generalizations of Borsuk’s theorem.

" THEOREM 2.4. Let 6h(X, ¥; T)zn and C be a closed invariant subset of X non-
intersecting Y and ©(T). Suppose that no invariant k-cycle 2 in ¥ with v(z9 =1
is- homologous to zero in X\C. Then

B(C;T)zn—k—1.

Proof. We shall proceed by induction onn. Letn = 1, kK = 0. (The case n = 1,
k>1 is trivial). Since 6A(X, Y; T)=1, there exists in ¥ an invariant 0-cycle z° with
v(z%) = 1 homologous to zero in X. But z° is not homologous to zero in X\C,
whence C # @, i.e., B(C; T)=0.

Assume the theorem to be valid for n = s and let 6A(X, ¥; T)>s+ 1. We have
to prove B(C; T)zs+1—k~1 = s—k. Suppose B(C; T)<s—k—1. Then C may

s—k

berepresented as the union C = () Cy; of its closed cubsets suchthat C,; n C_; = &
i=1

and TC,; = C_; (see [6]). Consider the set C,; U C_,. There exists in X an anti-

podal partition X; nonintersecting C,, U C_; (see Lemma 1.2). According to
s—k
Lemma 2.6 6h(X,, X; n ¥; T)zs. Write C; = |J) Cy;. Then B(C,; T)<s—k-2.
i=2
On the other hand, no invariant k-cycle z* in X; n Y with v(z*) = 1 is homologous
to zero in X;\C;. Then the inequality B(C,; T)=s—k—1 holds by the induction
hypothesis, which is a contradiction.
Remark. We cannot replace the inequality 6n(X, ¥; T)=n by §(X, ¥; T)=n.
Let (X, Y) be the T-pair constructed in the next section and C = &. Then no in-
variant 1-cycle z' in ¥ with v(z}) = 1 is homologous to zero in X\C = X, but
B(C;T) = ~1<2—1-1=0.
QuesTION. Can we replace the inequality B(C; T)zn—k—1 by
in(C; T zn—k-1?
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An affirmative answer in the case k = 0 is given by Theorem 2.3; the case
k =n—1 is trivial.
Assume for convenience

S* = {x€ 8" Xppz = o = Xpyy = 0},

so that S*<S" for k<n. Denote by ¢* = {o}} some invariant true n-cycle in S*,
such that ¢ is formed of all n-simplexes of some invariant subdivision of S” of
mesh <1/, which induces an invariant subdivision of S* for any k<n.
THEOREM 2.5. Let X< RN and (X, S"™1) be a To-pair with Sh(X, S""*; To) 2n,
where To(x) = —x. Suppose that C is a closed invariant subset of X such that C 3 O,
CnS"' =@, and the cycle o* on S* is not homologous to zero in X\C. Then

B(C; To)zn—k—-1.
* The proof is identical with the proof of the previous theorem; we must only
choose X; in such a way that X; n S* = §°72,
COROLLARY. Let C be a closed invariant subset of B" such thatC3$.0,C n S" ' =0
and the cycle 6* on S* is not homologous to zero in B\C. Then B(C; To)zn~k—1.

Clearly, when k = 0, C is a partition between @ and S"~*; hence we again get
Borsuk’s theorem.

6. An example. We are going to give an example of a 2-dimensional simplicial
T-pair (X, Y) such that

1 =0nX,Y,TN)<6(X,Y;T)=2.

Let
D = {xeR*| x{+x3<16, x; = 0},

Uy = {xe R’ (-0 +x3<l,x3=0}, U_=-U,,
A=D\(U,vwU)).
Also denote by B, and B_ the cylinders

B, = {xe R%| (x,—2*+x3 =1,0<x;<1}, B.= -8,

and put Xy = AU B, u B_. Obviously, X; is symmetric with respect to the
origin @. Let R be the following relation in Xj: R identifies only the pairs
(', x'ye X?, where x'eFrU, and x' = (%1,%,,0), x=(x;, =x,,1), or
xeFrU. and x' = (x;, x;,0), x"’ = (xy, =%, —1I). Denote by : X; = Xj/R
the canonical map and finally put
X=XJR.

Clearly, the central symmetry induces an involution T in X with @(T) = {@}.
Then  is an equivariant map. The sets C, = W({B,) and C_ = y(B_) are Klein
bottles such that 7C, = C.. Let

Y= {xe R xj+x} =16, x; =0}
be the boundary of D. We shall prove that the T-pair (X, Y) meets the case.

3 — Fundamenta Mathematicae CXXIIJ, 8
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a) 8h(X, Y; T) = 1. We may consider (X, Y) as a simplicial T-pair for some
simplicial T-invariant subdivision of X of a small mesh. Then the sets 2, = y(FrU.,)
and X_ = Y (FrU.) are 1-dimensional simplicial subspaces of X homeomorphic
with S*!. The inequality 6A(X, ¥; T)>1 is obvious. Suppose now that

Sh(X, Y T)>2,

i.e., that there exists in ¥ an invariant [ -cycle z with v(z) = 1 homologous to zero
in X. Let dx = z. Evidently, all 2-simplexes lying in 4 take part in %. They form
a chain »,. Since dx; 5 z, there is a simplex of x lying in C.. . Then all 2-simplexes
of C, take part in ». Consequently, » contains all 2-simplexes of X. But every
1-simplex 7 of X, is contained in exactly 3 2-simplexes, and thus z is a simplex
of 0x, which contradicts the equality dx = z.

b) 6(X, ¥;T)=2. The inequality (X, Y;T)<2 holds by (X, Y;T)
<B(Y;T)+1 =2 (see Lemma 1.4). )

Suppose that 6(X, ¥; T)<1. According to Lemma 1.5 there exists in X an
antipodal partition F with §(F, Fn ¥; T)<0, i.e., F = F; U F,, where F; and F,
are closed invariant sets such that F; 28, F,oFn Y and Fyn F, = J. Let
X\F=U, v U._, where U, and U_ are disjoint open subsets of X such that
TU, = U_. Denote by L the space

L=8*u{xeR|-1<x;<1,x, = x3 =0} .

We shall find an equivariant map ¢: X — I such that @(Y)<S, where
S = {xe S8? x; = 0}. Since B(F, U ¥; T)<1, there exists an equivariant map
At FyuY = S. Let 4;: Fu Y — Su {®} be the following equivariant extension
of i:

_ fAx) for xeF,u Y,
M) = {@ for xe Fy .

Consider the spaces L, = {xeL| x, >0} and L_ = —L,. Clearly, L, and L_
are contractible and L, UL_ =L, L, nL. = Su {@}. The map A, admits an
arbitrary extension 1,: FU Yu U, —» L, . Define ¢: X — L by

4L
o) = {:ZI(Tx)

for xe FUYuU,,
for xe U_ .

Then ¢ is the required equivariant map.
Consider the commutative triangle

o1
I, ——L

b
l o

Cs

e
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where ¢, = ¢|X,, ¢, = @|C, and j is the inclusion map. Then the triangle
1y
ny(Z4) —> my(L)

J‘i, /‘P/Zb
73(Cy)

is also commutative. It is easy to prove that the fundamental group ,(L) is iso-
morphic to Z. Let « be the formant of =,(X,). Clearly, 2j,(0) = 0 (C, is a Klein
bottle). Then

2054(0) = @12(20) = Q4 ]u(20) = (Pz*(zj*(“)) =0,
whence @,4(0) = 0, since n (L) = Z. Therefore @4 = 0. Consider now FrU,
and the map u = @y|FrU,: FrU, — L. Bvidently, u, = 0; hence p admits an
extension fi: U, — L. Define the map h: D — L by

oY (x) for xe 4,
h(x) = < f(x) for xeU,,
—~ji(—x) for xeU_.

This is an equivariant map such that A(Y)=S; hence the inequality
8(D, Y; To)<6(L, S5 Tp)
holds. by Lemma 1.3 (T(x) = —x)). On the other hand, (D, ¥;T;) = 2,
8(L, S; Tp) = 1, which is a contradiction.
Remark. It is not difficult to give an example (based on the same idea) of
a 2-dimensional T-space X with

1=6n(X;T)<é(X;T)=2.
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