

Mapping theorems for compacta with an arbitrary involution

bv

S. Stefanov (Sofia)

Abstract. Compacta on which acts an arbitrary involution with fixed points are considered. Two invariants (δ -index and δh -index) of such a space are introduced. They indicate its "proximity" to some Euclidean ball and are analogous to Yang's B-index and to the Smith index, respectively. (The last two concepts concern spaces with a fixed-point free involution.) Mapping theorems for δ and δh are proved. As a corollary, estimates of the mapping set for maps from a Euclidean ball into another one are obtained.

Introduction. Properties of compacta on which acts some fixed-point free involution have been studied by many authors. An instrument for obtaining Borsuk—Ulam type theorems in such spaces is the concept of B-index introduced by C. T. Yang in [5], and also the Smith index, which appears in the theory of homeomorphisms of finite period developed by P. A. Smith in [3].

We shall study in this paper compacta on which acts an arbitrary involution with fixed points. In order to obtain mapping theorems in this case, we introduce in part I the concept of the δ -index of such a space, which indicates, in a manner, its "resemblance" to some Euclidean ball (considered together with the central symmetry). In part II another index is introduced — this is the homological δ -index (or δh -index), which appears after consideration of the invariant homological structure modulo Z_2 of a space with involution. Our investigations in part II make use of Smith's theory. We establish the relations between δ , δh and dim and prove mapping theorems for δ and δh . As a corollary to these theorems we obtain a mapping theorem for maps from a Euclidean ball into another one, as well as several generalizations of a theorem due to K. Borsuk.

I. The concept of δ -index

1. Definition of the δ -index of a pair. Throughout this and the remaining sections by a space we mean a compact metric space (compactum), by a map we mean a continuous one.

A T-space is a space X on which acts the involution $T: X \to X$. The notation (X; T) means "X is a T-space".

A subset Y of the T-space X is said to be invariant if TY = Y.

Recall first the concept of B-index of a T-space.

DEFINITION 1.1 (Yang [5]). Let X be a T-space, where T is a fixed-point free involution. We say that the B-index of X is not greater than n if there exists a map $f: X \to \mathbb{R}^{n+1}$ such that

$$f(Tx) \neq f(x)$$
 for all $x \in X$.

We then write $B(X;T) \leq n$.

The B-index of X is equal to n iff $B(X;T) \le n$ and $B(X;T) \le n-1$. In the case $X = \emptyset$ we set for convenience B(X; T) = -1.

It is easy to prove that $B(X;T)<\infty$ for any T-space X. Indeed, let $X=\bigcup_{i=1}^{n}F_{i}$ be a decomposition of X into closed subsets such that $TF_i \cap F_i = \emptyset$ for i = 0, 1, ..., n. Put $f_i(x) = \varrho(x, F_i)$ and $f = f_0 \times f_1 \times ... \times f_n$ (where ϱ is the metric on X). Then $f: X \to \mathbb{R}^{n+1}$ is a map such that $f(Tx) \neq f(x)$ for any $x \in X$; thus $B(X;T) \leq n$.

We shall make use of some other well-known equivalent definitions of this concept, which can be found for example in [5] or [6].

Note that the Borsuk-Ulam theorem is equivalent to $B(S^n; T_0) = n$ where T_0 is the central symmetry with respect to the origin $T_0(x) = -x$. It is not difficult to prove that this equality holds for any other involution acting on S^n ,

It has been shown in [6] that

$$B(X;T) \leq \dim X$$

for any T-space X.

Let X be a T-space. We shall denote by $\Theta(T)$ the set of all fixed points of T

$$\Theta(T) = \{ x \in X | Tx = x \},\,$$

Apparently, $\Theta(T)$ is an invariant compact subset of X.

A pair (X, Y) is said to be a T-pair if

- i) is a T-space,
- ii) Y is a closed invariant subset of X nonintersecting $\Theta(T)$.

We shall now introduce the concept of δ index of a T-pair.

DEFINITION 1.2. We say, that the δ index of the T-pair (X, Y) is not greater than n if there exists in X an invariant partition C between O(T) and Y such that $B(C;T) \leq n-1$. Then we shall write

$$\delta(X, Y; T) \leq n$$
.

The δ -index of a T-pair (X, Y) is equal to n iff $\delta(X, Y; T) \leq n$ and $\delta(X, Y; T)$ $\leq n-1$. If at least one of the sets $\Theta(T)$, X, Y is empty, we define for the sake of convenience $\delta(X, Y; T) = -1$.

Note that the equality

$$\delta(B^n, S^{n-1}; T_0) = n$$

has been established by K. Borsuk. (Here B^n is the *n*-dimensional unit ball, S^{n-1} is its boundary and $T_0(x) = -x$.) He has proved that if C is an invariant partition in \mathbb{R}^n between the origin and ∞ , then for any map $f: \mathbb{C} \to \mathbb{R}^{n-1}$ there exists an $x_0 \in C$ such that $f(-x_0) = f(x_0)$, which is equivalent to $\delta(B^n, S^{n-1}; T_0) \ge n$ (the converse inequality is trivial).

It is clear that each inequality of type $\delta(X, Y; T) \ge n$ may be formulated as a mapping theorem. We shall give in part II several generalizations of Borsuk's theorem.

2. Two elementary propositions. A closed invariant subset F of the T-space X is said to be an antipodal partition in X if for any $x \in X \setminus F$ it is a partition in X between x and Tx. Evidently, F is an antipodal partition in X iff $X \setminus F = U_+ \cup U_-$, where U_+ and U_- are disjoint open subsets of X such that $TU_+ = U_-$. Note that every antipodal partition in X contains $\Theta(T)$.

Let X be a T-space and let X' be a T'-space. A map $\varphi: X \to X'$ is called eauivariant if

$$\varphi(Tx) = T'\varphi(x)$$
 for any $x \in X$.

The notation $\varphi: (X;T) \to (X';T')$ means " φ is an equivariant map from X into X'". If (X, Y) is a T-pair and (X', Y') is a T'-pair, a map $\varphi: (X, Y) \to (X', Y')$ is an equivariant map $\varphi \colon X \to X'$ such that $\varphi(Y) \subset Y'$.

The following two lemmas are elementary.

LEMMA 1.1. Let F be a closed invariant subset of the T-space X and let $\varphi \colon F \to \mathbb{R}^n$ be an equivariant map (R^n) is considered with the involution $T_0(x) = -x$). Then ϕ admits an equivariant extension $\tilde{\varphi} \colon X \to \mathbb{R}^n$.

Proof. Let $\varphi_1: X \to \mathbb{R}^n$ be an arbitrary extension of φ . Then

$$\tilde{\varphi}(x) = \frac{1}{2} (\varphi_1(x) - \varphi_1(Tx))$$

is an equivariant extension of φ .

LEMMA 1.2. Let Y be a closed invariant subset of the T-space X and let F be an antipodal partition in Y. Then there exists such an antipodal partition $\tilde{\mathbf{F}}$ in X that $\tilde{F} \cap Y = F$.

Proof. Let $Y \setminus F = V_+ \cup V_-$ where V_+ and V_- are open disjoint subsets of Y such that $TV_{+} = V_{-}$. Set

$$\varphi(x) = \begin{cases} \varrho(x, F) & \text{for } x \in V_+ \cup F, \\ -\varrho(Tx, F) & \text{for } x \in V_- \end{cases}$$

(ρ is the metric in X).

Then $\varphi: Y \to R^1$ is an equivariant map with $\varphi^{-1}(0) = F$. According to Lemma 1.1 φ admits an equivariant extension $\tilde{\varphi}: X \to \mathbb{R}^1$. Clearly, the antipodal partition $\tilde{F} = \tilde{\varphi}^{-1}(0)$ meets the case.

3. Several properties of δ , the relationship with dim.

LEMMA 1.3. Let $\varphi: (X, Y) \to (X', Y')$ maps the T-pair (X, Y) into the T'-pair (X', Y'). Then

$$\delta(X, Y; T) \leq \delta(X', Y'; T')$$
.

173

Proof. Indeed, if C' is an invariant partition in X' between $\Theta(T')$ and Y', then $C = \varphi^{-1}(C')$ is an invariant partition in X between $\Theta(T)$ and Y; hence $B(C;T) \leq B(C';T')$ since there exists an equivariant map $\varphi|_C \colon C \to C'$. The required inequality holds by the definition of δ .

LEMMA 1.4. For any T-pair (X, Y) the following inequalities hold:

- a) $\delta(X, Y; T) \leq \dim X$,
- b) $\delta(X, Y; T) \leq B(Y; T) + 1$.

Proof. a) Suppose that $\dim X \leqslant n$. One can find in X an invariant partition C between $\Theta(T)$ and Y with $\dim C \leqslant n-1$. Then $B(C;T) \leqslant \dim C \leqslant n-1$; thus $\delta(X,Y;T) \leqslant n$.

b) Suppose that $B(Y;T) \leqslant n$, i.e., that there exists an equivariant map $\varphi \colon Y \to S^n$ (see for ex. [6]). According to Lemma 1.1, φ admits an equivariant extension $\tilde{\varphi} \colon X \to B^{n+1}$. Denote by Σ the sphere $\Sigma = \{x \in B^{n+1} | ||x|| = \frac{1}{2}\}$. Then $C = \tilde{\varphi}^{+1}(\Sigma)$ is an invariant partition in X between $\Theta(T)$ and Y with $B(C;T) \leqslant n$. Therefore $\delta(X,Y;T) \leqslant n+1$.

Remark. As a corollary to b) we get

$$\dim Y \geqslant \delta(X, Y; T) - 1$$
,

b) implies also that $\delta(X, Y; T) < \infty$ for any T-pair (X, Y).

LEMMA 1.5. The following two conditions are equivalent:

- a) $\delta(X, Y; T) \leq n$.
- b) There exists in X such an antipodal partition F that $\delta(F, F \cap Y; T) \leq n-1$.

Proof. a) \Rightarrow b) Let C be an invariant partition in X between $\Theta(T)$ and Y with $B(C;T) \leqslant n-1$. Then we can find in C an antipodal partition C_1 with $B(C_1;T) \leqslant n-2$ (see [6]). According to Lemma 1.2, there exists in X an antipodal partition F such that $F \cap C = C_1$. Obviously $\delta(F,F \cap Y;T) \leqslant n-1$.

b) \Rightarrow a) Denote by C an arbitrary invariant partition in F between $\Theta(T)$ and $F \cap Y$ with $B(C;T) \leq n-2$. We can find in X such a partition C_1 between $\Theta(T)$ and Y that $C_1 \cap F = C$. Set $\widetilde{C} = C_1 \cup TC_1$. Then \widetilde{C} is an invariant partition in X between $\Theta(T)$ and Y such that $\widetilde{C} \cap F = C$. Evidently, C is an antipodal partition in \widetilde{C} ; hence $B(\widetilde{C};T) \leq n-1$. Therefore $\delta(X,Y;T) \leq n$.

4. The mapping theorem for δ . Let X be a T-space. Given a map $f\colon X\to M$, denote as usual

$$A(f) = \{x \in X | f(Tx) = f(x)\}.$$

The following theorem states that if the pair (X, Y) is of a great δ -index and M is a low dimensional Euclidean space, then the δ -index of the pair $(A(f), A(f) \cap Y)$ is large enough for any f.

THEOREM 1.1. Let $\delta(X, Y; T) \ge n$. Then for any map $f: X \to \mathbb{R}^k$ the inequality

$$\delta(A(f), A(f) \cap Y; T) \ge n-k$$

holds.

Proof. We shall carry out the proof by induction on k. The case k=0 is trivial. Assume the inequality to be true for k=s and consider the case k=s+1. Let $f\colon X\to R^{s+1}$ be an arbitrary map. Denote by $\pi_s\colon R^{s+1}\to R^s$ the orthogonal projection defined by

$$\pi_s(x_1, x_2, ..., x_{s+1}) = (x_2, ..., x_{s+1}).$$

Consider the composition $f_1 = \pi_s f: X \to \mathbb{R}^s$. Then the inequality

$$\delta(A(f_1), A(f_1) \cap Y; T) \geqslant n-s$$

holds by the induction hypothesis. Clearly, $A(f) \subset A(f_1)$. We shall prove that A(f) is an antipodal partition in $A(f_1)$. Denote by $\pi_1 \colon R^{s+1} \to R^1$ the projection $\pi_1(x_1, x_2, ..., x_{s+1}) = x_1$ and put $\lambda(x) = \pi_1 f(x) - \pi_1 f(Tx)$ for any $x \in A(f_1)$. Then $\lambda \colon A(f_1) \to R^1$ is an equivariant map and one can easily check that $\lambda^{-1}(0) = A(f)$. Therefore A(f) is an antipodal partition in $A(f_1)$. According to Lemma 1.5

$$\delta(A(f), A(f) \cap Y; T) \geqslant n-s-1$$
.

The theorem is proved.

COROLLARY. Let $\delta(X, Y; T) \ge n$. Then for any map $f: X \to \mathbb{R}^k$

$$\dim A(f) \geqslant n-k$$
.

This inequality holds by Theorem 1.1 and Lemma 1.4.

In the case $X = B^n$, $Y = S^{n-1}$ the corollary together with Borsuk's theorem gives the following

THEOREM 1.2. Let $f: B^n \to R^k$ be an arbitrary map and

$$A(f) = \{x \in B^n | f(x) = f(-x)\}.$$

Then $\dim A(f) \geqslant n-k$.

5. Definition of δ -index of a single space, the mapping theorem.

DEFINITION 1.3. We say that the δ -index of the T-space X is not less than n if there exists in X such a closed invariant subset Y nonintersecting $\Theta(T)$ that $\delta(X, Y; T) \geqslant n$. Then we write

$$\delta(X;T) \geqslant n$$
.

The equality $\delta(X;T)=n$ means as usual that $\delta(X;T)\geqslant n$ and $\delta(X;T)\not\geqslant n+1$. Evidently, $\delta(X;T)=-1$ iff $\Theta(T)=\emptyset$ or $\Theta(T)=X$.

Note that $\delta(B^n; T_0) = n$, where $T_0(x) = -x$. It is not difficult to give an example of a T-space X with $\delta(X; T) = \infty$.

LEMMA 1.6. Let $\varphi: X \to X'$ be an equivariant map such that $\varphi^{-1}(\Theta(T')) = \Theta(T)$. Then $\delta(X; T) \leq \delta(X', T')$.

Proof. Suppose that (X, Y) is a T-pair and $Y' = \varphi(Y)$. Then $Y' \cap \Theta(T') = \emptyset$, so that (X', Y') is a T'-pair. According to Lemma 1.3 $\delta(X, Y; T) \leq \delta(X', Y'; T')$. whereby $\delta(X; T) \leq \delta(X'; T')$.

LEMMA 1.7. $\delta(X;T) \leq \dim X$ for any T-space X.

This inequality follows immediately from Lemma 1.4.

THEOREM 1.3. Let $\delta(X;T) \ge n$. Then for any map $f: X \to \mathbb{R}^k$ the inequality $\delta(A(f);T) \ge n-k$ holds.

Proof. There exists a $Y \subset X$ such that $\delta(X, Y; T) \ge n$. According to Theorem 1.1 $\delta(A(f), A(f) \cap Y; T) \ge n-k$, which implies $\delta(A(f); T) \ge n-k$.

Example. Denote by T the involution $T: B^n \to B^n$ defined by

$$T(x_1, ..., x_k, x_{k+1}, ..., x_n) = (-x_1, ..., -x_k, x_{k+1}, ..., x_n).$$

Then $\delta(B^n; T) = k$. Indeed, consider B^k with the involution $T_0(x) = -x$. There exists an equivariant projection $\pi: B^n \to B^k$ such that $\pi^{-1}(\Theta(T_0)) = \Theta(T)$; hence $\delta(B^n; T) \leq \delta(B^k; T_0) = k$ (see Lemma 1.6). On the other hand, there exists an equivariant embedding $j^n: B^k \to B^n$ such that $j^{-1}(\Theta(T)) = \Theta(T_0)$; hence $\delta(B^n; T)$ $\geqslant \delta(B^k; T_0) = k.$

II. Homological approach to compacta with an arbitrary involution — the concept of δh -index.

1. Preliminaries. In the second part we shall study the special homological structure of a space on which acts an involution with fixed points, considering only the chains modulo Z_2 , whose simplexes are permuted with one another by the involution. We introduce in Section 3 the concept of the homological δ -index of such a space (δh -index). Its definition is based on the theory of the index of a periodical transformation acting on a topological space, developed by P. A. Smith in [3]. A detailed exposition of Smith's theory applied to involutions is given by Yang [4]. We shall list only those definitions and propositions which will be directly used here, and refer the reader to [4] for details.

Let P be a simplicial space which is the body of a finite simplicial complex. and let $T: P \to P$ be a fixed-point free involution. Then P is said to be a simplicial T-space if the simplexes of P are permuted with one another by T, i.e., if T is a simplicial map. It is easy to see that $T\tau \cap \tau = \emptyset$ for any simplex τ of P. T induces a chain mapping of the chains modulo Z_2 of P into themselves, which we also denote by T. An n-chain \varkappa is called a T-invariant n-chain, or simply a (T, n)-chain, if $T\varkappa = \varkappa$. All the (T, n)-chains in P form a group $C_n(P; T)$. An n-chain \varkappa is a (T, n)-chain iff $\varkappa = \lambda + T\lambda$ for some *n*-chain λ .

Define as usual

$$\begin{split} Z_n(P\,;\,T) &= \left\{ \varkappa \in C_n(P\,;\,T) | \ \partial \varkappa = 0 \right\}, \\ B_n(P\,;\,T) &= \partial C_{n+1}(P\,;\,T) \ , \\ H_n(P\,;\,T) &= Z_n(P\,;\,T) / B_n(P\,;\,T) \ . \end{split}$$

An equivariant simplicial map $\varphi: P \to P'$ defines a chain mapping

$$\hat{\varphi}\colon\thinspace C_n(P\,;\,T)\to C_n(P'\,;\,T')$$

and then induces a homomorphism

$$\varphi_{\mathbf{k}} \colon H_{\mathbf{n}}(P;T) \to H_{\mathbf{n}}(P';T')$$
.

For any simplicial T-space P there exists a homomorphism

$$v: \mathbf{Z}_n(P; T) \to \mathbf{Z}_2$$

defined by recurrence as follows:

Let $z = \varkappa + T\varkappa$ be a (T, n)-cycle. Then

$$v(z) = \begin{cases} I(\varkappa) & \text{if } n = 0; \\ v(\partial \varkappa) & \text{if } n > 0 \end{cases}$$

where $I(\varkappa)$ is the index of the 0-chain \varkappa (in our case $I(\varkappa) = 1$ iff the number of all simplexes of \varkappa is odd.)

A) ν is independent of the choice of κ and $\nu B_n(P;T)=0$. Then ν induces the so-called index homomorphism

$$v: H_n(P; T) \rightarrow \mathbb{Z}_2$$

such that, if $\zeta \in H_n(P; T)$ and z is a (T, n)-cycle in ζ ,

$$\nu(\zeta) = \nu(z) .$$

B) If $\varphi: P \to P'$ is an equivariant simplicial map, then

$$\nu(\varphi_*(\zeta)) = \nu(\zeta)$$
 for any $\zeta \in H_n(P; T)$.

C) For any simplicial T-space P there is an integer n such that

$$\nu H_s(P;T) = \begin{cases} \mathbf{Z}_2 & \text{for } 0 \leqslant s \leqslant n; \\ 0 & \text{for } s > n. \end{cases}$$

The integer n is called the *Smith index* of P and it is written in (P; T).

- D) in $(S^n; T_0) = n$ (where $T_0(x) = -x$) for any invariant simplicial subdivision of S^n .
- 2. The simplicial case. We shall extend the concept of simplicial T-space to the case of an arbitrary T.

Let P be a simplicial space which is the body of a finite simplicial complex and let $T: P \to P$ be an arbitrary involution. We say that P is a simplicial T-space if the following two conditions are satisfied:

- i) T is simplicial,
- ii) if $\tau = [a_0, ..., a_s]$ is a simplex of P such that $T\tau = \tau$, then $Ta_i = a_i$ for i = 0, ..., s.

It is easy to see that the set $\Theta(T)$ of all fixed points of T is a simplicial subspace of P. Indeed, if $x \in \Theta(T)$ and τ is the minimal simplex (with respect to inclusion) of P containing x, then $\tau \cap T\tau$ is a simplex containing x; hence $T\tau = \tau$, so that $\tau \subset \Theta(T)$ (as follows from i)).

By an invariant n-chain in P, or (T, n)-chain, we mean an n-chain \varkappa modulo \mathbb{Z}_2 in P such that $T\varkappa = \varkappa$. A (T, n)-chain \varkappa is a (T, n)-cycle if $\partial \varkappa = 0$. Two (T, n)-chains \varkappa_1 and \varkappa_2 are homologous if there exists a (T, n+1)-chain \varkappa such that $\partial \varkappa = \varkappa_1 - \varkappa_2$.

The pair (P, Q) is said to be a simplicial T-pair if P is a simplicial T-space and Q is its invariant simplicial subspace nonintersecting $\Theta(T)$.

Let F be a closed invariant subset of the T-space X. We say that F is a weak antipodal partition in X if $X \setminus F = U_+ \cup U_- \cup U_0$ where U_+ , U_- and U_0 are disjoint open subsets of X such that $TU_{+} = U_{-}$ and $U_{0} \subset \Theta(T)$.

The following lemma is the key tool for our investigations in part II.

LEMMA 2.1. Let (P, Q) be a simplicial T-pair, dim $P \le n$, and let z be a (T, n-1)cycle in O with y(z) = 1 homologous to zero in P. Suppose that F is an (n-1)-dimensional simplicial subspace of P which is a weak antipodal partition in P. Then there is a (T, n-2)-cycle ζ in $F \cap Q$ with $v(\zeta) = 1$ homologous to zero in F.

Proof. Since F is a weak antipodal partition in P, $P \setminus F = U_+ \cup U_- \cup U_0$ where U_+ , U_- and U_0 are disjoint open subsets of P such that $TU_+ = U_-$ and $U_0 \subset \Theta(T)$. There exists in P a (T, n)-chain \varkappa such that $\partial \varkappa = z$. Then $\varkappa = \varkappa_+ +$ $+\varkappa_{-}+\varkappa_{0}$, where \varkappa_{+} (resp. \varkappa_{-} , \varkappa_{0}) consists of all simplexes of \varkappa contained in \overline{U}_{+} (resp. \overline{U}_- , \overline{U}_0). For an arbitrary simplex τ of P denote by $b_+(\tau)$ (resp. $b_-(\tau)$, $b_0(\tau)$) the number of all simplexes of \varkappa_+ (resp. \varkappa_- , \varkappa_0) containing τ .

Denote by λ the (n-1)-dimensional chain containing all (n-1)-dimensional simplexes τ^{n-1} of P such that

$$b_{+}(\tau^{n-1}) \equiv 1 \pmod{2}$$
 and $b_{-}(\tau^{n-1}) \equiv 1 \pmod{2}$.

We are going to establish several properties of λ .

i) $T\lambda = \lambda$. This equality holds by $T\kappa_{+} = \kappa_{-}$ and $b_{+}(T\tau) = b_{-}(\tau)$.

ii) All simplexes of λ lie in F. Indeed, if τ^{n-1} is a simplex of λ , then $b_+(\tau^{n-1}) \neq 0$ and $b_{-}(\tau^{n-1}) \neq 0$, whence $\tau^{n-1} \subset F$.

iii) Denote by z_+ (resp. z_-) the chain containing all simplexes τ^{n-1} of z with $b_{+}(\tau^{n-1}) \equiv 1 \pmod{2}$ (resp. $b_{-}(\tau^{n-1}) \equiv 1 \pmod{2}$). Then $z = z_{+} + z_{-}$ since $b_0(\tau^{n-1}) = 0$ for any simplex τ^{n-1} of z, so that the number of all n-dimensional simplexes of \varkappa containing τ^{n-1} is $b_+(\tau^{n-1}) + b_-(\tau^{n-1}) \equiv 1 \pmod{2}$. Obviously, $Tz_{+}=z_{-}$. Consequently $v(\partial z_{+})=1$ (see A) in the previous section). We shall prove that

$$\partial \lambda = \partial z_{\perp}$$
.

Let τ^{n-2} be an arbitrary (n-2)-dimensional simplex of P. Set

p = the number of all simplexes of λ containing τ^{n-2} q = the number of all simplexes of z_{+} containing τ^{n-2}

It is enough to prove that $p \equiv q \pmod{2}$. Let $\tau_1^{n-1}, \dots, \tau_s^{n-1}$ be all (n-1)-dimensional simplexes of P containing τ^{n-2} . Consider the sum

$$N = \sum_{i=1}^{s} b_{+}(\tau_{i}^{n-1})$$
.

Clearly, N is even since every n-dimensional simplex τ^n of κ_+ containing τ^{n-2} has exactly two (n-1)-dimensional faces, τ_i^{n-1} and τ_i^{n-1} , containing τ^{n-2} , so that τ^n is counted in N exactly twice. Consider the set A of all (n-1)-dimensional simplexes τ^{n-1} containing τ^{n-2} and such that $b_+(\tau^{n-1}) \equiv 1 \pmod{2}$. Then $A = A' \cup A''$. where

$$A' = \{ \tau^{n-1} \in A | b_{-}(\tau^{n-1}) \equiv 1 \pmod{2} \}.$$

$$A'' = \{ \tau^{n-1} \in A | b_{-}(\tau^{n-1}) \equiv 0 \pmod{2} \},$$

It is easy to check that

$$|A'|=p, \quad |A''|=q.$$

The first equality holds by the fact that $\tau^{n-1} \in A'$ iff both $b_+(\tau^{n-1})$ and $b_-(\tau^{n-1})$ are odd numbers, i.e., iff τ^{n-1} takes part in λ . Pass to the second equality. Let $\tau^{n-1} \in A''$, i.e., $b_+(\tau^{n-1})$ is odd and $b_-(\tau^{n-1})$ is even. We shall prove that τ^{n-1} takes part in z. Note that $b_0(\tau^{n-1}) = 0$. Indeed, suppose that $b_0(\tau^{n-1}) \neq 0$. Then $T\tau^{n-1} = \tau^{n-1}$ and if τ^n is a simplex of \varkappa_+ containing τ^{n-1} , $T\tau^n$ is a simplex of $\varkappa_$ containing τ^{n-1} , so that $b_+(\tau^{n-1}) = b_-(\tau^{n-1})$, which is a contradiction. Since $b_0(\tau^{n-1}) = 0$, the number of all simplexes of \varkappa containing τ^{n-1} is $b_+(\tau^{n-1}) + b_-(\tau^{n-1})$ $\equiv 1 \pmod{2}$; hence τ^{n-1} is a simplex of $z = \partial \varkappa$. It is clear that $\tau^{n-1} \in z_+$ $(b_+(\tau^{n-1}))$ is odd). Conversely, if τ^{n-1} is a simplex of z_+ , then $b_0(\tau^{n-1}) = 0$, $b_+(\tau^{n-1}) +$ $+b_{-}(\tau^{n-1}) \equiv 1 \pmod{2}$ and $b_{+}(\tau^{n-1}) \equiv 1 \pmod{2}$, whence $b_{-}(\tau^{n-1}) \equiv 0 \pmod{2}$, i.e., $\tau^{n-1} \in A''$. Consequently |A''| = q.

Obviously, $N \equiv (p+q) \pmod{2}$, so that $p \equiv q \pmod{2}$ whereby $\partial \lambda = \partial z_+$. Set $\zeta = \partial \lambda = \partial z_+$. Then ζ is a (T, n-2)-cycle in $F \cap O$ homologous to zero in F(λ lies in F) and $\nu(\zeta) = \nu(\partial z_+) = 1$.

The lemma is proved.

- 3. Definition of the δh -index. Let X be a compact metric space with involution T. Fix $\varepsilon > 0$. An *n*-dimensional ε -chain \varkappa in X modulo \mathbb{Z}_2 in the sense of Vietoris is a linear form $\kappa = \tau_1 + ... + \tau_s$ where the simplexes $\tau_i = (a_0, ..., a_n)$ are systems of n+1 points of X with diam $\tau_i < \varepsilon$. The vertices of a simplex are not assumed to be different points of X. The vertices of x are the vertices of all of its simplexes. For a simplex $\tau = (a_0, ..., a_s)$ put $T\tau = (Ta_0, ..., Ta_s)$. An *n*-dimensional ε -chain \varkappa is said to be invariant (or (T, n, ε) -chain) if
 - i) a simplex τ takes part in \varkappa iff so does $T\tau$,
- ii) if $T\tau = \tau$, where $\tau = (a_0, ..., a_s)$ is a face of some *n*-dimensional simplex of \varkappa , then $Ta_i = a_i$ for i = 0, ..., s.

Evidently, if \varkappa is a (T, n, ε) -chain, then $\partial \varkappa$ is a $(T, n-1, \varepsilon)$ -chain.

By an *n*-dimensional invariant true chain, or a (T, n)-true chain, we understand a sequence $\varkappa = \{\varkappa_i\}$ of (T, n, ε_i) -chains \varkappa_i such that $\lim \varepsilon_i = 0$. Define as usual $\varkappa + \varkappa' = \{\varkappa_i + \varkappa_i'\}$ and $\partial \varkappa = \{\partial \varkappa_i\}$. Two invariant true chains \varkappa and \varkappa' are said to be homologous if there exists an invariant true chain λ such that $\partial \lambda = \varkappa - \varkappa'$. An invariant true chain z is an invariant true cycle if $\partial z = 0$. An invariant closed subset F of X is a carrier of the invariant true chain \varkappa if all vertices of \varkappa_i lie in F for any i. A carrier of an invariant true chain is always assumed to be invariant. For a (T, n, ε) -chain \varkappa denote by $\widetilde{\varkappa}$ the body of the simplicial complex containing all simplexes of \varkappa , as well as all their faces. Clearly, T induces an involution \widetilde{T} : $\widetilde{\varkappa} \to \widetilde{\varkappa}$ and $\widetilde{\varkappa}$ is a simplicial \widetilde{T} -space. Then \varkappa may be regarded as a (\widetilde{T}, n) -chain in $\widetilde{\varkappa}$. Suppose now that \varkappa is a cycle and $\Theta(\widetilde{T}) = \emptyset$. Then the number $\nu(\varkappa)$ is defined.

Let $z=\{z_i\}$ be a (T,n)-true cycle with a carrier Y such that $Y\cap \Theta(T)=\emptyset$. Then $\nu(z_i)$ is defined for every i. We shall write $\nu(z)=1$ if $\nu(z_i)=1$ for i large enough; otherwise $\nu(z)=0$. Recall that the Smith index of a T-space Y with $\Theta(T)=\emptyset$ is not less than n (in(Y;T) $\geqslant n$) if there exists in Y a (T,n)-true cycle z with $\nu(z)=1$.

We are ready to introduce the concept of the homological δ -index (δh -index) of a T-space. As in part I, we shall do this for T-pairs first.

DEFINITION 2.1. Let (X, Y) be a T-pair (so that $Y \cap \Theta(T) = \emptyset$). We say that the homological δ -index of the pair (X, Y) is not less than n if there exists an (n-1)-dimensional invariant true cycle z in Y with v(z) = 1 homologous to zero in X. Then we shall write

$$\delta h(X, Y; T) \geqslant n$$
.

The equality $\delta h(X,Y;T)=n$ is equivalent to $\delta h(X,Y;T)\geqslant n$ and $\delta h(X,Y;T)\not\geqslant n+1$. If at least one of the sets $X,Y,\Theta(T)$ is empty, set $\delta h(X,Y;T)=-1$. It follows from the definition that $\delta h(X,Y;T)\geqslant n$ implies in $(Y;T)\geqslant n-1$.

DEFINITION 2.2. Let X be a T-space. We say that the homological δ -index of X is not less than n if there exists in X such a closed invariant subset Y non-intersecting $\Theta(T)$ that $\delta h(X, Y; T) \ge n$. Then we write

$$\delta h(X;T) \geqslant n$$
.

As usual, $\delta h(X;T) = n$ iff $\delta h(X;T) \ge n$ and $\delta h(X;T) \not\ge n+1$.

EXAMPLE. $\delta h(B^n, S^{n-1}; T_0) = n$, where $T_0(x) = -x$. It is enough to take for every natural i an invariant subdivision of B^n of mesh < 1/i and to denote by κ_i the invariant 1/i-chain containing all of its n-dimensional simplexes. Then $z = \{\partial \kappa_i\}$ is an invariant true (n-1)-cycle in S^{n-1} with v(z) = 1 (see D)). Therefore $\delta h(B^n, S^{n-1}; T_0) = n$.

4. Several properties of δh . The next two lemmas are similar to Lemmas 1.3 and 1.6:

LEMMA 2.2. Let $\varphi: X \to X'$ be an equivariant map which maps the T-pair (X, Y) into the T'-pair (X', Y'). Then $\delta h(X, Y; T) \leq \delta h(X', Y'; T')$.

Proof. Suppose that $\delta h(X, Y; T) \ge n$ and let z be a (T, n-1)-true cycle in Y with $\nu(z) = 1$ homologous to zero in X. Then $\varphi(z)$ is a (T', n-1)-true cycle in Y' homologous to zero in X' and $\nu(\varphi(z)) = \nu(z) = 1$ (see B)). Hence $\delta h(X', Y'; T') \ge n$.

LEMMA 2.3. Let $\varphi \colon X \to X'$ be an equivariant map such that $\varphi^{-1}(\Theta(T')) = \Theta(T)$. Then $\delta h(X;T) \leq \delta h(X';T')$.

Denote by ϱ the metric in X and by $\overline{O_{\delta}F}=\{x\in X|\ \varrho(x,F)\!\leqslant\!\delta\}$ — the closed δ -neighbourhood of F in X.

LEMMA 2.4. Let (X, Y) be a T-pair and let F be a closed invariant subset of X. If for any closed invariant neighbourhood \overline{OF} of F in X we have $\delta h(\overline{OF}, \overline{OF} \cap Y; T) \geqslant n$, then the inequality $\delta h(F, F \cap Y; T) \geqslant n$ holds.

Proof. Fix $\varepsilon > 0$. Since X is compact, there exists such a positive $\gamma < \frac{1}{3}\varepsilon$ that $\varrho(x,y) < \gamma$ implies $\varrho(Tx,Ty) < \frac{1}{3}\varepsilon$ for any $x,y \in X$. We shall prove that there exists a $\delta > 0$ such that $x \in O_{\delta}F \cap Y$ implies $\varrho(x,F \cap Y) \leq \gamma$. Suppose the contrary. Then for any $\delta = 1/i$ there exists an $x_i \in O_{1/i}F \cap Y$ with $\varrho(x_i,F \cap Y) \geqslant \gamma$. We may assume that $x_i \to x_0 \in Y$. Then $\varrho(x_0,F \cap Y) \geqslant \gamma$. Since $x_i \in O_{1/i}F \cap Y$, there exists a $y_i \in F$ with $\varrho(x_i,y_i) < 1/i$; hence $y_i \to x_0$, so that $x_0 \in F \cap Y$, which is a contradiction.

Set $\beta=\min(\gamma,\delta)$. Since $\delta h(\overline{O_{\beta}F},\overline{O_{\beta}F}\cap Y;T)\geqslant n$, there exists in $\overline{O_{\beta}F}\cap Y$ a (T,n-1)-true cycle $z=\{z_i\}$ with v(z)=1 homologous to zero in $\overline{O_{\beta}F}$. Let $\partial \varkappa=z$, where $\varkappa=\{\varkappa_i\}$ is a (T,n)-true chain in $\overline{O_{\beta}F}$. Take i so large that all simplexes of \varkappa_i have a diameter $<\frac{1}{3}\varepsilon$ and $v(z_i)=1$. Let a_s be a vertex of \varkappa_i which is not a vertex to $\partial \varkappa_i$. There exists a point $a_s' \in F$ such that $\varrho(a_s,a_s') < \beta \leqslant \gamma < \frac{1}{3}\varepsilon$. Then $\varrho(Ta_s,Ta_s') < \frac{1}{3}\varepsilon$. Set $(Ta_s)'=Ta_s'$. In the case where a_s is a vertex of $\partial \varkappa_i$ we have $a_s\in\overline{O_{\beta}F}\cap Y$. But $\beta \leqslant \delta$; consequently there exists an $a_s' \in F\cap Y$ with $\varrho(a_s,a_s') \leqslant \gamma < \frac{1}{3}\varepsilon$. Thus $\varrho(Ta_s,Ta_s') < \frac{1}{3}\varepsilon$ and we shall set as above $(Ta_s)'=Ta_s'$ (note that $Ta_s' \in F\cap Y$). In this way, to every simplex of \varkappa_i $\tau=(a_0,\ldots,a_n)$ corresponds some $\tau'=(a_0',\ldots,a_n')$. We will show that diam $\tau' < \varepsilon$. Indeed, for any two vertices a_i' , $a_i' \in \tau'$ we have

$$\varrho(a_i',a_j') \leq \varrho(a_i',a_i) + \varrho(a_i,a_j) + \varrho(a_{j,i},a_j') < 3 \cdot \frac{1}{3} \varepsilon = \varepsilon.$$

If $\varkappa_i = \tau_1 + \ldots + \tau_p$, set $\varkappa_i' = \tau_1' + \ldots + \tau_p'$. Then \varkappa_i' is a (T, n, ε) -chain in F. It is not difficult to prove that $(\partial \varkappa_i)' = \partial \varkappa_i'$, so that $z_i' = \partial \varkappa_i'$ is a $(T, n-1, \varepsilon)$ -cycle in $F \cap Y$ homologous to zero in F. Since z_i' is the image of z_i under an equivariant map, $v(z_i') = v(z_i) = 1$ (see B)).

Clearly, when $\varepsilon \to 0$ we obtain a (T, n-1)-true cycle $z' = \{z'_i\}$ in $F \cap Y$ with v(z') = 1 homologous to zero in F. Hence $\delta h(F, F \cap Y; T) \geqslant n$.

One can prove in the same way next lemma.

LEMMA 2.5. Let (X, Y) be a T-pair. If, for any closed invariant neighbourhood \overline{OY} of Y, $\operatorname{in}(\overline{OY}; T) \ge n$, then $\operatorname{in}(Y; T) \ge n$.

If we replace the simplicial T-pair in Lemma 2.1 by an arbitrary T-pair, we obtain the following important

Lemma 2.6. Let F be an antipodal partition in the T-space X and $\delta h(X, Y; T) \geqslant n$. Then

$$\delta h(F, F \cap Y; T) \geqslant n-1$$
.

Proof. Let z be a (T, n-1)-true cycle in Y with v(z) = 1 homologous to zero in X. Denote by OF an arbitrary open invariant neighbourhood of F in X. As follows from Lemma 2.4, it is enough to prove that

$$\delta h(\overline{OF}, \overline{OF} \cap Y; T) \geqslant n-1$$
.

There exists in X a (T,n)-true chain $\varkappa=\{\varkappa_i\}$ with $\partial \varkappa=z$. Let i_0 be so large that $\nu(z_i)=1$ for $i>i_0$. Consider the simplicial space $P_i=\bar{\varkappa}_i$. Denote by F_i the union of all simplexes of P_i contained in OF. Then F_i is an invariant subset of P_i which is an antipodal partition in P_i for i large enough. Indeed, $X \setminus F = U_+ \cup U_-$, where U_+ and U_- are disjoint open subsets of X such that $TU_+ = U_-$; hence $P_i \setminus F_i = P_i^+ \cup P_i^-$ where P_i^+ (resp. P_i^-) is the union of all simplexes of P_i intersecting $U_+ \setminus OF$ (resp. $U_- \setminus OF$). But $P_i^+ \cap P_i^- = \emptyset$ for i large enough and $TP_i^+ = P_i^-$, i.e., F_i is an antipodal partition in P_i . It is easy to see then that its (n-1)-dimensional skeleton $F_i^{(n-1)}$ is a weak antipodal partition in P_i . Denote by Q_i the body of Z_i . Then Q_i is an invariant simplicial subspace of P_i and Z_i is a (T,n-1)-cycle in Q_i with $\nu(z_i)=1$ homologous to zero in P_i . According to Lemma 2.1, there exists a (T,n-2)-cycle ζ_i in $F_i^{(n-1)} \cap Q_i$ with $\nu(\zeta_i)=1$ homologous to zero in $F_i^{(n-1)}$. Consider the (T,n-2)-true cycle $\zeta=\{\zeta_i\}$. Evidently, ζ lies in $\overline{OF} \cap Y$, $\nu(\zeta)=1$, and ζ is homologous to zero in \overline{OF} . Hence $\delta h(\overline{OF},\overline{OF} \cap Y;T) \geqslant n-1$ whereby $\delta h(F,F \cap Y;T) \geqslant n-1$.

We shall now establish the relationship with δ .

LEMMA 2.7. a) $\delta h(X, Y; T) \leq \delta(X, Y; T)$ for any T-pair (X, Y).

b) $\delta h(X;T) \leq \delta(X;T)$ for any T-space X.

Proof. a) We shall prove that $\delta h(X, Y; T) \geqslant n$ implies $\delta(X, Y; T) \geqslant n$ by induction on n. The case n=0 is trivial. Assume that the lemma is true for n=k and let $\delta h(X, Y; T) \geqslant k+1$. Then for any antipodal partition F in X we have $\delta h(F, F \cap Y; T) \geqslant k$; hence $\delta(F, F \cap Y; T) \geqslant k$. According to Lemma 1.5 $\delta(X, Y; T) \geqslant k+1$.

b) follows immediately from a).

Note that the inverse inequalities are not always valid — see the example in the last section.

COROLLARY. a) $\delta h(X, Y; T) \leq \dim X$ for any T-pair (X, Y).

b) $\delta h(X; T) \leq \dim X$ for any T-space X.

5. The mapping theorems. The next two theorems are the main results in part II. They give estimates of the δh -index of the set

$$A(f) = \left\{ x \in X | \ f(Tx) = f(x) \right\}$$

where f maps X into a Euclidean space.

THEOREM 2.1. Let (X, Y) be a T-pair with $\delta h(X, Y; T) \ge n$ and $f: X \to \mathbb{R}^k$ maps X into the k-dimensional Euclidean space. Then the following inequality holds:

$$\delta h(A(f), A(f) \cap Y; T) \geqslant n-k$$
.

Proof. The proof is identical with the proof of Theorem 1.1 in part I. The only difference is that we must refer to Lemma 2.6 instead of Lemma 1.5.

As a corollary, we easily obtain a famous theorem due to Yang (see [4]).

COROLLARY. Let in $(X; T) \ge n$. Then for any map $f: X \to \mathbb{R}^k$ holds the inequality

$$\operatorname{in}(A(f);T) \geqslant n-k$$
.

Proof. Denote by $X_1=CX$ the cone over X with a vertex a. Clearly, T may be extended to $T_1\colon X_1\to X_1$ with $\Theta(T_1)=\{a\}$. There exists in X a (T,n)-true cycle z with v(z)=1. Then $\delta h(X_1,X;T_1)\!\geqslant\! n\!+\!1$, since z is homologous to zero in X_1 . Denote by $f_1\colon X_1\to R^k$ an arbitrary extension of f. According to Theorem 2.1

$$\delta h(A(f_1), A(f_1) \cap X; T_1) \geqslant n+1-k$$
.

But $A(f) = A(f_1) \cap X$, whence $\inf(A(f); T) \ge n - k$.

THEOREM 2.2. Let $\delta h(X;T) \geqslant n$. Then for any map $f: X \to R^k$ holds the inequality $\delta h(A(f);T) \geqslant n-k$.

Proof. There exists in X such a closed invariant Y that $\delta h(X, Y; T) \geqslant n$. According to the previous theorem $\delta h(A(f), A(f) \cap Y; T) \geqslant n-k$, whence $\delta h(A(f); T) \geqslant n-k$.

The following theorem is a generalization of Borsuk's theorem mentioned in part I and gives an estimate of the Smith index of a wide class of T-spaces. In the case $X = B^n$, $Y = S^{n-1}$ we get a theorem due to D. G. Bourgin (see [2]).

THEOREM 2.3. Let (X, Y) be a T-pair with $\delta h(X, Y; T) \geqslant n$ and C be an invariant partition in X between $\Theta(T)$ and Y. Then in $(C; T) \geqslant n-1$.

Proof. There exists in Y a (T,n-1)-true cycle $z=\{z_i\}$ with v(z)=1 homologous to zero in X. Let $\partial \varkappa=z$. As follows from Lemma 2.5, it is enough to prove that in $(\overline{OC};T)\geqslant n-1$ for any open invariant neighbourhood OC of C such that $\overline{OC}\cap \Theta(T)=\emptyset$. Consider an arbitrary OC. T induces an involution $T_i\colon P_i\to P_i$ in the simplicial space $P_i=\tilde\varkappa_i$. Denote by C_i the subset of P_i containing all of its simplexes lying in OC. Then, for i large enough, C_i is an invariant partition in P_i between $Q_i=\tilde\varkappa_i$ and $\Theta(T_i)$. Indeed, since C is a partition in X between $\Theta(T)$ and Y, $X\smallsetminus C=U_1\cup U_2$, where U_1 and U_2 are non-intersecting open invariant subsets of X such that $U_1\supset \Theta(T)$, $U_2\supset Y$. Evidently, for i large enough, $\overline{P_i\backslash C_i}=P_i^1\cup P_i^2$, where P_i^1 and P_i^2 are disjoint invariant simplicial subsets of P_i intersecting $U_1\backslash OC$ (resp. $U_2\backslash OC$). Let λ_i denote the (T_i,n) -chain containing all simplexes of P_i^1 . Note that $\lambda_i\cap\Theta(T_i)=\emptyset$. Set

$$\zeta_i = \partial \lambda_i + z_i$$
.

e All

Then ζ_i is a $(T_i, n-1)$ -cycle homologous to z_i ; thus $v(\zeta_i) = v(z_i) = 1$ (see A)). We shall prove that all simplexes of ζ_i lie in C_i . Suppose that τ^{n-1} is an (n-1)-simplex of P_i^1 which does not lie in C_i . Then all n-simplexes of P_i containing τ^{n-1} take part in λ_i . There are two possibilities:

i) τ^{n-1} does not take part in z_i . Then τ^{n-1} is not a simplex of ζ_i , since the number of all *n*-simplexes of λ_i containing τ^{n-1} is even.

ii) τ^{n-1} takes part in z_i . Then τ^{n-1} takes part in $\partial \lambda_i$, and therefore it is not a simplex of ζ_i .

Clearly, $\zeta = \{\zeta_i\}$ is a (T, n-1)-true cycle in \overline{OC} with $v(\zeta) = 1$, i.e., in $(\overline{OC}; T) \ge n-1$, whence in $(C; T) \ge n-1$.

Remark. The inequality $\operatorname{in}(C;T) \geqslant n-1$ for any partition C between $\Theta(T)$ and Y is not sufficient for $\delta h(X,Y;T) \geqslant n$. Let (X,Y) be the 2-dimensional T-pair constructed in Section 6. Then $\delta(X,Y;T)=2$, so that for any invariant partition C in X between $\Theta(T)$ and Y we have $B(C;T) \geqslant 1$, whence $\operatorname{in}(C;T) \geqslant 1$ (it is not difficult to prove it). On the other hand, $\delta h(X,Y;T)=1$.

The last two theorems give other generalizations of Borsuk's theorem.

THEOREM 2.4. Let $\delta h(X, Y; T) \geqslant n$ and C be a closed invariant subset of X non-intersecting Y and $\Theta(T)$. Suppose that no invariant k-cycle z^k in Y with $v(z^k) = 1$ is homologous to zero in $X \setminus C$. Then

$$B(C;T) \geqslant n-k-1$$
.

Proof. We shall proceed by induction on n. Let n = 1, k = 0. (The case n = 1, $k \ge 1$ is trivial). Since $\delta h(X, Y; T) \ge 1$, there exists in Y an invariant 0-cycle z^0 with $v(z^0) = 1$ homologous to zero in X. But z^0 is not homologous to zero in $X \setminus C$, whence $C \ne \emptyset$, i.e., $B(C; T) \ge 0$.

Assume the theorem to be valid for n=s and let $\delta h(X,Y;T)\geqslant s+1$. We have to prove $B(C;T)\geqslant s+1-k-1=s-k$. Suppose $B(C;T)\leqslant s-k-1$. Then C may be represented as the union $C=\bigcup\limits_{i=1}^{s-k}C_{\pm i}$ of its closed cubsets such that $C_{+i}\cap C_{-i}=\varnothing$ and $TC_{+i}=C_{-i}$ (see [6]). Consider the set $C_{+1}\cup C_{-1}$. There exists in X an antipodal partition X_1 nonintersecting $C_{+1}\cup C_{-1}$ (see Lemma 1.2). According to Lemma 2.6 $\delta h(X_1,X_1\cap Y;T)\geqslant s$. Write $C_1=\bigcup\limits_{i=2}^{s-k}C_{\pm i}$. Then $B(C_1;T)\leqslant s-k-2$. On the other hand, no invariant k-cycle z^k in $X_1\cap Y$ with $v(z^k)=1$ is homologous to zero in $X_1\setminus C_1$. Then the inequality $B(C_1;T)\geqslant s-k-1$ holds by the induction hypothesis, which is a contradiction.

Remark. We cannot replace the inequality $\delta h(X, Y; T) \geqslant n$ by $\delta(X, Y; T) \geqslant n$. Let (X, Y) be the T-pair constructed in the next section and $C = \emptyset$. Then no invariant 1-cycle z^1 in Y with $v(z^1) = 1$ is homologous to zero in $X \setminus C = X$, but B(C; T) = -1 < 2 - 1 - 1 = 0.

QUESTION. Can we replace the inequality $B(C;T) \ge n-k-1$ by

$$\operatorname{in}(C;T) \geqslant n-k-1$$
?

An affirmative answer in the case k = 0 is given by Theorem 2.3; the case k = n-1 is trivial.

Assume for convenience

$$S^{k} = \{x \in S^{n} | x_{k+2} = \dots = x_{n+1} = 0\},\,$$

so that $S^k \subset S^n$ for k < n. Denote by $\sigma^n = \{\sigma_i^n\}$ some invariant true *n*-cycle in S^n , such that σ_i^n is formed of all *n*-simplexes of some invariant subdivision of S^n of mesh <1/i, which induces an invariant subdivision of S^k for any k < n.

THEOREM 2.5. Let $X \subset \mathbb{R}^N$ and (X, S^{n-1}) be a T_0 -pair with $\delta h(X, S^{n-1}; T_0) \geqslant n$, where $T_0(x) = -x$. Suppose that C is a closed invariant subset of X such that $C \not\ni \Theta$, $C \cap S^{n-1} = \emptyset$, and the cycle σ^k on S^k is not homologous to zero in $X \setminus C$. Then

$$B(C; T_0) \geqslant n-k-1$$
.

The proof is identical with the proof of the previous theorem; we must only choose X_1 in such a way that $X_1 \cap S^s = S^{s-1}$.

COROLLARY. Let C be a closed invariant subset of B^n such that $C \not= \emptyset$, $C \cap S^{n-1} = \emptyset$ and the cycle σ^k on S^k is not homologous to zero in $B^n \setminus C$. Then $B(C; T_0) \geqslant n-k-1$.

Clearly, when k=0, C is a partition between Θ and S^{n-1} ; hence we again get Borsuk's theorem.

6. An example. We are going to give an example of a 2-dimensional simplicial T-pair (X, Y) such that

$$1 = \delta h(X, Y; T) < \delta(X, Y; T) = 2$$
.

Let

$$\begin{split} D &= \left\{ x \in R^3 | \ x_1^2 + x_2^2 \leqslant 16, \, x_3 = 0 \right\}, \\ U_+ &= \left\{ x \in R^3 | \ (x_1 - 2)^2 + x_2^2 < 1, \, x_3 = 0 \right\}, \quad U_- = -U_+ \,, \\ A &= D \backslash (U_+ \cup U_-) \,. \end{split}$$

Also denote by B_+ and B_- the cylinders

$$B_+ = \{x \in \mathbb{R}^3 | (x_1 - 2)^2 + x_2^2 = 1, 0 \le x_3 \le 1\}, \quad B_- = -B_+$$

and put $X_1 = A \cup B_+ \cup B_-$. Obviously, X_1 is symmetric with respect to the origin Θ . Let R be the following relation in X_1 : R identifies only the pairs $(x', x'') \in X_1^2$, where $x' \in \operatorname{Fr} U_+$ and $x' = (x_1, x_2, 0)$, $x'' = (x_1, -x_2, 1)$, or $x' \in \operatorname{Fr} U_-$ and $x' = (x_1, x_2, 0)$, $x'' = (x_1, -x_2, -1)$. Denote by $\psi \colon X_1 \to X_1/R$ the canonical map and finally put

$$X = X_1/R$$
.

Clearly, the central symmetry induces an involution T in X with $\Theta(T)=\{\Theta\}$. Then ψ is an equivariant map. The sets $C_+=\psi(B_+)$ and $C_-=\psi(B_-)$ are Klein bottles such that $TC_+=C_-$. Let

$$Y = \{x \in \mathbb{R}^3 | x_1^2 + x_2^2 = 16, x_3 = 0\}$$

be the boundary of D. We shall prove that the T-pair (X, Y) meets the case.

3 — Fundamenta Mathematicae CXXIII, 3

185

a) $\delta h(X, Y; T) = 1$. We may consider (X, Y) as a simplicial T-pair for some simplicial T-invariant subdivision of X of a small mesh. Then the sets $\Sigma_+ = \psi(\operatorname{Fr} U_+)$ and $\Sigma_{-} = \psi(\operatorname{Fr} U_{-})$ are 1-dimensional simplicial subspaces of X homeomorphic with S^1 . The inequality $\delta h(X, Y; T) \ge 1$ is obvious. Suppose now that

$$\delta h(X, Y; T) \geqslant 2$$
,

i.e., that there exists in Y an invariant 1-cycle z with v(z) = 1 homologous to zero in X. Let $\partial x = z$. Evidently, all 2-simplexes lying in A take part in x. They form a chain κ_1 . Since $\partial \kappa_1 \neq z$, there is a simplex of κ lying in C_+ . Then all 2-simplexes of C_{+} take part in \varkappa . Consequently, \varkappa contains all 2-simplexes of X. But every 1-simplex τ of Σ_+ is contained in exactly 3 2-simplexes, and thus τ is a simplex of ∂x , which contradicts the equality $\partial x = z$.

b) $\delta(X, Y; T) = 2$. The inequality $\delta(X, Y; T) \le 2$ holds by $\delta(X, Y; T)$ $\leq B(Y;T)+1=2$ (see Lemma 1.4).

Suppose that $\delta(X, Y; T) \leq 1$. According to Lemma 1.5 there exists in X an antipodal partition F with $\delta(F, F \cap Y; T) \leq 0$, i.e., $F = F_1 \cup F_2$, where F_1 and F_2 are closed invariant sets such that $F_1 \ni \Theta$, $F_2 \supset F \cap Y$ and $F_1 \cap F_2 = \emptyset$. Let $X \setminus F = U_+ \cup U_-$, where U_+ and U_- are disjoint open subsets of X such that $TU_{\perp} = U_{\perp}$. Denote by L the space

$$L = S^2 \cup \{x \in R^3 | -1 \leq x_1 \leq 1, x_2 = x_3 = 0\}$$
.

We shall find an equivariant map $\varphi \colon X \to L$ such that $\varphi(Y) \subset S$, where $S = \{x \in S^2 | x_1 = 0\}$. Since $B(F_2 \cup Y; T) \le 1$, there exists an equivariant map $\lambda: F_2 \cup Y \to S$. Let $\lambda_1: F \cup Y \to S \cup \{\Theta\}$ be the following equivariant extension of λ :

$$\lambda_1(x) = \begin{cases} \lambda(x) & \text{for } x \in F_2 \cup Y, \\ \Theta & \text{for } x \in F_1. \end{cases}$$

Consider the spaces $L_{+} = \{x \in L \mid x_{1} \ge 0\}$ and $L_{-} = -L_{+}$. Clearly, L_{+} and L_{-} are contractible and $L_+ \cup L_- = L$, $L_+ \cap L_- = S \cup \{\Theta\}$. The map λ_1 admits an arbitrary extension $\tilde{\lambda}_1 \colon F \cup Y \cup U_+ \to L_+$. Define $\varphi \colon X \to L$ by

$$\varphi(x) = \begin{cases} \tilde{\lambda}_1(x) & \text{for } x \in F \cup Y \cup U_+, \\ -\tilde{\lambda}_1(Tx) & \text{for } x \in U_-. \end{cases}$$

Then φ is the required equivariant map.

Consider the commutative triangle

$$\begin{array}{c}
\Sigma_{+} & \xrightarrow{\varphi_{1}} I \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
C_{+} & \downarrow \\
C_{+} & \downarrow \\
\end{array}$$

where $\varphi_1 = \varphi | \Sigma_+$, $\varphi_2 = \varphi | C_+$ and j is the inclusion map. Then the triangle

$$\pi_1(\Sigma_+) \xrightarrow{\varphi_{1_{\bullet}}} \pi_1(L)$$

$$\downarrow_{j_{\bullet}} \qquad \qquad \downarrow_{\varphi_{2_{\bullet}}} \qquad \downarrow_{\varphi_{2_{\bullet}}} \qquad \qquad \downarrow_{\varphi_{2_{\bullet}}} \qquad \qquad \downarrow_{\varphi_{2_{\bullet}}} \qquad \qquad \downarrow_{\varphi_{2_{\bullet}} \qquad \qquad \downarrow_{\varphi_{2_{\bullet}}} \qquad \qquad \downarrow_{\varphi_{2_{\bullet}}} \qquad \qquad \downarrow_{\varphi_{2_{\bullet}} \qquad \qquad \downarrow_{\varphi_$$

is also commutative. It is easy to prove that the fundamental group $\pi_1(L)$ is isomorphic to Z. Let α be the formant of $\pi_1(\Sigma_+)$. Clearly, $2j_*(\alpha) = 0$ (C_+ is a Klein bottle). Then

$$2\varphi_{1*}(\alpha) = \varphi_{1*}(2\alpha) = \varphi_{2*}j_{*}(2\alpha) = \varphi_{2*}(2j_{*}(\alpha)) = 0$$

whence $\varphi_{1*}(\alpha) = 0$, since $\pi_1(L) \approx Z$. Therefore $\varphi_{1*} \equiv 0$. Consider now Fr U_+ and the map $\mu = \varphi \psi | \text{Fr } U_+ : \text{Fr } U_+ \to L$. Evidently, $\mu_* \equiv 0$; hence μ admits an extension $\tilde{\mu} \colon \overline{U}_+ \to L$. Define the map $h \colon D \to L$ by

$$h(x) = \begin{cases} \varphi \psi(x) & \text{for } x \in A, \\ \tilde{\mu}(x) & \text{for } x \in \overline{U}_+, \\ -\tilde{\mu}(-x) & \text{for } x \in \overline{U}_-. \end{cases}$$

This is an equivariant map such that $h(Y) \subset S$; hence the inequality

$$\delta(D, Y; T_0) \leq \delta(L, S; T_0)$$

holds by Lemma 1.3 $(T_0(x) = -x)$). On the other hand, $\delta(D, Y; T_0) = 2$, $\delta(L, S; T_0) = 1$, which is a contradiction.

Remark. It is not difficult to give an example (based on the same idea) of a 2-dimensional T-space X with

$$1 = \delta h(X; T) < \delta(X; T) = 2.$$

References

- [1] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphere, Fund. Math. 20 (1933). pp. 177-190.
- [2] D. G. Bourgin, On some separation and mapping theorems, Comment. Math. Helvet. 29 (1955), pp. 199-214.
- [3] P. A. Smith, Fixed points of periodic transformations, Appendix B of Lefschetz. Algebraic topology, Colloq. Pub. Amer. Math. Soc. 27 (1942).
- [4] C. T. Yang, On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobo and Dyson, I, Ann. Math. 60 (1954), pp. 262-282.
- [5] On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobo and Dyson, II, Ann. Math. 62 (1955), pp. 271-283.
- [6] С. Т. Стефанов, Некоторые свойства компактов с инволюцей без неподвижных точек, Сердика 5 (1979), рр. 344-350.

INSTITUTE OF ECONOMICS

3*

Received 2 September 1982; in revised form 23 December 1982