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Almost maximal ideals
by

P. T. Johnstone (Cambridge)

Abstract, An ideal in a distributive lattice is said to be almost maximal if it is prime and satisfies
a first-order closure condition which, in the presence of the axiom of choice, is equivalent to saying
that it is an intersection of maximal ideals. Assuming the axiom of choice, we show that the almost
maximal ideals correspond to points of the soberification of the maximal ideal space of the lattice;
in the absence of the axiom of choice, we investigate the strength of the “almost maximal ideal
theorem” that every nontrivial distributive lattice has an almost maximal ideal. Our two main re-
sults are that this assertion implies the Tychonoff theorem for products of compact sober spaces,
and that it does not imply the axiom of choice.

Introduction. It is well known that J. L. Kelley [17] proved that the Tychonoff
product theorem is logically equivalent (in any reasonable set theory) to the axiom
of choice, However, elsewhere in topology and analysis it is far commoner to en-
counter theorems which are equivalent not to the full axiom of choice but to the
prime ideal theorem, i.e., the assertion that every nontrivial Boolean algebra (or
equivalently, every nontrivial distributive lattice) has a prime ideal. Among examples
of such theorems, let us cite:

(i) The Stone representation theorem for Boolean algebras (or for distributive
lattices).

(ii) The Stone-Cech compactification theorem.

(iif) Tychonoff’s theorem for products of compact Hausdorfl spaces.

(iv) Alaoglw’s theorem on compactness of the unit ball of the dual of a Banach
space.

(v) The theorem that the hyperspace of a compact Hausdorff space (i.e., the
space of closed subsets with the Vietoris topology) is compact.

There is of course a family resemblance between these theorems: each of them
asserts the compactness of some space which may be constructed without any use
of choice, but which will not have its expected properties unless it is compact. What
is more striking is that in each case the space in question occurs naturally as the space
of points of a certain locale (or “pointless space”; see [15]), and that the compactness
of this locale can be proved constructively. (For the appropriate locale-theoretic
construction, see [14] in case (i), [2] or [12]'in cases (i) and (iif), [21] in case (iv)
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and [16] in case (v).) Thus the non-constructive input of each of these five theorems
reduces to one or other of the assertions.

(vi) Every coherent locale has enough points (i.e., is isomorphic to the open-set
locale of a space).
(vii) Every compact regular locale has enough points.

Of these, (vi) is virtually a direct translation of the prime ideal theorem (since
the spaces of points of coherent locales are just the prime ideal spaces of distributive
lattices), and (vii) is easily proved equivalent to it (see [13]).

On the other hand, there does not appear to be any hope of deducing the Tycho-
noff theorem for arbitrary compact spaces in a similar fashion from an existence-
of-points theorem for locales; although the Tychonoff theorem for locales can be
proved without choice [12], the most that we can expect to deduce from it in this
way is the Tychonoff theorem for compact sober spaces (i.e., those spaces which
occur as the spaces of points of locales). And Kelley’s proof of (Tychonoff = AC)
makes what appears to be unavoidable use of non-sober spaces. (Specifically, Kelley’s
method requires the ability to impose on an arbitrary set X a compact topology
which does not discriminate between the points of X — so that every permutation
of X must be continuous for it. It is easy to see that the only such topologies are the
indiscrete topology and the cofinite topology, neither of which is sober when X is
infinite.)

Tt therefore becomes of interest to ask: what is the strength of the Tychonoff
theorem for compact sober spaces ? Although we do not (yet) have a definitive answer
to this question, the purpose of this paper is to present evidence for the conjecture
that it is equivalent to a choice principle which we have christened the “almost
maximal ideal theorem”, and which is in an obvious sense intermediate between the
prime and maximal ideal theorems for distributive latices. (It is known that the latter
is equivalent to the full axiom of choice — see [20].) We also discuss a number of
other locale-theoretic equivalents and consequences of the almost maximal ideal the-
orem, and provide a model to show that it is strictly weaker than the axiom of
choice. (The problem of showing that it is inequivalent to the prime ideal theorem
remains open.)

In the first sentence of this Introduction, we used the phrase “in any reasonable
'set theory”. It is perhaps appropriate to emphasize here that the formal properties
which we shall require of our underlying set theory are fairly naive — in particular,
we shall not require the axioms of foundation or of replacement, except in one instance
where we need to justify a proof by transfinite induction. For the reader who is familiar
with categorical logic, let us say that our arguments could be carried out in the internal
logic of a Boolean topos.

1. The soberification of maxA. Let 4 be a distributive lattice (with 0 and 1).
The space spec A of prime ideals ot A4 (with the Stone-Zarisk: toplogy, i.e., that
‘based by the sets {IespecA| a¢l}) is well known to be sober; it is (almost by
definition) the space of points of the locale Idl(4) of all ideals of 4. On the other
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hand, the subspace maxA4 consisting of the closed points of spec 4 (i.e., the maximal
ideals of A) need not be sober; it is always compact (if we assume the maximal
ideal theorem) and T, but Wallman [27] showed that any compact Ty-space can
occur as max.A for some A. It is therefore of interest to determine the soberification
of maxA.

If T is an ideal of A, consider the set

jt)={aed (Yoed)uvb =1= Feel)bve=1)}.

Lemma L1, j(I) is an ideal of A.

Proof. It is clearly a lower set. If «(, u; e j(I) and we have a; va,vb = 1,
then there cxists ¢, & I with ¢; va,vb = 1, and hence there exists ¢, € with
¢yveyvh = 1. Since I is closed under finite joins, we deduce a; va,ej(l). W

Lemmva 1.2, The map ji 1dU(A4) ~ 1dI(4) is a nucleus (in the sense of [24]).

Proof. The inclusion /< /(1) is clear from the form of the definition. Suppose
aej(j(1)); then for any b with avb =1 we can find cej(7) with cvb = 1, and
bence we can find d e I with dvb = 1, so aej(I). Thus j is idempotent. It is also
clear that j is order-preserving. Suppose a €j(I;) mj(l,); then if avd = 1 we can
find ¢, el,, cyel, with ¢;vb=c¢,vb =1, whence by distributivity we have
(eyAc)vb = 1. But ¢;Acsely n1T,, 50 aej(ly N T,); thus j preserves finite in-
tersections, W

Livma 1.3, If j() = A, then T = A.

Proof. If 1ej(l), then therc exists cef with cv0 =1, ie,lel W

COROLLARY 1.4, The sublocale Td1(A); of j-fixed ideals is compact.

Proof. By Lemma 1.3, any covering of the top element of Idl(4); is actually
a covering of the top element of Idl(A4). But Idl(4) is well known to be compact. M

COROLLARY 1.5. Maximal (proper) ideals are j-fixed.

Proof. Immediate from Lemma 1.3. W

PROPOSITION 1.6. If we assume the maximal ideal theorem, then j(I) is the
intersection of all the maximal ideals which contain I. In particular, an ideal is j-fixed
if and only if it is an intersection of muximal ideals.

Proof. By Corollary 1.5, j(/) is included in the intersection of the maximal
ideals which contain 1. Suppose a ¢/(1); then there exists be d with avh =1
but evb # 1 for all ¢ & I. So T'u {b} generates a proper ideal, which we can enlarge
to a maximal ideal &/; and since b e M we have a ¢ M. So every element of the
intersection is in j(I). The second assertion follows immediately from the first. W

COROLLARY 1.7, If we assume the maximal ideal theorem, then 1dlI(A); is iso-
morphic to the locale of open sets of maxd.

Proof. To determine Q(maxA) as a sublocale of Q(specd)=Idl(4), we have
to compute the nucleus k& on Q(specd), where :

k(U) = U {VeQspecd) Vo maxd = Un maxd}.
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In terms of ideals, this says that k(I) is the largest ideal contained in exactly the same
maximal ideals as I; but by Proposition 1.6 this is just j(7). B

It follows from Corollary 1.7 that the soberification of max4 is simply the
space of points of Idl(4);. But points of Idl(4); correspond bijectively to prime
elements of this lattice; and we have

Lemva 1.8. Let I be a j-fixed ideal of a distributive lattice A. Then I is prime
as an element of 1d1(A); if and only if it is a prime ideal in the usual sense.

Proof. The first condition says that

JnKcl implies J<I or K&l

for j-fixed ideals J and X; the second says that
anbel

for a, be A. To deduce the second condition from the first, take J = j({ (@),
K = j(} (8)), and note that J A K = j{{ (@) n{ (®)) = j({ (arb)); to deduce the
first from the second, suppose J n K<l and @ € J—I. Then.for any b € K we have
anbeJn KT and so bel, ie, K&l ®

We define an ideal of a distributive lattice to be almost maximal if it is both
prime and j-fixed; thus we can state

implies ael or bel

COROLLARY 1.9. If we assume the maximal ideal theorem, then the soberification
of max A is the space almax A of almost maximal ideals of A (with the Stone-Zariski
topology). &

Clearly, every maximal ideal is almost maximal, but the converse is not true in

general. For example, if 4 is the cofinite topology on an infinite set, then the trivial
ideal {@} is almost maximal in 4 (being the intersection of all the maximal ideals
of ‘4). Recalling Wallman’s characterization [27] of spaces of the form.max4 as
compact T;-spaces, we can give a similar characterization of spaces of the form
almax4:

CoRrROLLARY 1.10. Assume the maximal ideal theorem. Then a space X is homeo-
morphic to almax A for some distributive lattice A if and only if it is compact, sober
and a “Jacobson space” in the sense of [4], 0 2.8.1 (i.e., its subspace X° of closed points
is very dense).

Proof. The given conditions are equivalent to saying that X is (homeomorphic
to) the soberification of X*, and that the latter is compact. Since X*is clearly always
a T,-space, the result follows from Wallman’s result quoted above and
Corollary 1.9. &

By Corollary 1.10, the almost maximal ideals are topologically “close” to the
set of maximal ideals of A4. It is natural, therefore, to ask whether they are order-
theoretically close to the maximal ideals; that is, do they form an upper set in the
poset of prime ideals of 4? However, the answer is no:
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ExamprE 1.11. Let 4 be the set of all subsets SN such that either § = @,
or else S is cofinite and erther 0 e Sor 1 ¢ S. A is a sublattice of PN (indeed, a topology
on N) and therefore distributive; the ideals {S'e 4| n¢ S}, n>0, are all maximal,
and their intersection is the prime (and hence almost maximal) ideal {&}. But the
set {Se.A] 0¢ S} is a prime ideal which is not j-fixed; its j-closure is the maximal
ideal {Sed| 1¢S5}

Next we consider a particular class of distributive lattices. We shall say 4 is
semi-normal if, whenever avb =1 in A4, we can find elements ¢ and d with
cvh=avd=1 and cadej({0}). This is weaker than the concept of normality
(see [251), which requires cAd = 0; it is not hard to see that 4 is semi-normal if
and only if maxA is Hausdorff (cf. [14], II, 3.6). Since Hausdorff spaces are sober,
we should expect every almost maximal ideal in a semi-normal lattice to be maximal,
And this is indeed the case:

LemMma 1.12. In a semi-normal distributive lattice, almost maximal ideals are
maximal.

Proof. Let I be such an ideal, and suppose « ¢ I. Then we can find b € 4 such
that avb = 1, but cvb 5 1 for all ce /. Apply the definition of semi-normality
to obtain ¢ and d with avd = ¢cvb = 1 and cadej({0}); then c¢ I, but cAdel
since 1 is j-fixed, and so d & I by primeness. Hence I U {a} generates A as an ideal;
so I is maximal. B

To conclude this section, let us briefly mention the ring-theoretic versions of
the concepts we have introduced, exploiting the well-known link between the spectral
theories of commutative rings and distributive lattices (cf. [25]). They are already
well known to ring-theorists: in particular the analogue of j(I) is the Jacobson
radical [9], [10] of a ring ideal I. Recall that this can be defined in first-order terms
as the set of elements a such that 1+ab is invertible modulo I for all b, i.e.

j) = {ae Al VbeA)(ce A)(ab+c+abcel)}.

It is straightforward (even in a non-commutative ring 4) to verify the analogues
of 1.1~1.3 for this definition of j, i.e., that j(I) is an ideal, that I<j(I) = j{(j{I))
and j(I; A I) = j(I}) 0 j(I,), and that 1 ej(J) implies 1 € I. (We leave the verifi-
cation of these assertions to the reader.) Moreover, if we assume the maximal ideal
theorem for rings (which, like that for lattices, is equivalent to the axiom of choice [7]),
then any element not in j(I) is excluded from some maximal ideal containing 7,
and so the analogue of 1.6 holds. The lattice of all ideals of a ring 4 is not in general
a locale (since it fails to be distributive), but if (in the commutative case, at least)
we cut down to the distributive lattice RId1(4) of radical ideals (and note that j(I)
is a radical ideal for any J), then we may regard j as a nucleus on RIdl(4), and proceed
to obtain the analogues of 1.7 and 1.9. Thus one can develop a theory of almost
maximal ideals in commutative rings; however, it remains to be seen whether the
theory has a useful generalization to non-commutative rings.
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2. Feebly maximal ideals. This section is a digression from our main line of
research: it began as an attempt to give a model-theoretic characterization of almost
maximal ideals, but it turns out that the class of ideals characterized is strictly larger
than that of almost maximal ideals. Nevertheless, it may be that this class (whose
members we shall call feebly maximal ideals) will be useful for some future applica-
tion, and so we here record the known facts about it. Throughout this section, we
shall assume the axiom of choice.

Let I be an almost maximal ideal in a distributive lattice 4, and denote by §
the set of maximal ideals which contain I. By Proposition 1.6, we have () S = I;
we now consider the set

I={S'cS| NS #1I}.

LeMMA 2.1. 3 is a proper ideal of subsets of S.

Proof. It is clearly a lower set in P.S, and by the remarks above it does not
contain S. It is closed under binary unions, for if I= (S, U S) =NSy NN S,
then by primeness we have either I = (S, or I =S, H©

It follows from Lemma 2.1 (and the prime ideal theorem) that we can find an
ultrafilter & on S which is disjoint from J, i.e. such that (} S’ = I for all S'e &.
We now consider the ultraproduct (] M)/ as an ideal in the ultrapower (A%)/%;

MeS

it is clearly maximal, since the property of being a maximal ideal is a first-order one.
On the other hand, the inverse image of this ideal under the diagonal embedding
A (ANF is U{NS) S’ eF} =1I; thus we have shown

PROPOSITION 2.2. Every almost maximal ideal in a distributive lattice A is ex-
pressible as the inverse image of a maximal ideal of some distributive lattice B under
an elementary embedding A — B. H

In the converse direction, suppose we have an elementary embedding f: 4 — B
of distributive lattices and a maximal ideal M of B. What can we say about the ideal
I = f~Y(M) of ATt is clearly prime, since M is; also, if ¢ e J and b ¢ I, then we have

Br@yeM)(yvf(b) =1)
by maximality of M, whence
Br@yeB)(yvfib) =1 and yvf(a) # 1)
since f(a) € M. Since f is elementary, we deduce
AF@@xed)(xvb =1 and xva # 1)

and so b ¢j({ (@)). Thus j({ (@)= for every ael; equivalently, I is a union of
J-fixed ideals. In particular if I is principal, then it must itself be j-fixed and hence
almost maximal; but in general this is not so.

ExampLE 2.3. Let 4 be the set of all subsets S of N such that either (S is finite
and 0 ¢ 5) or (V—S is finite), and let J be the ideal of all finite sets in 4. A is a distri-
butive lattice, since it is a sublattice of PN, and I is clearly a prime ideal. But I is
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not j-fixed, since N—{0} € j(I); however, it is easy to see that each S e/ satisfies

J(¥ (8) = § (8), and so I'is a union of j-fixed ideals.

‘We shall say that an ideal in a distributive lattice is feebly maximal if it is prime
and a union of j-fixed ideals. Now we can state

PROPOSITION 2.4. An ideal I of a distributive luttice A is feebly maximal if and
only if it can be expressed as ™ (M) for some elementary embedding f: A~ B
and maximal ideal M of B.

Proof. One direction was proved in the remarks before Example 2.3; the con-
verse is a straightforward strengthening of Proposition 2.2. Let I be a feebly maximal
ideal of 4; let S be the set of all maximal ideals of 4, and define

I ={S'eS| S'EI}

and S,={M e S| ae M} for each a & L Since S, N Sy,=S,y; a0d () S, =j(} (@)=1
for all a € I, it is clear that the S, generate a filter in PS disjoint from J; also I is
an ideal by primeness of J. So we can find an ultrafilier § on S which is disjoint
from J b’ut contains every S,, so that

I=0 (¥ @) ael}s U{(NS) S'eF}el;

equivalently, 7 is the inverse image of ([]M)/§ under the diagonal embedding
MeS

d-A)F |

3. Topological consequences of AMIT. We now revert to our main line of
development, by introducing the principle which we shall call the almost maximal
ideal theorem (AMIT): Every nontrivial distributive lattice has an almost maximal
ideal. It is clear that AMIT is implied by the maximal ideal theorem (i.e., by the
axiom of choice) and implies the prime ideal theorem; we devote this section to
studying results in locale theory and topology which are equivalent to AMIT or
follow directly from it.

THEOREM 3.1. The following. assertions are equivalent:

(i) AMIT.

(i) Every nontrivial compact loeale has at least one point (c¢f. [14], Lemma
11, 1.9).

(i) The space of points of any compact locale is compact. ‘

Proof, (i) = (ii): Let 4 be o compact locale, I any ideal of A. First we observe
that \/Z e j(I); for if \/Tvb = 1, then we have V{evb| cel} =1, and by com-
pactness there exists ¢ e I with ¢vb = 1. Thus any j-fixed ideal of A is principal,
and hence any almost maximal ideal must be generated by a prime element of 4.
But prime elements correspond bijectively to points of a locale. ‘

(ii) = (i): Let 4 be a distributive lattice. By Corollary 1.4, we knt.)w 1d1(4);
is compact; and Lemma 1.3 ensures that it is nontrivial whenever A }s. Bx‘xt by
Lemma 1.8 the points of 1di(4); correspond bijectively to almost maximal ideals
of A.
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(i) = (iii): Let 4 be a compact locale, ae 4. If @ # 1, then the closed sub-
locale 4, is compact ([14], ITI, 1.2) and nontrivial, and so has a point; that is,
there exists a point p of 4 which is not in the open set ¢ (a) Spt(4) corresponding
to a. So if {¢(s)] s S} is a family of open subsets of pt(4) whose union ¢(\/5)
contains all the points of A, we deduce that \/S = 1 in A4; thus pt(4) inherits com-
pactness from A.

(iii) = (ii): Suppose given a counterexample to (ii), i.e., a nontrivial compact
locale 4 with no points. Let B be any locale, and form the ordinal sum C = B@A,
i.e., the poset obtained by identifying the top element of B with the bottom element
of A. It is easily verified that C is a locale; and since A is nontrivial, any covering
of the top element of C must contain a covering of the top element of 4, so that C
inherits compactness from 4. But any prime element of C must be either a prime
element of 4 or a prime element of B, so since 4 has no points we obtain a homeo-
morphism pt(C)=pt(B). (Thus we can think of C as a “no-point compactification”
of B) In particular, on taking B to be a non-compact spatial locale, we obtain
a counterexample to (iii).

THEOREM 3.2. AMIT implies the Tychonoff theorem for products of compact
sober spaces.

Proof. Let (X,] ye [") be a family of sober spaces. Then we have X,z pt(Q(X,))
for each y, and since the functor pt is right adjoint to Q it preserves products; so
Hr X,xpt( Hr Q(X,)). Now the Tychonoff theorem for products of compact locales
Ye e

is valid without any use of choice ([12], Theorem 2.7), so compactness of all the X,
(i.e., of the locales Q(X,)) implies compactness of []Q(X,), and then from
Theorem 3.1 (iii) we deduce compactness of [] X,. B

Before proceeding further, we should recall that the proof of Theorem 2.7 in [12]
involves a transfinite induction, and so we cannot claim to have proved Theorem 3.2
in the “naive” set theory to which we alluded in the Introduction. However, as
observed in [12], the transfinite induction reduces to a single step under the extra
hypothesis of local compactness, and so we can say without any reservation that
AMIT implies the Tychonoff theorem for compact and locally compact sober spaces.

It is not clear at present whether the converse of Theorem 3.2 is true. Since all
Hausdorff spaces are sober, we know from the work of £.0§ and Ryll-Nardzewski [18]
that the Tychonoff theorem for sober spaces does at least imply the prime ideal
theorem; and on the other hand, the prime ideal theorem implies Tychonoff’s
theorem for compact and stably locally compact sober spaces (cf. [13]). It seems
plausible that we might be able to deduce condition (iii) of Theorem 3.1 from
Tychonoff’s theorem for compact sober spaces, by showing that any compact locale
has enough closed maps into compact spatial locales to separate points; what is
lacking at present is a satisfactory theory of closed maps of locales.

We now turn our attention to locally compact locales; recall that a locale is
said to be locally compact if it is a continuous lattice [3]. Hofmann and Lawson [8]
and Banaschewski [1] have given proofs, using the axiom of choice, that every
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locally compact locale is spatial, and that the category of locally compact locales is
equivalent to the category of locally compact sober spaces. In what follows, we
shall refer to Banaschewski’s proof; this depends on two key lemmas, which we
shall cite as “Banaschewski’s lemma 1” and “Banaschewski’s lemma 3”,.and which
respectively assert

(BL1) In a continuous lattice, every Scott-open set is' expressible as a union of
Scott-open filters.
(BLS) In a locale, any Scott-open filter is cxpressible as an intersection of comple-

tely prime filters.

Here, as usual, a subset of a complete lattice is said to be Scott-open if it is an
upper set and inaccessible by directed joins, and a filter is said to be completely
prime if it is inaccessible by arbitrary joins (i.e., if its complement is a principal
ideal). BL1 is not originally duc to Banaschewski ([3] attributes it to J. D. Lawson),
but BL3 does not seem to have appeared explicitly anywhere before [1]. From our
point of view, its interest is given by o

LemMA 3.3. AMIT is equivalent to BL3. :

Proof. Assume AMIT; let F be a Scott-open filter in a locale 4, and a an el-
ement of A—F. By [16], Lemma 3.4, F is “admissible” for some-nucleus j on 4,
and 50 by considering the sublocale .4; and the element j(a) we may reduce to the
case when A is compact and F is the trivial filter {1}. Then by the argument of the
proof of (i) = (ifi) in Theorem 3.1, we may find a point p of 4 with p*(a) = 0,
so that (p*)~*(1) is a completely prime filter not containing a. Conversely, if we
assume BL3, then by applying it to the filter {1} in a nontrivial compact locale 4,
we deduce that 4 has a completely prime filter and hence a point. B

Now the proof of BL1 invokes no more than (cou;itable) dgpeqdent_ choice (DC),
in order to construct a descending sequence a; 3,3 a; > ... of instances of the way-
below relation, and so we deduce

THEOREM 3.4. AMIT plus DC implies that every locally compact locale has enough
points. W

Once again, it is not clear whether the converse of Theorem 3.4 holds. The
assertion “Every locally compact locale is spatial” is sufficient to imply the Tychonoﬁ
theorem for compact and Jocally compact sober spaces, as observed in [12]; bu?: if
we restrict oursclves to stably locally compact locales; then we obtain an assertion
equivalent to the prime ideal theorem. The dependence on DC may be removed
by redefining local compactness: let us say that a is deeply way below b (1n,. a complete
lattice ) if there exists a sequence (¢y, ¢z, €35 --) of elements of 4 with a<ci+‘1
<e¢;<b for all i, and that a complete lattice is deeply continuous (or that a locale is
deeply locally compact) if every element is expressible as a join of elements deeply
way below itself. Then AMIT implies that every deeply locally compa(.:t l(?cale has
enough points; the use of DC is in proving that every continvous lattice is deeply
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continuous. I do not know whether this last assertion (or even BL1) is sufficient to
imply DC, but it seems not unlikely.

4, The strength of AMIT. Inthis section, we shall prove that the almost maximal
ideal theorem does not imply the axiom of choice; we shall do this by showing that
AMIT holds in the model used by Halpern [5] to show the independence of AC
from the prime ideal theorem. Halpern’s model is of Fraenkel-Mostowski type [19],
and as sach is determined by a single topological group G in the ground model,
which in this particular case is the group of order-preserving permutations of the
rationals (with topology defined by saying that the stabilizers of finite subsets of Q
form a base of open neighbourhoods of the identity)., Halpern showed that if B is
a nontrivial internal Boolean algebra in this model (i.e. — essentially — a Boolean
algebra in the ground model, equipped with a continuous action of some basic open
subgroup G, of G), and I is an ideal of B maximal amongst those invariant under
the action of G, (the existence of such an ideal being guaranteed by Zorn’s lemma
-in the ground model), then I is prime. (Note that this is a stronger result than we
actually need for the internal validity of PIT in the model; the latter merely asserts
the existence of a prime ideal of B invariant under some open subgroup G, of G,.)

Our first task is to modify Halpern’s proof of this result so that it does not make
any reference to complementation in B, and can therefore be applied directly to
internal distributive lattices in the model. (Of course, we known that PIT holds for
distributive lattices in the model, since it holds for Boolean algebras; but we are
going to need the extra strength of Halpern’s result, to which we alluded above.)
We begin by stating two trivial lemmas which take the place of Halpern’s Lemmas 2
and 3 ([5], p. 62).

LemMA 4.1. Let H be a group of automorphisms of a distributive lattice A, I an
ideal of A invariant under H, a an element of A. Let J be the smallest H-invariant
ideal of A which includes I'U {a}. If J = A, then there exists a finite set SSH and
an element b € I such that

I,=V{e@l geS}vh. M

LemMA 4.2. Let A be a distributive lattice, I an ideal of A and X a finite subset
of A x A such that ay Aa, € I for each (ay, a,) € X. Let P denote the set of all functions
X > {1,2}; then

ANV ] @1, a)e XY fePlel. B

THEOREM 4.3. Let 4 be a distributive lattice equipped with a continuous action of

a basic open subgroup Gq of G, I an ideal of A maximal amongst proper Go-invariant
ideals. Then I is prime.

Proof. Suppose we have a; Aa, €1, ay ¢ I, a, ¢ I. By Lemma 4.1 we can find
finite sets Sy, S, and elements b,, b, € I such that

VA{p@) peS}vh; = 1,
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for i = 1, 2. Applying the combinatorial argument in Halpern’s paper, we may now
find a finite subset X of Gy, such that, for each f: X — {1, 2}, the set {p(a,,)| @& X}
contains the image under some ;€ G, of either {¢(as)| ¢ € 8;} or {p(az)| @ €S,}.
Thus for each such f we have

Voo e Xivh, =1
for some by eI, and hence

NV e @@l e X} fePIvV (bl feP} =1.

But the meet on the left is in J by Lemma 4.2, so we have a contradiction. W

Given this result, it is now a triviality to show that any ideal satisfying the hypo-
theses of Theorem 4.3 is almost maximal.

LeMMA 4.4, If A is a distributive lattice, and I an ideal of A invarient under some
group H of automorphisms of A, then j(I) is H-invariant.

Proof. Suppose aej(l), p e H. If p(d)vh = 1, then we have

ave i) = (D) =1,

whence there exists c € J with ¢v ¢~ () = 1. So ¢(c) vb = 1; but ¢ (c) € I since I is
H-invariant. Hence ¢ (a)ej(l). W

COROLLARY 4.5, Let H be a group of automorphisms of a distributive lattice A,
and I an ideal maximal amongst H-invariant proper ideals of A. Then I is j-fixed.

Proof, Immediate from Lemmas 1.3 and 44. W

THEOREM 4.6, AMIT holds in Halpern’s model; in particular it does not imply
the axiom of choice.

“Proof. Let 4 be a nontrivial distributive lattice in the model, and G, a basic
open subgroup of G which acts on 4. By Zorn’s Lemma applied in the ground model,
we can find an ideal J which is maximal amongst Go-invariant proper ideals of 4.
Then Theorem 4.3 tells us that I is prime, and Corollary 4.5 that it is j-fixed (note
that both conditions on I, being first-order, have the same interpretation inside
Halpern’s model as in the ground model). B

Combining Theorems 3.2 and 4.6, we see that the Tychonoﬁ‘ product theorem
for compact sober spaces does not imply the axiom of choice. Thus the use of non-
sober topologics in [17] was not merely an accidental consequence of Kelley’s
method of proof (as we observed in the Introduction), but an essential feature of
any attempt to deduce the full axiom of choice from a Tychonoff-type theorem.

Subsequent to Halpern's paper, Halpern and Lévy [6] constructed a model
of ZF in which PIT holds but AC fails; they achieved this essentially by forcing the
countercxample to AC in Halpern’s first model into the well-founded part of the
universe, along the general lines laid down by Pincus [22], although their presentation
was somewhat different. Tt seems clear that such a forcing extension will not disturb
the validity of AMIT, and so we may obtain a ZF model for the independence of AC
from AMIT.
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A rather different model for the independence of AC from PIT was constructed
by Pincus [23] .using ‘an iterated-forcing argument; Pincus’s model satisfies DC as
well as PIT, but still fails AC. I have not been able to determine whether AMIT
holds in Pincus’s model; but it is perhaps worth remarking that the conjunction. of
PIT and DC does imply something on the road to AMIT.

Remark 4.7. If PIT and DC both hold, then evéry nontrivial distributive lattice
has a feebly maximal ideal.

Proof. Let 4 be such a lattice. If 7, is a prime ideal of 4, then j(J,) is a proper
ideal by Lemma 1.3, so another application of PIT enables us to find a prime ideal
I, 2j(I,). Proceeding inductively, DC allows us to construct a chain of prime ideals

e
ILyel,cl,<... with j(I,)<I,+, for all n. Then I = {J I, is prime because primencss
. n=0

is inherited by directed unions, but it is equal to U j(7,) and hence feebly maximal. lt
n=0

In view of Example 2.3, however, it seems unlikely that this argument can be
extended any further; and so the problem of determining whether AMIT is indepen-
dent of PIT, either with or without DC, remains open. .
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