icm

On dendroids and their ramification points in the classical sense
by

Jacek Nikiel (Wroclaw)

Abstract. A family T of triods is said to be an almost disjoint family if, for any S € T, there are
two end-points a, b of S such that the arc from a to b (contained in §) is disjoint with any triod
S’ e T distinct from S. In this paper we show that if the set of all ramification poiixts (in the classical
sense) of a dendroid X cannot be covered by countably many arcs, then X contains some uncountable
almost disjoint family of triods. Then we apply this result to planable dendroids, in particular, we
show that the set of all ramification points of a plane dendroid is a Gjg-set.

In [7] we showed that if X is such a dendroid that the set R(X) of all its
ramification points (in the classical sense) cannot be covered by countably many
arcs and X does not contain any uncountable family of pairwise disjoint triods,
then X contains the Gehman dendrite. In this paper we obtain some further results
on such dendroids and we then apply them to plane dendroids. In particular, we
estimate the Borel class of the set:of all ramification points of a plane dendroid.
Such an estimation has been known only for the set of all end-points of a plane
dendroid ([4]). )

Let X be a dendroid. If x, y € X, then [x, y] denotes the ‘only arc from x to ¥
and (x,y] = [x, YIN{x}, (x, %) = [x, YIN{x, y}. If confusion is possible, we write
[x, ]y instead of {x, y]. A subset B of X is said to be a branch of X, if there is
a point x & X such that B is an arc-component of X\{x}. In this case wé say that
a branch B of X begins at x. If B is a branch of X, then there is a unjque point at
which B begins. We denote this point by x(B). If Y is any nonempty subset of X
and B is a branch of X such that x(B)e ¥ and B n ¥ = @, then we say that B
begins from Y. If x is a point of X; then we define its order (in the classical sense),
r(x), as a cardinality of the set of all branches of X each of which begins at x. If
r(x) = 1 (resp. r(x):=3), then x is said to be an end-point (resp. a ramification point)
of X. The set of all end-points (resp. ramification points) of X is denoted by E(X)
(resp. R(X)). If Bis a branch of X, we put R(B) = B n R(X) and E(B) = B n E(X).
A subset Y of B is said to be an m-arcif ¥ = (x, y] for some ye E(B), x = x(B).

A dendroid T is a triod if R(X) consists of a single point X, and r(xy) = 3.
If 7 is any family of triods, then we say that 7 is an almost Hisjoint farily if for
each T'e  there are points a, b E(T) 'such that [z, b1y o UI\{T}) = @.
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LemMa 1 ([1], Lemma 3, p. 18). Let X be a dendroid and f o one- to—oné continu-
ous function f: [0, ) — X (here [0, c0) denotes the ray of non-negative reals). Then
the closure of the set f([0, 00)) is an arc.

If « is an ordinal number, a<w;, then we define P, as the set of all sequences
{o, ny, . my, )2 my<g, y<a}. If zz<w1, = (19, Ny, .oy Ny, ...) € P, and n<a,
is ﬁxt_ad then we put (p,n) = (ko, ky, ..., ky, ..., k) € Py, Where

P L for y <o,
Y n  for y=a. .

If o, f<w,, B<a, p=(ny,ny,..,n,..)€P,, then plg denotes the restriction
of p to B, ie., ply = (mg, my, ..., m,, ...) e Py, where m, = n, for each y<p. If
a, f<w;, peP,, gePy, then g<p, if f<o and Py =¢q

. THEOREM 1. Let X be a dendroid. If

1 R(X) cannot be covered by countably many arcs,
then X contains some uncountable almost disjoint family of triods.

Proof. Let us suppose that
(2) X does not contain any uncountable almost disjoint family of triods.
Therefore
(3) X does not contain any uncountable pairwise disjoint family of triods.
Moreover, we always have the following

(4) if B is any branch of X such that R(B) is nonempty, then B contains some
triod.

Now, we use transfinite induction to describe the structure of X. Namely, we
define some families of branches of X.
Let I be a fixed arc in X which is maximal (in the sense of inclusion) and let x,
be a fixed end-point of I.
Let # be a family of all branches beginning from I such that if Be & then
R(B) # ©. By (3).and (4) & is countable, and so we may index it as follows: @
= {B,: n<wy} (if 4 is finite, we put B, = @ for sufficiently large 7). We see that

(&) ‘ R(X)cIu 4.

Let o be an ordinal number, O<a<w,, and suppose. that for each B<u
we have already defined subsets B, of X, for pePy,,, such that if B, # & then

(6) B, is a branch of X,

() B,nBy=0,forp,p' ePyyp#p,

8)  if B<y<a, pePpyy, ge€P,.y, p<q, then B,5B, and
. [xo, x(B)] N [x(B,), x(B,)] ={x(B,)}.
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Case A. There is an ordinal number § such that o = B+1. Let p €Pyiq =P,
be fixed. If B, = @, then put By,,,, = @ for each n<w,. If B, # &, then let I, be
some fixed m-arc of B,. Let %, be a family of all branches beginning from I, such
that if Be %, then R(B) # @. By (3) and (4) 4, is countable, and,so we may
index it: B, = {Bg,n: n<wo} (f 4, is finite, we put By, ,, = @ for sufﬁmently
large n). We see that (6), (7), (8) hold Moreover

(9) R(B)cI,UU%,.

-Case B. o is a limit ordinal number. Since x<w,;, we can find a sequence
{B,: n<ay} such that f,<pB;< .. <a and limB, = a. Let us fix such a sequence
and let p e P, be fixed. Put p, = pj,,, and so DPa<Pusy<p for n<wy. If B, =@
for some k<w,, then put B, ,, = & for each n<w,. Otherwise, put x, = x(B,,)
The set $'= U {[x,, x,+1]: n<w,} is (by (8)) a continuous and one-to-one image
of [0 o), so (by Lemma 1) cl(S) is an arc. We see that cl(S) = [xo, x,], where

= lim x,. Moreover, by (8), the deﬁm’uon of the point x,, does not depend on

=+
the partlcular choice of a sequence {,5,,. n<woy} converging to a. Note that the
point x, need not be an end-point of X.

Let 4, be a family of all branches of X beginning at x, and such that if Be &,
then x, ¢ B and R(B) # @. By (3) and (4), 4, is countable, and so we may index
it: B, = {B(,n: n<wo} (if 8, is finite, we put By, ,) = & for sufficiently large »).
We sce that (6), (7) and (8) hold.

The constructien is finished. Put

C = {{x € R(X): x = x, for some p € P,} if o is a limit ordinal number, 0<a<aw;,
* @ if o is a non-limit ordinal number or « = 0,

and ,

0, = {{pePa: B, # @} if «is a limit ordinal number, O<a<ay,
* @& if o is a non-limit ordinal number or « = 0.

(10)  For each au<w,, the set C, is countable.

Indeed, if x € C,, then r(x)=3; sc let Dy, D,, D; be 3 distinct branches of X
beginning at x. At most one of them, say Dj, can contain the point x,. Let x; € D,
and x, € D2 be any points, so Ty, = [x;, X] U [x5, x] U [xg, x] is a triod. If x, x’
e C,, x # x', then (by (7)) T, n Ty = (x, Xo] N (', Xo], 1 °., the farmly {T,: xe C;}
is almost disjoint. By (2) we obtain (10). Furthermore:

(11) for each a<w,, the set Q, is countable. '

If p € Q,, then &, is nonempty, i.c., there is a branch E, of X beginning at x
such that R(E,) # @ and x, ¢ E,. By (1), E,n E, = 0 for p,p'e Qy, p# 7.
By (4), there is a triod T, contained in E, for each pe Q,. By (3) we obtain (11).

Put I, = & if p EP, and « is a limit ordinal number, 0<o<w®,.

(12)  For each O<a<w,, the family {I,: peP,, I, # @} is countable.
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If o = f+1 for some limit ordinal number B, then (by (11)) Qs is countable,
Since each family &, = {B, .;: n<w,} is countable and each nonempty Tiom
corresponds to exactly one B, € %, and this correspondence is one-to-one for
(p,n) €Pyyy = P,, we see that in this case (12) holds. Suppose that & = f+n+1
for some limit ordinal number f<w;, 0<n<a,, and we have already shown (12)
for p+n. If pe Py, and I, # @, then each arcy, ,, k<w,, is contained in B
and if I, = @ then also [, , = & for each k<aw,. Therefore

oy PEPsy, k<wy, I, # B} {I;: gePpyysy, I, # O}
and these sets are countable.

Now we show
(13) RX)<=1vU{,: pePp, f<a} u U{Cy: B<a} L U{B,: peP,},
if o is a non-limit ordinal numbe1; and
(14 RX)elu U{I,: _p'ePp,ﬂ<oz} w U{Gs: B<a} W U{B,: pePuiy},
if @ is a limit ordinal number. )

We proceed by induction. For o = 0, (14) is the same as (5). Suppose that

a is given, 0<a<wy, and both (13) and (14) hold for each f<a«. There are three
cases to consider: . ,

Case I. o = f+1 for some non-limit ordinal number y. Therefore (13) holds
for y and, by (9), we see that :

U{RB,):peP}cU{l,: peP}u {Bpuwy: PP, n<w,},
so (13) holds for a.

Case II. o = y+1 for some limit ordinal number y. Therefore (14) holds
for y. But '

Udly: pePy, B<y} = U {I,: pe Py, B<y} = U {L,: pePy, f<a}
(because I, = @, for peP) and
U{G: B<y} = U {Cy: B<a};
so (13) holds for a.

Case II « is a limit ordinal number, 0<x<w,. Let {ys: n<we} be an in-
creasing sequence of non-limit ordinal numbers. which converges to o. We know
that (13) holds for each y,. Moreover,

(15 ToU{L: pePs, B<y} u U{Cy: <yl
cloU{L:pePy <t u {C: B<a}
Suppose that (14) does not hold for «, ie., there is an x € R(X) such that

x¢ITu U {l,: pePy, f<a} U U{G: B<a}u U {B,: peP, ).

for each n<aw, .

(16)
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By (13).used for each y, and by (15) and (16) we see that

an xe{{B,: peP,} for each n<a,,
and
(18) x¢C,u U {By pePy}.

By (17), (7) and (8) there is a g € P, such that if ¢, = g],, then x € B, for each
n<w,. Since (by (18)) x ¢ C,, we see that x # x,, so there is a unique branch B
of X beginning at Jé,l and such that xeB. Suppose first that [x,, x,] N [x; x,]
# {x,}. By the hereditary unicoherence of X, there is a point y € X such that
yelx,x] and [xo, x,] N [x,y] = {y}, so y # x,. Since x, = limx(B,), there

n-+oo

is a k<, such that y € [x(B,,), x(B,,,,)- We have xe.B and x€ B,,,, (by (17).
But B and B,,,, are branches of X which begin from the arc [x(B,), x(B,,,,)]
at distinct points y and x,, .. Therefore B m B,,,, = @ —a contradiction. Hence
[xo, X1 0 Ix, x,] = {x,} and x, ¢ B (because if x, € B then [x,, x,] N [x, x,] # {i,}).
This means that

X € U gqc U {Bp: pePo:-i—]}
The last face contradicts (18). In this way both (13) and (14) are proved.

19y

(since x e R(B) # O).

If a<e; is a non-limit ordinal number, then there is a p e P, such that
B, # 0.

Indeed, if « is a non-limit ordinal number and B, = @ for each p e P,, then
by (13), (12) and (10) the set R(X) can be covered by countably many arcs (since
a<m,;) — which contradicts (1). ‘ ’

(200 If peP,, qeP;, for some O<a, f<w;, p# g, then ,n I, = &.

Indeed, put y = min{3: p|; # ql,}. Suppose that y<« and y<f. It is clear
that y cannot be a limit ordinal number because in this case p|, = g|,. If y is a non-
limit ordinal number, then (by (7)) By, N By, = &, [,=B,c B, , [,cB,=B, , so
we obtain (20). Therefore we may assume that y = a+1, ie., g|, = p and.a<f.
We have I, B,= B, ., and B, ., is a branch of X beginning from I, so B,,,, N
n I, = &. (20) is proved.

For each limit ordinal number «, « # @, let p, e P, and m,, n,<w, be such
that By, me,my % &; thus also B, m, # @ and therefore L,y # D Lipa,ma,n)
# 0. We have I m = (%, ¥1] and Lo ma,ng = (¥ By, ma),na))s ¥2] for some
Y1, 2 € E(X). Moreover,

(xp,, nln [x(B((ny"‘u),"s))’ yil = {x (B((Fu.m)."u))} .

Let @ be any point such that a € (%,, ¥(B(g,,me,n))- BY the previous remarks, the
set T, = [a, 211U I, my,moy 18 & triod. By (20), T, 0 T; = @ for a # f. The set
{e<w;: ¢ % 0 and « is a limit ordinal number} is uncountable, and so the c?l-
lection {T,: 0<a<w, and o is a limit ordinal number} is an uncountable family
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of pairwise disjoint triods contained in X. This contradicts (3). The proof of Theo-
rem 1 is finished. . .
THEOREM 2. Let X be a dendroid and assume that

(@) X does not contain any uncountable family of pairwise disjoint triods,
and
(i) X contains an uncountable’ almost disjoint family T of triods.

Then R(X) cannot be covered by countably many arcs. :

Proof. Let us suppose that some family {[a,, 5,]: n = 1,2, ...} covers R(X).
Let {rp: Te 7} denote the set of ramification points of triods from the family 7,
ie,rrel, {re} = R(T), for Te 7. Since I is an almost disjoint family, Fp % Py,
for T, T'e T, T # T'. Therefore there is a positive integer k such that the arc
[ay, b;] contains uncountably many points Fp, i.e., the family

T ={TeT: rrela,bl}
is uncountable. Put

T"={TeJ": Ty, bl ={r)}.

By the hereditary unicoherence of X, if T, T'eT", T#T', then TnT = @,
ie., 7" is the family of pairwise disjoint triods. Put & = F'\J" ;50 by (i) & is
an uncountable almost disjoint family of triods. Moreover, if Te&”, then
T~ [ag, b # {ry}. By the hereditary unicoherence of X, T'n g, b is some
nendegenerate are, for Te &. Let sy be any point such that s; # rp and [rg, 57l
=T n [a, by] for each Te &, Let “<” be a unique natural ordering of the arc
[ay, by] such that g, <B,. Put &, = {Te &: rr<sr} and &, = {Te &: sp<rq),
80 &y U &, = &. Therefore either &, or &, is uncountable, say, &y. The family
{lrr, s7]: Te #,} is an uncountable family of nondegenerate subarcs of [a,, b,
Hence [rp, sy] N [y, s3] # O for some T, T'e%,, T+# T'. This means that
rp<Sp, rp<Sp, rp<sr, and so rp<rp.<sp. Therefore rp e [ry, s9], and so
rp €T AT, But the family 7 is almost disjoint, in particular, ryp, ¢ T, for any
distinet triods T, T, € & — a contradiction. ) ‘ ‘

LemMa. 2. There is no uncountable almost disjoint Jamily of triods contained in
the plune E2.

Proof. Lemma 2 is a particular case of [3], Corollary 1, p. 275.

COROLLARY. Let X be a planable dendroid. Then k

() R(X) can be covered by countably many arcs;

(b) R(X) is a Gj,-set; :

() the set of all points of X each of which is of order =5 is countable.

Proof: (a) is an immediate consequence of Theorem 1 and Lemma 2. .

(b) follows from (a) and [6], Theorem 1.

(c) follows from -(a) and Lemma 2.
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ExampLes. 1. In [7] the dendroid X is constructed so that R(X) cannot be
covered by countably many arcs and X does not contain any uncountable family
of pairwise disjoint triods.

2. The points of the 3-dimensional Euclidean space E? are den’ot‘ed, by ordered-
three-tuples of real numbers {x;, X5, x3>. If x,y e E3, then Xy is the straight-lineﬁ
segment from x to y. .

Let C be the Cantor set contained in the real line, 0<x<1 for xe C. Put

A=<0,0,05<1,0,0> U U {¢x,0,05¢x,1,0) U {x,0,05¢x, 0, 1> u
‘ Umz xeC}.

We see that X is a dendroid, that it contains an uncountable family of pairwise
digjoint triods, but that it is a comb, i.e., R(X)<I for some arc I X. This example
shows that assumption (i) of Theorem 2 is essential.

3. Put X' =<0,03<1,0> uU{<p/q,1/g>: p and ¢ are positive  integers,
p<qand p, g are relatively prime}=E?. Therefore X is a planable comb and
R(X) is an F,-set but not a G;-set.

4. Let B be the Cantor comb, ie., B = Ix{0} U CxI<E? (where I is the
closed unit interval). Let D (resp. E) denote the set of all left (resp. right) end-points
of intervals deleted from I during the construction of C. For each re INC let ¢, be
the greatest point of C which is less than ¢ (since C is compact such a point exists)
and if ¢ € E, then let ¢, € D be the second end-point of the deleted interval to which
t belongs. We consider a decomposition 2 of the plane E2 into points and segments
t,05{cy, t—c;» for te(INC) U E. This decomposition is easily seen to be an
upper semi-continuous and monotone decomposition no element of which separ-
ates the plane. By the Moore theorem ([2], § 61, IV, Theorem 8, p. 533) the quotient
space Ez/@ is homeomorphic to the plane (the straightforward construction of
the homeomorphism E*/@ — E? is not difficult). Let z denote the quotient map
n: E* - E*|9 and put f = n|5: B— n(B) = ¥. One can observe that f is mono-
tone relative to the point <0, 0) & B (i.e., for each subcontinuum Q of ¥ such that
f0,0)%) € @ the inverse image f~Y(Q) is connected), so by [5], Corollary 2.8,
p. 721, Y is a smooth dendroid (with respect to the point (<0, 03)). The set R(Y)
is homeomorphic to C\.D. Therefore R(Y) is a G;-set and by the well-known Baire
theorem R(Y) is not an F,-subset of Y,

Y is a planable smooth comb such that R(Y) is a G,-set but not an F.-set.

5. X is the dendroid of Example 3 and Y that of Example 4. We can embed X
and Y into E? in such a way that X n ¥ is a single point x which is the initial point
of both X and Y. Hence Z = Xu Y is a smooth planable dendroid such that
R(Z)= R(X) UR(Y) U {x} is not either an F,-set or a G,-set.

Acknowledgments. The author gratefully acknmowledges the referee’s sug-
gestions, Namely, Examples 4 and 5 are due to the referee.
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Fixed point free equivariant homotopy classes
by

Dariusz Wilczynski (Poznaf)

Abstract. Let G be a compact Lie group. For an equivariant self-map f of a compact smooth
G-manifold M, an equivariant homotopy invariant L(f) is defined, and it is shown that, under
given conditions on M, this invariant detects the equivariant homotopy classes of fixed point free
maps. In this context, the question of the existence of a non-singular equivariant vector field extending
a vector field given on the boundary is also discussed.

0. Introduction. The Lefschetz fixed point theorem states that, if /1 X - X
is homotopic to a fixed point free map, then the Lefschetz number of f vanishes.
This theorem is valid for a wide class of spaces X and maps f; e.g., for all compact
ANRs and continuous maps. The question arises whether the vanishing of the
Lefschetz number is a sufficient condition for f to be fixed point free up to a homo-
topy. The answer is negative in general, even for polyhedra. If X is'a Wecken space
the answer is positive. The simplest and most important example of a Wecken
space i3 a compact simply connected manifold, with or without boundary, of di-
mension at least three. A full, detailed exposition of the Lefschetz fixed point
theorem, its converse and related topics can be found in [3].

In this paper the question of the existence of a fixed point free map homotopic
to a given self-map of a compact smooth manifold is considered in a G-equivariant
category, G being any compact Lie group. In Section 2 with each equivariant
map f we associate a family of integers, denoted by L(f), which depends only on
the ‘equivariant homotopy class of f and has properties analogous to that of the
usual Lefschetz number. In particular, the Lefschetz theorem 2.6 is valid. This
invariant detects the cquivariant homotopy classes of fixed point free maps. Of
course, some additional hypotheses, as in the non-equivariant case, are needed.
In fact, we prove the following theorem:

THEOREM A. Let M be a compact smooth G-manifold such that all connected
components of MY are simply connected and of dimension at least three for any iso-
tropy subgroup H with a finite Weyl group in G. Then an equivariant map f> M - M
is fixed point free up to an equivariant homotopy if and only if L(f) =

If £ is the identity the same is true without any restrictions on the fundamental
group and dimension.
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