Extension theorem for a psendo-arc
by

T. Maékowiak (Wroclaw)

Abstract. It is proved that every mapping f from a subcontinuum F of a hereditarily indecom-
posable metric continuum X into a pseudo-arc P can be extended to a mapping f* from X into P.

In this paper we will prove some similar extension theorem to that of [6]. These
results were earlier announced by D. P. Bellamy. The author has cbtained the gener-
alization of Corollary 18 from that paper to the nonmetric case, but the proof is
much more complicated. We extensively use the methods of [1].

1. Notatlon If X is a topological space and 4= Fc X, then cl4, Intd, Intp4
denote respectively the closure of 4 in X, the interior of 4 in X and the interior of A
with respect to F. If x € 4, then K(x, A) means a component of x in 4. Fora metric
space X and a real number ¢>0 we put B(d, &) = {xe X: o(x, A)< e} for every
A< X where g is a metric in X and ¢(x, 4) = inf{o(x, a): ae 4}. The closed unit
interval [0, 1] we denote by J.

Iff: X - Iand 1€ (0, 1), then f=(2) = clf 7X([0, 1)) and f (1) = cl (2, 10).
By Q we always denote the set of all rational numbers i J which is arranged into an
infinite sequence 0, 1, 71, 15, ... All mappings considered in'this paper are continuous.

2. Separating functions. We say that a function f trom X onto [ is separating
if f7() nfT(t) = @ for te O\{0, 1}. T

ProposITION 1. If f: X — Y is onto and g Y — I is separating, then geof is
separating.

PROPOSITION 2. There exists a separating function. g: I -+ I which is onto and
monotone and g(Q) = Q.

In fact, let fy: T — I be a homeomorphlsm which carries the set of ratxonals
onto the set of triadic rationals (see [5], pp. 51-54), let fp: I—1 be the Cantor ternary
function, and let f3: I — I be a homeomorphism which carries the set of dyadic
rationals onto the set of rationals. Then g = f; o f, o f; has the required properties.

THEOREM 3. Let F be a closed subset of a normal space X. If f+ F-— I is separating,
then there exists a sepurating extension f*: X — I of f. .
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Proof. We proceed as in the proof of Urysohn’s Lemma. For every number
r;€ Q we shall define open sets V;, U;= X subject to the conditions

1) cdVicU;ccU;cV;, whenever r;<r;,
@) frpeV;and frr)cX\clU;. .

The sets ¥; and U; will be defined inductively. Since f~(r) N fT(r) = @,
we can find open sets ¥, and U, (by the normality of X) satisfying (2) for i =1
and cl¥, < U,. Assume that the sets ¥; and U, are already defined for i<z and
satisfy (1) and (2) for i, j<n. Let us denote by r; and r,, respectively those of the
numbers ry, r,, ..., ,, that are closest to r,,, from the left and from the right. We
have clU,=V,,. From the normality of X we infer that there exist open sets G, H
such that clU; U (7, 1) =G, (X\V,) W ¥ (ryr ) =H and clG n cl H = & because
Fue)f () SV,y and fH () cf ()< X\clU,. This imphes that clU,cG
celGe XN\ Hocd(X\clH)cX\HcV,,. Assuming V,,; = Gand U, ,; = X\clH,
we obtain sets that satisfy the required conditions. )

Put ¥V = V; U ¥V, u ... The function f* from X to [ is defined by the formula

wron _ jinf{r;: xe ¥V} forxeV,
@ 15 = {1 for xe X\V.

Now we have to prove that f* is continuous. It suffices to show that the inverse
images of intervals [0, @) and (&, 1] where a<1 and 530, are open. The inequality
f*(x)<a holds if and only if there exists an r;<a such that x e V;; hence the set
(/M7Y[0, @) = U {Vi: r;<a} is open. And the inequality /*(x)>b holds if and
only if there exists an r;>b such that x ¢ ¥;, which — by virtue of (1) — means that
there exists an r;>b such that x ¢ cl¥;. Hence the set

(S @G, 1) =U {XNel ¥y rp>b) = XN {cl¥;:
is .open, too. :
Moreover, by (1), we hav

(570 = (U {Vi: <)y,

r;>b}

and
(N = (U {xelVy: 1<y el (XNU) = X\U;.
But clV; n (X\U)) = @, thus the function f* is separating.

It remains to prove that f*|F = f. Let x € F and suppose that S ()< *(x).
Take r; such that f(x)<r;<f*(x). Then f~(r)<V; by (2). The definition of I
implies that f*(x)<r,, 4 contradiction. Suppose now that f*(x)< f(x) and take r,
such that f*(x)<r;<f(x). Then xef*(r)cX\clU, by (2). Therefore x ¢ ¥, for
r;<r; by (1). Hence f*(x)>r;, by the definition of f*, a contradiction. The proof of
Theorem 3 is complete. ) ’

3. Nice extensions. It is known (see [4], Lemma 1.2.8, p. 13) that:

. ProrosiTION 4. If sets A and B are separated in a metric space X, then there
is an open set U in X such that AcUcclUc X\B.

e _ ®
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Now, we have .

PROPOSITION 5. Let F be a closed subset of « metric space X and let f: F— I
be separating. For each £>0 and each t € Q\{0, 1} there is an open set V in X such
that Tntp f~1 )= VaB(f Yy, &) and 1V o Fef~1(@).

Indeed, the sets £~ ([0, £)) U f~'((¢,1]) and Intpf~'(t) are separated; thus,
by Proposition 4, there is an open set U such that

Intp f™i) cUcdUc XIN(FH(0, 1)) v (1, ]])j .

If we take ¥ = U n B(f7*(2), &), then ¥ has the required properties.

Let F be a closed subset of a space X. We say that f*: X — Iis a nice extension
of f1 F—Tif f¥F = f and Intef () cInt(f*)~'(r) for e O\{0, 1}.

THEOREM 6. Let F be a closed subset of a metric spuce X. If f: F — Iis separating,
then there exists a separating uice extension f*: X — I of f.

Proof. For every number r; € Q we can define, by Proposition 5, an open set V;
subject to the conditions: Intpf i(rpcVicB(f~'(r), 1fi), clV;n Fef~Yr)
andclV;n eV, =@ fori#jPut E=FudV ucV,u .. and define fo: E— 1

as follows:
f(x) ifxeF,
o) = {rt . i xedy;.

The mapping f, is separating; thus, by Theorem 3, there is a separating ex-
tension f*: X — I of f,. It is easy to see that f* is a separating nice extension of f.

TrEoREM 7. Let F be o closed subset of a metric space X. If f: X = L h: F—1
and g: I — I are separating functions such that g is monotone and g(Q) = Qandfis
a nice extension of g o h, then there is a separating nice extension h*: X —>1I of h such
that f = g o h*.

Proof. We can assume that g(0) = 0 and g (1) = 1. For every number r;€ O
we can define, by Proposition 5, an open set H,; subject to the conditions:

@)  Inteh " (rycH,cB(H 1), /i) o {xe X: o(x, F7(r)
<g(x, XNInt/~*(g(r))} »
(5) clH,nFch™(r),
(6) clH;nclH; =& for i #].
Put E=FuUclH, UcH, U ..

_Jhlx) forxeF,
ko) = {ri for x e clH;.

and define hy: E — I by

Then h, is separating, f is a nice extension of g o A, (this easily follows from (4),
(5) and (6)), and

D k) nfHg(r)) = B and hi(r) nf(g(r) = @

1*
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Suppose that x e kg () N f*(g(r)). Let W be an open neighborhood of x
in X such that W (hi(r) Wf (g(r))) = @. Then W E = W nhy'([0,r]);
thus f(W n E)<[0, g(r)] by the monotoneity of g. But f(W)<[g(r;), 1]. Hence
S(WnE)= g(ry). Since f is a nice extension of g o &,, there is an open set W'
in X containing x such that f(W') = g(r,). But then x ¢ /*(g(r})), a contradiction.
Similarly one can prove the second equality. ‘

Now, for every number r; € Q we shall define open sets V;, U;c X satisfying the
conditions

®) cl¥V;cU,=clU,cV;, whenever r;<r;,

©) ho(ry<V; and hy(r) < X\clU;, .
(10) f~(g(r)y=¥; and fH(g(r))= X\l U;. . ‘

The sets ¥, and U, will be defined inductively. Since (hatr) U f~(g(ry)) 0

A (k3 (r) w7 (g(ry)) = D (compare (7)), we can find sets ¥, and U, (by the nor-
mality of X)) satisfying (9) and (10) for i = 1 and cl¥; = U;. Assume that the sets Vi
and U, are already defined for in and satisfy (8), (9) and (10) for #, j<n. Let us
denote by r, and r,, respectively those of the numbers r,, r,, ..., r, that are closest
to 7,4y from the left and from the right. We have clU,<¥,,. From the normality
of X we infer that there exist open sets G, H such that

AU U f (g (ras)) U ho (rai ) =G, (X\V,) Uf+(g("n+1)) U hg (e ) <H
and clG n clH = @ (compare (7). Assuming V,,, = G and U, = X\clH, we
obtain sets that satisfy the required conditions, ‘ .
Put V' = ¥V, U ¥V, U ... The function A* from X to I is defined by the formula
for XeV,

‘ inf{r;: xe€ V;}
h* = I i i
) {1 for xe X\V.

v Asin the proof of Theorem 3, conditions (8) and (9) imply that #* is a separating
extension of /,. Condition (10) guarantees the equality f = g o f. Moreover, the
choice of /i shows that h* is a nice extension of /. The proof of Theorem 7 is complete.

4. N-mappings. We say that (see [1]) ‘a mapping h: I — 1 is an N-mapping

if h satisfies the following conditions:
(i) A(g) is rational if and only if ¢ is rational.

(i) There exist four rationals a, b, ¢, d with 0<a<ec<1 and O<d<b<1 and
h(a) = b and A(c) = d.

(iii) ~(0) = 0 and A(1) = 1.

(iv) Each of the mappings A[[0, a], hl[a, ¢] and A|[c, 1] is a homeomorphism.
We will prove .

THEOREM 8. Let F be a subcontinuum of a hereditarily indecomposable continuum X
and letf: X — I and g: F — I be separating surjections. If h: I — I'is an N -mapping

such that f is a nice extension of hog, then there is a separating nice extension
g*: X = I of g such that f = ho g*,
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Proof. Leta, b, c, d be the rationals which describe h. Define P < X and R= X by:
P ={xef~(0): K(x,f~(®)) nf(d) #},
R={xef"d): K(x,f*@)nf*b) + &} .
As in the proof of Lemma 3 in [1], p. 8, one can check that
(11) P and R are closed and disjoint.
Moreover 4
gt @nP =@ and g~ (c)n R = @.

We will show only the first equality (a parallel argument will show the second).
Suppose that xeg¥(a) n P and ze K(x,f~ (b)) nf~(d). Since X is hereditarily
indecomposable, we infer that K(x, f~(b)) = F. Since f is a nice separation extension
of hog and zef (d), we obtain ze (hog) (d). Therefore g(z)e [0, a) because

(12)

f@)el0,d]l. But xeg¥(a) implies that K(x,f (b)) ng '(a) # @ Since

Intpg~*(a)=Intf~*(b) and K(x,f~(b))=f(b), we conclude that Intpg™'(a) N
A K(x, (b)) = . Then (g7(a) n K(x,f~(B)) v (g7 (a) n K(x,f™(B))) is a sepa-
ration of K(x,f (b)), a contradiction. )

Now we will prove that

(13)  every component of g (c) is a component of f7(b) and every component
of g*(c) is a component of f7(d).

Indeed, let X be a component of g ~(a) and let C be a component of f ~(b) con~
taining K. Then, CcF, because X is hereditarily indecomposable. Since
Crlntpg™i(@) = @, we obtain C=(Cng (@)v(Crg*@) But g (@n
ngt@@) = @; thus Cn g*(a) = J by the connectedness of C, i.e., C = K.

It follows from (11), (12), (13) and Lemma 2 in [1], p. 7 that there is a separa-
tion 4 U M of f () such that P U g (@) =4 and (R U g*(@)) nf~(b) = M. Similarly
there is also a separation B U N of f*(d) such that R U g*(c)cB and (4w g™(c)) 0
nff(d)<N. Then

(14) A and B are disjoint.
Moreover, as in the proof of Lemma 3 in [1], p. 9, we have
(15 X=AUBUMANIU(fHDAM)L(f'B)NN).

Put /=AU (f B AN), K=(f®)nN)yu(MnN U (@) M)
and L = (f~*d)n M) U B and define g*: X — I by

(#0, a)™Y(f x)) for xeJ,
g*x) = {[la, )~ HF(x) for xeK,
(Blle, I Hfx) for xeL.

As in the proof of Lemma 3 in [1], using (14) and (15) one can easily check that g*
is continuous, & o g* = f, g* is separating and g*|F = g. The fact that g* is a nice
extension of g also follows easily. The proof of Theorem 8 is complete.
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5. Extension theorem. Let g,: T— I be an arbitraty separating and monotone
function such that ¢,(Q) = Q and g,(0) = 0 (compare Proposition 2). We consider
a continuum 7, defined as the limit of the inverse sequence {I,, o;,} where for each
n>1 we have I, = I, o, = g, o h, and h, are N-mappings from I onto I. Then we
say that T, is of type N*. We denote the projection from the inverse limit I, onto
I, by m,. If n<m, then we put & = a4 © ... 00,5 © 0, =q. It is known that

(16) =, = oy o1,

In particular, w, = g, ° h, o 7,.. Since g is separating, it follows by Proposi-
tion 1 that

(17 =, and A, o m,,, are separating.

We will prove

THEOREM 9. If Y is a subcontinuum of a hereditarily indecomposable metric: con-
tinuum X, and if f'is a continuous mapping from Y onto I, then there is a continuous
mapping f* from X onto I, such thet f*|Y = f.

Proof. It suffices to construct a sequence of continuous mappings f,,: X — I,
which satisfies the following conditions:

(18)  f, are separating,
(19)  f, are nice extensions of x, o f,
Q0 fioy =,y of, for n>1.

The mapping n, of: Y — I, is separating. It follows from Theorem 6 that there
exists a separating nice extension f;: X — I of n, o f. Then f; satisfies (18) and (19).
Assume that the functions f;, f5, ..., f, have been constructed in such way that (18),
(19) and (20) hold for k<n. Now, we will construct f,, , by induction. Using Tlﬁeo-
rem 7 and (17) we can find a separating nice extension f.;: X — I of h, o upqof
Sl‘lch that f, = g, © fr+. Therefore, by Theorem 8 and (17), there exists a separatiné
nice extension f,4,: X — I of 7,,, o f such that f,,; = h,of,.,. But then also
Jn= 0,0 f, 4, which completes the proof of Theorem 9.

6. Factorizations of separating functions. Now we will prove the following

Tueorem 10. If f: X — I is a separating function from a normal space X and
g: I — [is separating and monotone and g(Q) = Q, then there is a separating function

h: X — I such that f = goh. If X = I, f is monotone and f (Q) = Q, then h can be
chosen to be monotone and h(Q) = Q.

Proof. We can assume that g(0) = 0 and g (1) = 1. For every number r, € Q
we shall deﬁne open sets V;, U;= X subject to the following conditions:

@) dV,cU;=clU;cV;, whenever ri<r;,

22 f(g(rp)=V;and fH(g(r))c XclU,.

i
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The sets ¥; and U; will be defined inductively in the same way as in the proof
of Theorem 3. )
Put ¥ = ¥; U ¥, U ... The function 4 from X to I is defined by the formula

\  inf{r;: xeV} forxeV,
hx) = {1 for xe X\V.
Using (21) and (22) as in the proof of Theorem 3, one can easily check that &
is a separating function such that f= go&.
If X = I and f is monotone and such that £(0) = 0, then V; and U, can be
chosen in the form of sets [0, s), which implies the monotoneity of /2 and completes
the proof of Theorem 10.

7. Mappings onto N-continua. It follows from Lemma 1 and Lemma 3 in [1},
p. 7 that

PROPOSITION 11. If X is a connected normal space, then there exists a separating -
function f from X onto I

PRrOPOSITION 12. If X is a hereditarily indecomposable contimuum, f: X — 1
is separating and h: I — I is an N-function, then there exists a separating function
g: X — I such that f=hog. )

From Theorem 10 and Propositions 11 and 12 we infer

THEOREM 13. Any hereditarily indecomposable continuum can be mapped onto any
continuum of type N*.

Proof, Let X be a hereditarily indecomposable continuum and let /,, be an
arbitrary continuum of type N* represented as an inverse limit of a sequence of
intervals I, and compositions o, = g,°/, as bonding mappings where h, are
N-mappings from I onto I and g,: [ — I are separating monotone functions such
that g(Q) = Q (compare Section 5 here). From Proposition 11 we find f;: X — I,
which is separating. Now, suppose that f1, ..., f, have been selected such that they
are separating and f;_y = o;_; of; for 1<j<n. Theorem 10 assures us that there is
a separating function f.,: X — I such that f, = g, ° Sy It follows from Propo-
sition 12 that there exists a separating functionf,1: X — 7 suchthatfy,.; = b, o fyes-
Then the sequence fj , fa, ... induces a surjection f: X - I,, which completes the
proof of Theorem 13.

8. N-continua. Recall that (see [1], p. 6) 2 compact metric continuum is of
type N if it can be represented as an inverse limit of a sequence {I,, h,} where I, = T
and h, are of type N (compare section 4 here). Firstly, we have

TuEoREM 14. If h: T — Iis an N-mapping and [ 1 — 1 is a separating monotone
function such that f (Q) = Q, then there are separating monotone functions '+ I — I
and g: T — I'suchthat f(Q) = Qandg(Q) = @ ond there is an N-mapping h': 1 — 1
such that foh =h ogof'

Proof. It follows from Whyburn’s factorization theorem (see [5], Theorem 3-40,
p. 137) that there are a monotone mapping o: I — X and a light mapping f: X — [
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such-that § o « = fo h. Since o is monotone, it follows that X is homeomorphic to /.
Assume X = I It is easy to see that, for each sex(Q)\{0, 1}, we have a™(s) n
M d@*(s) = @. There is 2 homeomorphism & of I onto I such that §(x(Q)) = 0,
because the set a(Q) is countable and dense in I. Therefore we can assume that
o(Q) = @ and «(0) = 0. Then « is a separating monotone function such that
a(Q) = Q. It follows from Proposition 2 and Theorem 10 (the additional assertion)
that there are separating monotone functions f’: I I and g: I — I such that
(@) =0, g(Q)=Q and a =gof. Put i’ = B. It is easy to check that the
mappings f', g and A’ satisfy the required conditions (it is possible for 4 to be a homeo-
morphism preserving rationals — we treat such an 4’ also as a mapping of type N).
It is known that (see [7], Theorem 10, p. 69)

PropoSITION 15. Let {X,, h,} and {Y,, g,} be two inverse sequence of metric
spaces X, and let f,: X, ~ Y, be monotone surjections such that f,o h, = g, °fys1.
Then f, induce a monotone surjection of an inverse limit of {X,, h,} onto an inverse
limit of {¥,, g,}- )

(This theorem is formulated in [7] in a more general form.)

Using theorem 14 and Proposition 15, we obtain the following

THEOREM 16. Every metric continuum of type N can be mapped by a monotone
mapping onto a continuum of type N*.

Remark that the converse theorem is also true.

9. Applications. The main results. Since hereditary indecomposability is pre-
served by monotone mappings, by using Theorem 2 i [1], p. 11, Theorem 1 in [2]
and the theorems proved in this paper we obtain the following corollaries. ‘

COROLLARY 17. A pseudo-arc is of type N*.

CoroLLARY 18. Every mapping f from a subcontinuum F of a hereditarily indecom-
posable metric continuum X into a pseudo-a‘c P can be extended to a mapping f*
from X into P.

COROLLARY 19. If X is a hereditarily indecomposable continuum, then there is
a mapping from X onto a pseudo-are.

COROLLARY 20. Every subcontinuum of a pseudo-arc P is a retract of P.
Corollary 19 has been proved in [1], and Corollary 20 was obtained in [3]:
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