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The limit behaviour of exponential terms
by

Bernd I. Dahn (Berlin)

Abstract. Let T be the theory of ordered exponential fields satisfying Rolle’s schema and
the intermediate value schema. It is shown that formulas of the form ¥ xq, where g is quantifier
free, persist under extensions of models of 7. Asymptotic expansions of transfinite length are used
to show that the limit of an exponential term in a model of T, if it exists, can be calculated from
the coefficients of the term by means of another exponential term.

The main subject of this paper is the behaviour of exponential terms for large
values of the argument, taken from some (possibly non-Archimedean) ordered
exponential field. This will have conscquences for the model theory, algebra and
analysis of such fields.

The author would like to express his gratitude toward Professor Helmut Wolter
for long and helpful discussions.

An exponential term is always a term which is built from the variable x and
parameters from some specified set including 0, 1 and —1 by means of the unary
function symbols ~*, e and the binary function symbols + and :. For every such
term we can easily write a quaatifier-free formula which is true for some value a
of x iff the term is defined at-a. T' denotes the first order theory having as axioms
— the axioms of the theory of ordered fields,

— e(@+y) = e@x)e(y),

— e(x)=1+x,

— for every term #(x, ¥y, ..., ¥,) an axiom saying that for all ¢y, ..., ¢, a,b, if
a<b and 1(x, ¢y, ..,c,) is defined for all xel[a,b] and t(a,cy, .., c,)
= 1(b, ¢y, ..., ¢,;) = 0, then there is some ¢ € (4, b) such that t'(c, ¢y, ..., ¢,) = 0
where ¢’ is the formal derivative of # with respect to x (Rolle’s schema) and

— for every term £(x, ¥y, .., ¥,) an axiom saying that for all ¢, ..., ¢, @,b, if
a<b and t(x,cy, ..., c,) is defined for all xe[a,b] and ¢(a, ¢y, ..., ¢)<O
<t(b, ¢y, ..., C,), then there is some ce(s,b) such that f(c,cyy.i,c) =0
(intermediate value schema).

In [DW] it has been proved that 7' is strong enough to prove that formal
differentiation using the rule (e(s)) = s’e(s) and differentiation applying the usual
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s-6-definition yield the same function. The basic laws of calculus can be derived
from T as usual. Especially, if #(a) is defined for all & in some convex set J and
'(2)>0 for all such a, then # defines a monotonically increasing function on J.
Similarly, if s and ¢ define functions on the interval [a, b] and #'(x) # 0 for alt
x€[a, b], then there is some ¢ (a, b) such that ’

s(a)—s(b) _ S'(_L‘)
Ha) =ty t'(c)’

1. Identities of exponential terms. We fix, until stated otherwise, a model C,
of T and an exponential subfield C of Cy. Terms will always be terms with para-~
meters from C. For every term t we put

D, = {aeC,: t(a) is defined in Ci}
and
Z, = {ae Dy t(a) = 0}.

Though working with real numbers, Richardson [Ri] actually proved the following

LemmA 1 (Richardson). Let t be a term and let J< Dy be an infinite convex sub-
set of Cy. If J A\ Z, is infinite, then JSZ,. .

By a neighbourhood system we understand a system N of infinite convex sub-
sets of Cy such that J,,J, e N implies J; nJ, e N and (N = @.

LeMMA 2. For every neighbourhood system N and every term t such that J< D,
Sfor some Je N there is a J, € N such that Z, nJ, = @ or J, &Z,.

Proof. If J<Z, does not hold, then J n Z,; is finite by Richardson’s Lemma,
say JnZ,={ay,..,a,}. Since (\N = @, there are J,e N such that a;¢J;
(i=1,.,m. ThenZ,nJ;n..nJ,=0. A

Let us fix some neighbourhood system N. Cy denotes the set of all terms ¢
such that J< D, for some J e N. Obviously Cy contains x and all ¢ e C, Cy is closed
under addition, multiplication and exponentiation, and ¢~! € Cy iff there is a Je N'
such that Z, nJ = @. t e Cy implies ¢’ € Cy. For s, te Cy we say that s and ¢ are
equal modulo N (s = tmodN) if J=Z,.., for some Je N. sy denotes the class of s
under this equivalence relation. As long as we work with a fixed neighbourhood
system N we may write s instead of sy. Analogously, we also use Cy to denote the
set of equivalence classes of terms in Cy modulo N. Thus, we can consider Cy in
a canonic way as a differential field. C(x)y denotes the set of equivalence classes
of terms not containing exponentiation. Note that for different neighbourhood
systems Ny, Np, C(x)y, = C(x)y, so that we may write C(x) instead of C(x)y.

For s € Cy, Qs denotes the set of all rational multiples of 5. For Fg Cy, e(F)
denotes {e(f): fe F}. F+G, F-G, F<@ are also defined in the canonic way.

A subfield K of Cy is called F-normal if there are sq, ..., s,.; € K such. that
— 59 € C(%), 5141 € C(¥)(e{Qso+ ... + 05)) (i<n—1),

— F = Qs+ ...+ 05,1 and K = C(x)(e(F)),
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— if fe K is a constant, ie., /' = OmodN, then there is a ce C such that
J = cmodN.
K is called norma! if K is F-normal for some F.
Theorem 2.8 of [Wi] immediately yields the following

Lemma 3 (Wilkie). Supposed K is F-normal and a,be K are such that
a' = b'amodN, then there exists o ce C and an feF such that a = ce (f)mod N.

We apply this to prove
LemMA 4. Let K be F-normal, s € K and let e(s) € Cy be algebraic over K. Then
there are feF, ¢ce C such that s = f+cmodN.

Proof. Let 3 au’ be a non-trivial polynomial of minimal degree n such that
isn

- .
Y age(s) = 0modN, dy,...,a,e K, a, 5 0modN. We can assume without loss
i€<n

of generality that ¢, = 1modXN. Then

n

¥ (aitisa)e(s) ™ = 0modN.
1=

By the minimality of n this implies a,+ns'a, = Omod N. According to Wilkie’s
Lemma we can find some ¢, € C, f'e F such that a, = c,e(f)modN. ¢, # 0 since
a, # 0modN.

Now

ex(f+nsye(f+us) = (ce(f+ns)) = (ae(ns)) = (d)+ns'a)e(ns) = OmodN .

Therefore f+ns is a constant of X and by the normality of K this implies f+ns
= cmod N for some ce C. Now s = —fh™'+cen " *modN is a representation as
required since the group F is divisible. B

LEMMA 5. Let K be F-normal, s € K, and let e(s) € Cy be transcendental over K.
Then K(e(Qs)) is F+ Qs-normal.

Proof. The only non-trivial problem is to verify that the constants in
K(e(Qs)) are just the clements of C. It is obviously sufficient to show this for the
field K(e(s)). So lot us consider some non-zero element

E“te(s)i
L L ——
T Y be(s)y’

;;,. je(s)

from K(e(s)) (@, by K, a,, b, # 0).
We claim that

I

I =0 implies » = m and (ﬂ[) =0.
b

(all equations arc undrestood modulo N).
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In fact A’ = 0 implies

el S {@tayis’yb;— B+ bijsay: i+ =k, i<, j<m} = 0.
k<n+m .
Since e(s) is transcendental over K, this polynomial in e(s) has to be trivial,
-especially

(s +a,ns) by~ (b + by, msa, = 0.

(%";)I = ((m*}r)s)'l%.

By Wilkie’s Lemma a,/b,, = ce(f) for some ceC, feF, ¢ # 0, hence there is

some deC such that f+(m—m)s=d For nsm this implics e(s)

= e( d )e( _f> € K—a contradiction. Therefore n=m and f=deC.
n—mj \n—m

Then a,/b, = ce(d)e C and also the second part of the claim is proved.
Hence /' = 0 implies that & can be written as

Dividing by b2 yields

_ o, Pile()
bm Y4 2(‘3 (S)) ’

where p; and p, are polynomials with coefficients from K such that the degree
of py is less than the degree of p, if p, is non-trivial. In this case

(ea) #

h

by our claim, which contradicts ' = (a,/b,,)’ = 0. Therefore we sece that p; =0
and h = a,/b, is already a constant of XK. M

From the Lemmas 4 and 5 it is easy to infer

ProPOSITION 6. For every ae Cy there exists a normal subfield K of Cy such
that a e K.

COROLLARY 7. If a € Cy is a constant, then therc is a ¢ & C such that ¢ = ¢mod N.

LemmMa 8. Let Ny, N, be two neighbourhood systems and let K, be an IF(-normal
subfield of Cy,. Then there is a field K, < Cy,, a group Fy and « map ¢: Ky — K,
such that

() K, is Fy-normal,

(i) @ is an isomorphism of the differential fields K, and K,,

(iii) ¢ induces an isomorphism between the groups F, and F,,

(iv) ¢ is the identity on C(x),

) forall ae Ky, if e(a) e K, then ¢(o (@)} € K, and e(p(@)) = ¢(e(d)) mod N,.
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Proof. If K; = C(x), the assertion is obvious. Assume that it has been proved
for K, and K. Choose s & K;. We want to extend ¢ to an isomorphism defined
on Ky(e(Qs)). If e(s) is algebzaic over K, then Lemma 4 implies that K;(e(Qs))
is K;. Therefore we can assume that ¢(s) is transcendental over X, . If e(p(s)) were
algebraic over K, then, by Lemma 4, there would be an f'e F, such that ¢(s)—
—o(f) e C. But then ¢(s) € K;, which contradicts the transcendency of e(s) over K.
Hence e(s) and e(p(s)) are transcendental over K, and K, respectively, and ¢ can
be extended to an isomorphism of the differential fields X, (¢(0s)) and Ky(e(Qo(5)))
sending cach e(gs) to ¢(qo(s)) (g€ Q). If a, e(a) € Ky(c(Qs)), then, by Lemma 4,
there is a ce C, feF, ge Q such that a = f+gs+cmodN,. Now ¢ sends e(a)
to e(p(e(N)olelgs)) = e(c+o(fH+qp(s))modN, by our construction of ¢. H

PrROPOSITION 9. Let Jy be un infinite convex subset of Cy and let t be a term
such that J,< D,. Then, to every infinite convex set J,=C, there exists an infinite
convex subset Jy <J, such that Jy< D,. Moreover, J,<Z, iff J3SZ,.

Proof. Let J; and J, be infinite convex subsets of C; such that J, < D,. We
choose arbitrary ¢, ¢, €J; such that ¢, <c,, and define

Ny ={/}u{{rel: ey<x<a}: e;<c<e}.

N, is a neighbourhood system containing J;. Similarly we construct a neighbour-
hood system N, containing J,.

By Proposition 6 and Lemma 8 we can find normal subfields K, K, of Cy,
respectively Cy, and an isomorphism ¢ such that zy, € Ky and ¢ has the properties
@ ... (v) of Lemma 8. Now, since J; =Dy, K; F “¢ is defined at 'x"”. Consequently,
K, F“t is defined at ‘x'”, which means that there is a J; € N, such that J;£D,.

Moreover J; 7, implies Ky F t(x) = 0, Ky F #(x) = 0 and hence J;'=Z, for
some Jy € N,. But, by Richardson’s Lemma, this is equivalent to J; £Z,. The con-~

- verse is proved similarly. B

TurorEM 10. For every term t the following is true.
() If D, # @, then C\D, is finite.

(i) If Z, % D,, then Z, is finite.

Proof, We proceed by induction on the form of ¢. If £ is x or a constant, there
is nothing to prove. The induction step is trivial if ¢ is the form #; Lore(ty). Solet ¢
be of the form #,+7, or #,1, and assume that the assertion has been proved for #;
and t,, We have D, = D, n D,, and (i) is obvious. In order to prove (if) we as-
sume that D, # @ and that Z, is infinite. Let

C\D, = {dg, vy ty=y}, Where o< .. <dy-g.
We put
Jiey = {xe Cpt qy<x<a;44}

Jo ={xeC: x<ap}, (i<n=1),

J, = {xeCy: a,.1<x}.
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If n = 0, we put similarly J, = C,. Then there is some i such that Z, n.J; is in-
finite. By Richardson’s Lemma we have J;=Z,. Proposition 9 implies that for
every j<n there exists some infinite convex subset J; of J; such that J;<Z,. Again
" by Richardson’s Lemma we conclude that J;£Z, for all j<n, ie, D, =Z,. B

COROLLARY 11. For every neighbourhood system N and all terms t and s

(i) te Cy iff C\D, is finite,

(i) if t,s€ Cy, then t = smodN iff D,osn C=Z, ;0 C.

Proof. If t € Cy, then, by Theorem 10 (i), C;\D, is finite and also C\D, is
finite. Conversely, if C\D, is finite, then D, # @, thus, again by Theorem 10 (i),
C\.D, is finite. Hence there is some J & N such that J n (C\D,) = @, i.e.,, J& D,.

In order to prove (ii) suppose ¢ = smodN. Then Z,_; cannot be finite and
hence Z,_; = D,_, by Theorem 10 (ii).

Conversely, assume that D,.;n C = Z,_; C. Since ¢, 5 € Cy, by (i) C\D,.,
is finite. Therefore C nZ,_, is infinite and, by Theorem 10 (ii), Z,.; = D,_,.
Hence every set Je N such that J&.D,_; proves that £ = smodN. M

Since C was assumed to be closed. under the algebraic operations and
exponentiation, it is now easy to show

COROLLARY 12. The structure of Cy as a differential exponential field is uniquely
determined by the diagram of C and the fact that it is of the form Cy for some neigh-
bourhood system N in some T-model C,.

2. Dominance of exponential terms, Recall that we have a fixed model C; of T'
and an exponential subfield C of C; and that terms are understood to be terms
baving the variable x, parameters from C and being built by means of the oper-
ations -+, -, ~* and e only. The neighbourhood system of infinity of C, is defined
to be {{xe C;: x>¢;}: ¢; € C;} and is denoted by co. Since T includes the inter-
mediate value schema, Theorem 10 implies that C, becomes an ordered field if
we define

s<t iff there is some J &€ co such that s(x)<t(x) for all xeJ.

If s<t, then ¢ is said to dominate s. The aim of this chapter is to show that the
relation < is uniquely determined by the structure of C as an ordered exponential
field and the fact that it i the dominance relation on some I-imodel C, extend-
ing C. Since we know from the theory of ordered fields that the dominance relation
for rational functions is independent of the choice of Cy, it suffices, by Proposi-
tion 6, to show that the order extends uniquely from C(x) to each normal sub-
field of C,.

Though we work with the fixed model C,, with its neighbourhood system oo
and its dominance relation our arguments are independent of the particular
choice of C;.

If K.is a subfield of C,, and s,7eC,, we define

s<tmod K iff |s|<ajt] for all positive a e K.

icm
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An equivalence relation is defined by
s~tmod K iff s—t<tmodK.

The following rules are easily verified.
If s<€tmodX, ae K, a # 0, then s<atmodX.
If 5, €<tmodK, s, <tmodX, then s, +s,<tmodX.
If 5, <t;mod K and t,<s,modKk, 55,1, # 0, then s,5; ' <#;7; 'mod K.
~mod K is a congruence relation with respect to < and multiplication.
Unless stated otherwise, all fields X, K, ... are normal subfields of C. All
limits are understood for x ~ co.

Lemma 13, For all terms s and t such that |t]<x™*,

s<tmodC implies s <t'modC.

Proof, Supposed that the assertion is wrong, there is some positive ee C
such that {s'(x)|>e|t/(x)] for large values of x in C,. If # is a constant of C,,, then
¢ = 0 since |t|<x~*. But then s<¢tmodC means s = 0 and hence s'<¢'modC.
So we can assume that ¢’ # 0. As we have mentioned in the introduction, for large
a,be C,; such that a<b there has to be a ce C; such that a<c<b and

s@-s@)| _|s'©)
ta)—t®)| [t

Our assumption yields lim# = lims = 0. Therefore —if b tends to infinity — we
see that |s(@)/t (@)} >¢ for large a, which contradicts the assumption that s <tmod C. W

Let K be a subfield of C,, and r e C,,. r is said to be coinitial in K if r € K and
if for every positive @ € K there is a natural number n such that |r|"<a.

LeMMA 14. Let K be F-normal and let r be coinitial in K. If there exists a non-
trivial polynomial p with coefficients from K such that p(e(r))<imodK, then
e(r)ek. :

Proof. Let p(u) = 3 a;u' be of minimal degree n such that p(e(r))<1mod K.

isn

Since r is coinitial in K and C(x)=K, we have [r|<g for all positive rational num-
bers g. Therefore e(r)=1+r>%. Now, if @y = 0, this suffices to claim that also

n
T ae(ry " <lmod K,
t=1

which contradicts the minimality of n. Thus we have a, # 0. Dividing p by a, if
necessary, we sce that we could have assumed that a4, = 1. Now, for large m,

n
1+ Y ae(r)'<r"mod C and || <x~*. By Lemma 13 this implies
i=1

.
S (af+ingrye(r) <mr'™ "t mod C.
=1
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Since r is coinitial in K and r’ e K, we have for each positive a € K for sufficiently
large m |mr'r™~*|<a and therefore

Z (@ +id;r)e(r) ™  <1mod K

since e(r)>%. By our choice of n this is only possible if the polynomldl on the left
is trivial, especially a)+na,r’ = 0. By Wilkie’s Lemma, a, = ce(f) for some ce C,
feF, and (a,e(m))y =0 implies that f+nr=d for some deC. Now e(r)
= e(d/nye(—f/n)e K. B

For every natural number k we define ex(x) = rk
i<k
PROPOSITION 15. If r<lmod Q, then le(r)—ey(r)|<|rl.
Proof. It is an easy exercise in calculus to prove the sentences
Vx(x20 - e(x)< ek(x));
Vx(x<0 - g(x)<e(®) <epe1(x) (k odd),
Vx(xz0Ae(x)<2 - e(x)—e(x)<xY)
in T by induction on k. These sentences imply
e(x)<2 = |e(x)—e )| 5"
' Now, if r<lmodQ, then e(r)(x)<2 for large values of x and hence le(r) —~ e
< m
LemMa 16. If r is coinitial in the normal field K, then
() K is dense in K(e(r)).
rie()
Pae®)

@ii) for all polynomials p(u), p,(u) e Klul such that p, # 0

(C’k( ))
(Ek( ))
Proof. By Lemma 14 we can assume that for every non-trivial polynomial p
with coefficients from X there is a positive a € K such that |p(e(r))|>a. Therefore
K is cofinal in K(e(r)). The sequence (eu(r): k<w) approximates e(r) in K(e(r))
by Proposition 15, If py(u), po(u) € K[u], p, # 0, then the function p,(u)/p,(1) is
defined at u = e(r) in the ordered field K (e(r)). By the continuity of rational func-
tions, (pi(ex(r))/p2(en(r)): k<w) approximates py(e())/po(e(r)). Now (i) and (i)
follow immediately. B
We call X a simple inner extension of Ky if K, = K,(¢(Qr)) for some r Wthh
is coinitial in Kj.
The field L is called an inner extension of K if it is obtained from X by a finite
number of simple inner extensions.
From Corollary 7 it is clear that inner extensions of normal fields are again
normal. Lemma 16 yields immediately

i

>0 for all sufficiently large k.
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ProPOSYTION 17, If K is an inner extension of K, then the order extends
uniquely from K; to K, and K, is dense in K,.

Recall that we are still working within C,, and note the obvious

Lemma 18. Let K, be an inner extension of Ky, let L, be a subfield of C,, co-
Jinally containing Ky and let L, be the least subfield of C,, that contains L, and K,.
Then Ly is an inner extension of Ly which contains K, cofinally.

Now we come to another important type of field extensions. Let G be a divi-
sible ordered subgroup of (X, 4,0, <). For the following definition we distinguish
two cnses.

a) {x": n<w} is cofinal in K.

In this case K(c'(‘G)) is said to be an outer extension of K by means of G if for
cach positive g € G there is a positive ¢ e C such. that g>cx.

b) e(F) is a coflinal subsct of X for some FcK.

In this case K(e(@)) is said to be an outer extension of K by means of G if for
each positive g € G and for each fe F we have f<g.

Note that the order of X completely determines if K(e(G)) is an outer extension
of K. Note also that K(¢(G)) is normal if X is normal and if G has finite dimension
as a vector space over the rationals. It is the crucial property of the outer extension
that e(g)>K for all positive g € G. Let us look at some outer extension K, of X
by means of some divisible group G. Every non-zero element of X has a representa-
tion as

Y, aie(gy)
A
2. bye(ny)
Jsm
where a;, bye K, g, b€ G, go>..>g,, ho> . >Hhy, ag,by # 0.
We define lim(f) = ap/b, and deg(f) = go—ho and have to show that these
definitions do not depend on the concrete representation of f.
So let us assume that we also have the representation

Zlva.e(vi)
T Y Bre@n)’
Asp

where o, f, 6 K, 1,, 8,6 G, > ... >Py, 5> ... >0, tg, fo # 0.
Then

(+)

f

}_, ae(g)) Z ﬁz”ﬂh) = Z ey, Z bie(hy),

(#) dofoc(go+30) (1 + E "C’(He 90)) <1+ E "—5’(51 o )
, :>:v o, Em by
= aoboe (Yo+ho) (H‘ ““‘e('}’.“)’o)> (1 + b—e(h.i“ho))
%o ()

=1 Jj=1
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Now, for i1, go—g;>0. Our assumption that K, is an outer extension of K by
i n

z :a
means of G implies that e(g;,—go)<1modX. Therefore 1+ ;zi e(g;—go)~1
)
: i=1
mod K. Similar considerations for the other factors in the equation (%) lead to

doBoe(go+ o)~ etobge (Yo +ho) mod K
and
9By

—— ~e(hg—go+yo—0o)modK,
booto

" But this is only possible for ho—go+yo—80 =0, i.e., go—ho = yo—3J, and
0B ~1modK, hence ‘—;3= % We note that lim(f) and deg(f) for fe K, are

0o%o 0 [
already determined by the order of K.

PROPOSITION 19. Let Ky be an outer extension of K by means of G.
() For all non-zero fe K

Sf~lim(f)e(deg(f))mod K.
(ii) For all non-zero fe K )
£>0 iff lim(f)>0.

(iii) e(G) is cofinal in Ky if G is non-trivial,
Proof. Let f bave the representation (+). Then

n "
Z‘iaiboe (gi+ho)-—_21aobje(go +1y)
£ &

a
f"fe(go_ho):i m
J bRe(@ho)+ 3 bobe(ho+h)
j=1

"The denominator is modK equivalent to bie(2hy) while for i,j31

e(g;+ho)<e(go+ho)modK and  e(go+h)<e(go+ho)mod K.

‘Therefore, f— %9 e(go—ho)<e(go—ho)mod K. This proves (i).
0

(if) and (iii) are easy consequences of (i), M

COROLLARY 20. If K, is an outer extension of K, then the order extends uniquely
Srom K to K;.

COROLLARY 21, Let K, be an outer extension of K by means of G, let L be a sub-
Jfield of C cofinably containing K and let L, = L(e(®)). Then L, is an outer cxtension
of L by means of G, which contains K, cofinally.

PROPOSITION 22. Let K; be an outer extension of K by means of an Archimedean-
ordered group G. Then, every fe K, has a unique representation f = p+r where p is

icm
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a linear combination of elements of {e(g): ge G, g0} with coefficients from K
and r is coinitial in K.
Proof. Let f have the representation (+). If m = 0, the assertion is obvious.

So we can assume without loss of generality that m>0 and by # 0. We assume,
moreover, that g,>hy. It is easily checked that

a
f= > @kt
]
isn

and ry = —~< E bje(hj))< E g—ic’(gi*ho))»
0
isn

J=1

where
fi= e
Y Y bye(hy)
Jsm

We have deg(f;) = deg(f)—(hy—hy). Now we can apply the same procedure
to f. Iterating this k-times we find a representation f = p,+f;, where p, is
a lincar combination as required, and deg(f,) = deg(f)—k(hy—h,). Since G is
Archimedean-ordered we can find a least k such that deg(f;)<0. Then p = p, and
r = r, define a representation as required.

In order to eliminate the assumption that g,>#, let I be the greatest number
such that g,=h,. Then

Z a;e(gy)
2
JZmbje(hj) .

has a representation p+r, having the desired properties. Moreover, we have
deg(f—p-—rq)<0, which implies that f—p is coinitial in Xj.
Now let us assume that [ = p,+r, = p,+r, where

Py = Zaie(gi)n Py = Zﬁi"f(gi)
i<k i<k

are linear combinations of the required form and ry, r, are coinitial in K. If 7 is
minimal such that a; % fi;, then 0 = py —py+r,—~ry~(e;~ B)e(g)mod K, a contra-
diction. Therefore p; = p, and also r; = r,. ®

COROLLARY 23, Let Ky be an outer extension of K by means of an Archimedean-
ordered group G, and let K, be dense in the field Ky, Then every fe K, has a unique
representation f = pr where p is a linear combination of elements of {e(g): g € G,
g0} with coefficients from K and r is coinitial in K,.

Proof. Fix some ge G, g<0 and choose f; € K, such that \f—fil<e(g).
Ji has a representation f, = p+4r, of the required form. Hence f* has such a re-
presentation since ry+f—Jfy is coinitial in K, H

Similarly one can prove

PROPOSITION 24. Let C(x) be dense in K. Then every fe K hds a unique re-
presentation f = p+r where pe C[x] and r is coinitial in K.
8 — Fundamenta Mathematicae CXXIV/2

%
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We now come to a central concept of our investigation of the structure of C,,.

A sequence of fields C(x) = K,SK(S ... EKpue1 = K and ordered groups
Gy, ..., G, is called a ladder for the field K if

(@) for every i =1,...,n there is a-j<i such that ‘

a) if j=0, then there is a non-trivial finite-dimensional Archimedean-ordered
Q-vector space V<(Ky;q, +,0, <) and a positive g € G; such that G; = e¢(g)V
SKai-1;

b) if j = 0, then there is a non-trivial finite-dimensional Archimedean-ordered
Q-vector space V(C, 4,0, <) and a positive mew such that G;= "
SKai-13

(i) Ky, = Kp—;(e(Gy) is an outer extension of Ky, by means of Gy;

(iif) Kp;4; is an inner extension of K,;.

The reader should satisfy himself that j, ¥, g and m occurring in (i) are unique
because of (ii).

We say that a ladder Lg, ..., Loys1, Hy, oor Hy, extends the ladder Ko, ..,
os Kawi1s Gy ooy G, if for each i=0,..,n there is a je{0,..,m} such that
GiSH;, K»;SLs;, Kyip1SLyjy. Proposition 17 and Corollary 20 yield im-
mediately }

PROPOSITION 25, If there exists a ladder for K, then the order on K is unique.

LemmA 26. If there is a ladder Ky, ..., Kyye 1 Gy v Gy for K and if v is coinitial
in one of the fi eldv K11, then there is a ladder for K(e(Qr)) extending Ky, ...,

KZn+ls Gl: n

Proof. We assume that r is commal in Koppqo Kope 1(e(Q;)) is a simple inner
extension of K,;4,, hence it contains K,;., cofinally and is an inner extension
of K,;.

K142(e(00) = Ky 1(e(0M)(e(G14 1)) is an outer extension of K. (c(@r)
by means of G;;; by Corollary 21 and e(G;,,) is cofinal in K;., and in
K142(€(QF)). Kpirs(e(Qr)) is an inner extension of Koy (e(Qr)) by Lemma 18.
By this Lemma we also know that K., is cofinal in K,;.4(e(Qr)).

Similarly we proceed to show that Ky, ..., Ky, Kapa1(e€Q), ooy Kppa1 (e(OF)),
Gy, ..., G, is a ladder for K(e(Qr)).

Lemma 27. If there is a ladder Ko, ..., Koyyi1, Gy o0, G, Jor K, if g € G}, g>0,
aeKy;_; for some j>0, then there is a ladder for K(e(Qae(g))) extending Ky, ..

o Konst, Gis ooes Gy

Proof. We can assume that @ is positive. Let ;, ..., 7, be all i = 1, ...,n in
increasing order such that G;, = e(g)V, for some Archimedean-ordered Q-vector
space V,S(Kyj-1, +,0, <).

Case 1. There is a v =1, ..., m such that ¥,+Qa is Archimedean-ordered.
Then, for i = i,, G;+ Que(g) is Archimedean-ordered and

Ky, oy Kaiegs Ku(e(Qae(g))), > Kzu+1(@(Qa3(9)))» Gy, ooy Gioy, Gyt Quelg),

Gisy, - Gy is a ladder for K(e(Qae(g))) by Lemma 18 and Corollary 21.
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Case 2. Thereis a v = 1,..,m and a be Vy+ ... + V,,+ Qa such that V,<b
<V,p1. Observe that be Ky;_y and aeV,+...+V,+ Qb. Then, for i =i, we
can show as in case 1 that

o Kaip1r Koy (e(Qbe(g))), Kyivq (e(Qbe(g))), K2i+2(e(Qbe(g)))n
e K2n+1("(Qbe(g)))= Gy, ooy Gy, Qbe(9), Gy, ...y G,y
is a ladder for K{e(Qae(g))). '
Case 3. m = 0. In this case, for every i = 1, ..., n cither G;<ae(g) or ae(g)<h

for every positive /1 € G;. Let i<n be maximal such that G,<ge(g) or i = 0 if there
is no such iz1. Then

Koy, Kap10 Ko g (“»‘(Q“'f'(y)))»Kzi»n(G(Qaeflg))): K2i+2(e(QaC’(,9)))a
o Kayai(e(Que(q)), Gy ..., Gy, Qae(9), Grags ooy Gy
is a ladder for K(c(Qac(g))). M

COROLLARY 28. If there exists a ladder Ky, ..., Kypi 15 Gy oy G, for K and if
p is a linear combination of elements of the form e(g) for positive g € G;, with coef-
Sicients from Ka;_y for some j>0, then there is a ladder for a field K1§K(E(Qp))
which extends Koy, .., Koyi1s G1, ooy Gy

The following Lemma is proved in a similar way.

Lemma 29. If there is « ladder for K and if p e C[x] is such that p(0) = 0, then
there is d ludder for a field K, 2K(e(Qp)).

ProposITION 30. If there is a ladder for K and fe K, then there is a ladder
for a field K 2K(e(QOf)).

Proof. Let Ky, ..., Kypi1, Gy, ..y G, be a ladder for K and let fe K. By
Corollary 23, f = p,~+f,-r,, where p, is a linear combination of elements e(g)
‘with positive g € G, and coefficients from Kj,—1, f, € Kzy— and r, is coinitial in K.
Similarly, f, decomposes into a linear combination p,_; of e(g), g € G,44, 9>0,
with coefficients from K,,_s3, an f,_; € K,,3, and an element r,-, which is co-
initial in K,,_,. Continuing this process and using Proposition 24 we obtain a re-
presentation f = p,+ ... +po+fo+ire+t ... +r, where each p; (i>0) is a linear
combination of e(y) with positive g € G; and coefficients from K;_;, po € Cx],
po(0) = 0, fy € C and where cach r; is coinitial in Kpy 4.

) Now, by Lemma 26 and Corollary 28, we can extend the ladder for X to
a ladder for some field K, containing ¢(Q@p), e(@r) (=0,...,n) and hence
containing ¢(Qf). @

TuroreM 31. The order extends uniquely from C to Cg.

Proof. For every fe C,, we can find, by Proposition 30, a field X which has
a ladder and contains /. Then Theorem 31 follows by Proposition 25. B

COROLLARY 32, If C, is a model of T containing the exponential field C and if
8,1 dre terms with parameters from C, then Cy k “s dominates ¢t” iff Diagram(C) v
U Tt “s dominates t”.

(1]
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3. Applications.

THEOREM 33. Let C;, C, be models of T such thut Cy & C,. Let t be « term with
parameters from Cy such that t(c) # 0 for some ce Cy. Then there is a ¢ € C,
such that .

(@) t(x) is defined for every x e C, such that x>c¢, and

(i) Cok Vx(x>e, = t(x)>0) or Cy kF Vx(x>ey — t(x)<0).

Proof. Clearly, the assertion is true for every term without cxponentiation.
Let ¢ be a term with a minimal number of iterations of the exponential {unction
such that the assertion is false for 2. It sufifices to obtain a contradiction for
t= Y s;e(t), where all the s; and #; contain only a smaller number of iterations

isn

of the exponential function. Let n be chosen minimal too. If s, were identically
zero in Cj, it would be zero in C, by Theorem 10 (i) and we could omit the sum-
mand s,e(?,). Hence, there is a ce C; such that e.g. C,F Vx(x>c - s,(x)>0).
We put r = t/s,. If » is not constant, then our assumption on ¢ implics that there
exists a d e C, such that either

CoEVx(x>d—» r'(x)>0) or CykVx(x>d-r(x)<0).

So we can assume without loss of generality that r(x) is monotonically decreasing
in C, for x>d. If t(dy) <0 for some d, € Cy, dy>d, then we arc done, If, however
t(d)>0 for every d, e Cy, d, >d, then, by Corollary 32,

T v Diagram(Cy) F AyVx(x>y —~ r(x)>0).

Hence r(x) is positive for large x e C,, too. But, since r is monotonically decreasing,
this implies that r(x)>0 for all x>d, x € C, and hence the same holds for #, which
contradicts our assumption. B

COROLLARY 34, Let Cy, C, be models of T such that C, < C, and let t be a term
with parameters from Cy which is not identically zero in C,. If c € Cy iy such that
t(c) =0, then ce C;.

Proof. We choose £ = ¥, s;e(t;) minimal such that the assertion is false, i.c.

. isn
t(c) = 0, ce C,N\C}. Theorem 10 (ii) implies that ¢ is not identically zero in C,.
By Theorem 33, ¢ cannot be greater than C;. Similarly, ¢<C; cannot hold, There-
fore, there are «,be C; such that a<c<b.

By our assumption s,(c) # 0. So we can consider the term tfs, = r. If r is
constant, ¢ must be identically: zero. Otherwise, by the induction hypothesis, all
the finitely many zeros of r’ are in C; and we can assume without loss of generality
that r'(x) # 0 if e<x<b, xe C,. Hence r is strictly monotonic in [a, b]. Then
t(c) = 0 implies r(a)7(5)<0 and since the intermediate value schema holds in Cy,
there must be a ¢, € C; such that a<c; <b and r(c) = 0. But ¢; = ¢ since r is
strictly monotonic in [«, 5]. W
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TueoreM 35. Let Cy, C, be models of T such that C,=C,. If p(x) is a quantifier
free formula with parameters from Cy and one free varigble x, then Cyk Jxp(x).
if and only if C,F Axep(x).

Proof. We can assume that ¢(x) is the formula

/"\ tx) = 0A ;.\sj(x)>0.
=1 i=1

Let Cyk p(c). If one of the ¢;’s is not identically zero in C,, then ce C; by
Corollary 34, So we can assume that n = 0. If ¢>Cy, then s;(x)>0 for all large
xeCy (j=1,..,m) by Theorem 33. Similarly, C, F Ixo (%) if c<C,. If a<c<b
for some a, b e Cy, then we can choose @, b such that 5;(x) # 0 for all x & [q, b],
x€Cy j=1,..,m Now, by the intermediate value schema, 5{(x)>0 for all such
x,J. Hence C, k o(¢). B

Our' study of the structure of C,, provides us with a new representation of
exponential terms. In order to describe it we require some general algebraic concepts.

Let K'be an ordered field and let H be a multiplicatively written ordered Abelean
group. A function ¢: H — K is called a transfinite series on H with coefficients
Srom K if its support, i.e., supp(o) = {h € H: o(h) # 0}, has no infinite ascending
chain with respect to the order of H. The set of all such series is denoted by
K[[H]]. For given series ¢, we define ¢+ and o7 by

o+ = o(B)+2(h), ,
(o) = Y {o(h)t(hy): hyhy = h}.

Moreover, we define o0 iff supp(e) # @ and o(maxsupp(s))>0. We quote the
following two lemmas from [Ful, pp. 134f.

LEMMA 36 (Hahn, Neumann). K[[H]] is an ordered field.

Lemma 37. If oe K[[H]] is such that o # 0 and supp(o)<1, then for any
sequence d, of clements from K, ¥, a,6" is meaningful.

=0
Now let C be any ordered exponential field. Let H_, = {1} and H,

={x": meZ)}. H., and H, are multiplicatively written ordered Abelean groups.
We put C° = C[[J7,]]. Now suppose H, to be defined and C” = C[[H,]]. Let

G o= {oe C" supp(o)>H,—4} v {0}

and let E be an isomorphism of the additively written ordered group G"**

=(C" +,0, <) onto some new multiplicatively written ordered group E(G"*").

We define H,,, = H,E(G""!) and order this group lexicographically by
hE(@)>1 iff o¢>0o0r o =0 and A>1.

Then C"*! = C[[H,,]] is defined and is isomorphic with C'[[E(G"*")]]. The
groups H, and the fields C" form increasing chains. Let H,, and C® denote the
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limits of these chains. Then C®*<=C[[H]] and the isomorphisms E defined above
can be combined to an embedding

E: {oeC”: supp(o)>1} — Hy, .

C*® becomes an exponential field as follows. For every o e C* there are unique
Gopy 0g€C®, ceC such that 0 = o,+c+0y, supp(o,)>1>supp(a,). We put

e(0) = E(%)e(c)zﬁaé.
i=0

Now let us again consider C as a subfield of some T-model C; and let C,, be the

field of functions definable by exponential terms with paramecters from C and

ordered according to their limit behaviour in Cy. Until stated otherwise we fix

a normal subfield K of C,, and a ladder Ky, ..., Kaps1, G4s s G, for K. We are

going to define an embedding o: a + g, of the ordered field X into C® such that
a)o,=aif aeC or ae{x™ meZ},

b) if a€ Gj, then supp(c,)>1 and a.q = E(e) (j=1,..,m),

o) if I'y = {x": meZ} and for each i = 1,...,n I'; = {£(0,): g € G} and if
a€ Ky, then supp(e) Sl v I,

We follow the convention that ¢,(k) = 0 unless stated otherwise.

For every ae K, and for every integer m, by Proposition 24 there is a unique
representation ax™™ = p+c+r such that pe C[x], p(0) =0 and r is coinitial
in K;. We put o,(x™ = ¢. Then for every m

a— Y o, (x")x"<x"modC.
vZm
It is routine to verify that ¢: a o, is an embedding of the ordered field X;
into C[[I,]]-

Now suppose that ¢ has been defined on Kj;,, such that a), b), ¢) above are
satisfied for all j<i and that i<n. Observe that Eo: g + E(o,) is an isomorphism
of the additively written ordered group Gy+..+G, onto the multiplicatively
written ordered group I'y-...:T.

If Gy = x™V for some me w, m>0, V=C, then obviously 1<supp(a,) for
each g € Gy ;. Therefore we assume that there is some j>0 such that Gy =)V
for some positive g € G;, V<K,;_;. Since by b) supp(a,(,) = {E(o)} =T, and
for every v e V' supp(0,)S Fo-...- I';-y by c), we have supp (Tetg) S L vt Ly B o).
But g>0 implies E(o,)>TI;"...-T;.,, hence SUpp(Gego)> 1. Therefore we can
define I'yyy = {E(0,): g€ Gy} Now let ae K,y For overy go€ Gy, by
Corollary 23, there is a unique representation ge(—go) = p+c-+r such that pis
a linear combination of elements of {e(g): g € Gy,y, g>0} with cocfficients from
Kar1, € Kyppy and r ocoinitial in K,;.a. We put 7,(ge) = ¢. Then for every
Go€Gisy

a= ¥ a(g)e(9)<e(go)mod Ky sy .

9Z4do
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1t is routine to verify that ©: a b7, is an embedding of the ordered field K, , 3
into the ordered field Kj;.,[[e(G;4)]] being isomorphic with K, [[T.1].
Hence o extends from Kj;,; to an embedding of Kases into C[[Iy...- Ty 41]
satisfying a), b), ¢) for j<i+1.

In order to show that for all a oy, = e(s,) let a € K be such that e(n)e K.
If F is such that X is F-normal, then, by Lemma 4, 2—fe C for some feF. By
the definition of a ladder @ has to be of the form a = g,+ ... +gitetrgt oy,
where g;€ G4, ce C and r,; is coinitial in K,;.,. ¢ has been constructed in such
a way that oy, = E(o,) and supp(s,)ST,-...- I';. Proposition 15 yields that
fe(r) —edrdl<|rt] for every natural number k. If we put

<
1 \J
Ty = Oetry ;‘,(O’r; s

v=0

we see that |r)|<|o,|* for each k and supp(t) & I'g*...-I';. But r; is coinitial
in Ky;4 and, if >0, e(G) S Ky, 4. Hence for every g & G, [or* < E(o,) for large k.
Therefore supp(t;)<I';. But this is possible only if supp(r) = &, ie.,

@
1 v
Oetry) = N (o).
v=0

If i = 0, a similar argument can be applied.
n

Now e(a) =1H e(g,)e(c)lf'[ e(r;), hence
=0

=]
n n @ 1 .
o= [ [rere [ [> S
i=1 =0 =0
n w0 1 n ’
A ST
=1 v=0 ) =0

‘We observe that the cocfficients of ¢, and o, can be calculated from the coef-
ficients of o, and ¢, by means of addition and multiplication. If ¢, # 0,
4]

I
b = maxsupp(e,) and T = 1~ —"— then supp(c)<1. Hence

7" is meaningful.
a,(h

n=0
It is casy to check that
e
— — T,
o, oMk
0

n=
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Hence the coefficients of o, are obtained from 1 and the coefficients of o, by
means of +, » and ~ %, Similarly, the coefficients of . are of the form e(o,(1)e
where ¢ is obtained from 1 and the coefficients of ¢, by means of addition and
multiplication. We observe that the coefficients of o, are independent of the con-
crete choice of the model Cj, the field K, and the ladder for K — they are com-
pletely determined by the diagram of the exponential field C.

By the order of a term ¢ we mean the maximal number of iterations of the

exponential function occurring in #. Thus we have proved

LEMMA 36. Let 1(%,¥ 1, s ¥y) be a term without parameters, let Cy be a model
of T and ¢y, .., ¢,€ Cy. Then, for every he Hy, there exists a term u(yy, ..., ,)
of the same order as t such that

) o't(x,c;,,.‘,cn)(h) = M(Cl, ey L‘,,) .

Levma 37. Suppose a # 0 and h = maxsupp(a,). Then there is a positive ce C
¢
such that \o,—o,(h)h < ;h .

Proof. The lemma is an easy consequence of the fact that x™* is the largest
element of H,, which is less than 1. B

Since 6: a b g, is an embedding of Cy, into €%, Lemma 36 and Lemma 37 yield

THEOREM 38. Let t(x, Y1, ..., ¥y) be @ term without parameters, let Cy be a model
of T and ¢y, ..., ¢y € Cy such that 1(x, g, w., ¢,) is not identically zero in Cy. Then
Cy F“limt(x, ¢1, ..o, € exists” iff Maxsopp (Oyx,eq, wen) S 1

If ceCy is such that CyF “limt(x, ¢y, ..., &) = ¢”, then there is a torm
U(Vy, o, Vo) Of the same order as t such that ¢ = u(ey, ..., ¢,).

COROLLARY 39. Let Cy, C, be models of T containing an exponential field C
and let t be a term with parameters from C. Then, for each ce C L {+w},
C, F“lim¢ = ¢” iff C,F “lim¢ = ¢”. .

Proof. Corollary 39 follows from Lemma 37 and Theorem 38 since the map
a o, is the same for the models Cy and C,. &
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'The automorphism. group of some semigroups
by

Richard D. Byrd (Houston, Tex.), Justin T. Lloyd (Houston, Tex.),
Franklin D. Pedersen (Carbondale, IIl) and James W. Stepp (Houston, Tex.)

Abstract, Let F(Z) denote the collection of all finite non-empty subsets of the integers Z.
F(Z) can be considered as a semigroup with addition defined by A+ B = {a+b| ac 4,be B}
The main result in this paper is the determination of the automorphism group of F(Z). In order
to determine this automorphism group some algebraic results for F(G) where G is a group are
obtained, '

Introduction. Let F(Z) denote the collection of all finite non-empty subsets
of the integers Z. F(Z) can be considered as a semigroup with addition defined
by 4+B = {a+b| ae 4, beB}. M. Deza and P. Erdds considered this set ad-
dition in [2] and G. A. Freiman also uses this notion of set addition in his book [3].
The same idea is used, but mainly for infinite subsets, in the study of sequences, such
as in H. Halberstam and K. Roth [4]. The main question that is considered in this
paper is the determination of the automorphism group of this semigroup.

Since the answer to the main question can be obtained by considering the
subsemigroup of F(Z) composed of all subsets of the non-negative integers which
contain 0, the first section is devoted to determining the automorphism group of
this subsemigroup. It is mecessary to introduce some algebraic results concerning
retractions in order to answer the main question. Thus, the second section is
devoted to providing the necessary facts about retractions in order to verify that
the automorphism group of F(Z) is a splitting extension of Z by the Klein four
group,

Section I.

DrrmiTion 1. For a group G let F(G) = {4=G| 4 # @ and |4|< co}. For the
special case of G =Z let K = {de F(Z)| 0e 4, AcZ*}.

The following lemma is due to Professor A. H. Clifford.

Levva 1. If ye AutK and n is a natural mumber, then {0,n}y = {0, n}.

Proof. Let P, = {0, n}y. Now (n~1){0, 1}+{0,n} = (22—1){0, 1} and thus
(n—1)P;+P, = 2n—1)P;. Let @ ={0,...q} = {0, 1}p~%. Then 0+¢{0,1}
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