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Remote points in spaces with 7-weight o,
by

Alan Dow (Toronto, Ontario)

Abstract. Every nonpseudocompact ccc space with zz-weight w, has remote points. If there
is an w;-scale then the ccc assumption may be dropped. Results for ccc spaces with larger - weight
are also obtained.

0. Introduction. All spaces are completely regular and X* denotes X -X.
A point p € BX— X is called a remote pointof Xifpe clyx A for each nowhere dense
subset 4 of X. Remote points and similar notions, such as remote filters, nice
remote filters and remote linked systems, have proven very useful in the investigation
of Cech-Stone compactifications (cf. [vD], [vM1], [vM2]). Much more recently the
existence of remote linked systems, surprisingly, has been used in forcing proofs
using large cardinals [TW].

In 1962, Fine and Gillman [FG] introduced remote points and proved that,
under CH, the reals had remote points. The authors of [K¥MM] improved this
result to include all nonpseudocompact spaces, X with [C*X)| <w,. Van Douwen
[vD], and, independently, Chae and Smith [CS], showed that if X is a nonpseudo-
‘compact space with countable n-weight, then X has remote points (and nice remote
filters). However, there are nonpseudocompact spaces with 7-weight w, which
do not have remote points (by [vDvM] and [KvMM]). This leaves open the question
for m-weight @, spaces.

A partial answer was provided by van Mill [vM1]: a nonpseudocompact space
which is a product of @, spaces, each with countable n-weight, has remote points
{(and nice remote filters, which was needed for his applications). Recall that a space
is cce if each family of pairwise disjoint open sets is countable. In this paper we
show that a nonpseudocompact ccc space with n-weight o, has remote points and
that it is independent with not CH that they all have nice remote filters, We also show
that it is consistent with not CH that all nonpseudocompact spaces with n-weight
©y have remote points. In [D3] we show it is consistent that there is a nonpseudo-
compact space with z-weight w, having no remote points. The reason for the nomn-
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pseudocompactness assumption in the above results %s that a pseudocompact
space with m-weight less than the first measurable cardinal does not have remote:
points [Te].

1. Preliminaries. Let X be a space. A set & <P (X) is called remote if for eac'h‘
nowhere dense set DX there is an Fe & with Fn D = O’. A remote ﬁlifr wilk
refer to a filter of closed sets which is remote. If X is t.he topological sum of X, " (n<w),
denoted ZX,,, then a closed filter Fis called nice provided 'that {{n<w:FnX, =@}
<o for all Fe &, and (Y& = @. A n-base B for X is a set (‘xf non-empty open
subsets of X with the property that each open subset of X contains a member of B
The n-weight of X, nw(X), is the minimum cardinality of a n-base for X. A family
of sets is cellular if its members are pairwise disjoint. ‘ .

We now establish our general framework for comstructing remote points and
filters. This approach has been used repeatedly ([vD][D1,2]).

1.1. LemMa. Let {X,: n<w} be a locally finite Sfamily of regular clc').v@a' szlbnjs-
of X and let, for n<w, B, be a n-base for X,,. Let I be the set of all maximal cellulur
Families of sets from \) B, and let & be a closed filter on X. - _ X

(1) If F has the property that for each ¢ € I there isan F e FwithFe) {@:aea},

F is remote.
e (g ;}oToeach o el there is an Fe & so that for each n<o there is a ﬁmZte
6,0 n B, with Fc |} {a: ae\ o,} then F is remote and extends to a remote point
n .

of X.
Proof. (1) If DX is nowhere dense, we can choose a subset
ocf{ae|)B,: an D=0}
so that ¢ is a maximal cellular family. Since, for egch new, Dn X, is nowhere
dense in X, and B, is an n-base, ce . If Fe & and Fe | {@: ae o} then Fn
n'D = 0. Hence # is remote. )

(2) In this case, for a nowhere dense set D<X, let ccf{ael) B,: a is com~
pletely separated from D} be chosen as in (1). Now let Fe & an.d, fo1t n<w let o,
be a finite subset of ¢ n B, so that F n X, = | {a: aeo,}. It is easily seen that
U {a: ae U o,} is completely separated from D, and therefore clyxFclgy D = .

n

Now any p e n {cl;xF: Fe #} is a remote point. ] )
Our procedure then, will be to take X,, B, and I' as in 1.1 and try to select,
for o e T, finite sets o,c0 N B, for new so that {U \U {@:-aea,}: oeI} forms

n

a filter base. If we do so then evidently 1.1(2) is satisfied.

For sets A and B the set of functions from 4 to B is denoted by 4p an.d for
a cardinal A, [4]* = {Bc4: |B| = J}. For a poset (P, <), a subset D=P is co-
final in P if for each p e P there is a g € D with p<q. Letube a ﬁlter- on w and %et
f, g e®w; define <, g to mean {n: f(n)<g ()} € u. Of course, if u is the coﬁm’fle
filter, cof, then we shall use <* instead of <,. In general, for a filter u Co, <"
does not contain a cofinal chain but if it does then let 4, denote the least cardinal
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of a cofinal chain. If (®w, <,) has a cofinal chain then there is said to he a A-scale
where A = Aooe. If u is an ultrafilter then (“w, <,) does have a cofinal chain. We
shall let x, denote the smallest cardinal such that A<ty for all ue w*. It is well
known that 2,>w, for each u € w*. We shall also let Mo = min{d,: uew*}.

The more familiar cardinals, b and d can be defined as b = min{|B]: B=“w»
and for each g € “o there is an fe “w with f£,g} and d = min{|D|: D is cofinal
in ("0, <4) (although D need not be a chain}. If d = b then there is a A-scale
with 4 = 4 and conversely. Note also that if there is a A-scale then Az oy,

2. The main results. The method we use in this paper is a modification of that
used in an earlier paper [D1]. The idea was to index all maximal cellular families
from a n-base and define a sequence of finite subsets of them such as in 1.1(2) but
it was the “responsibility” of the yth cellular family to meet that already chosén
for the orth cellular family for «<y. Tt is not difficult to set it up so that this is poss-
ible for a ccc space so long as there are no unbounded ;subsets of (P, <4) of
cardinality |y|. The problem now is that even with small m-weight there are always
at Jeast ¢ maximal cellular families. The way we get around this is to index a 7-base
in a special way. The following definition is slightly more general than we require
for the m-weight w, case but it will be useful in the next section.

2.1. DErFINITION. For a cardinal %, let us say that a -base B for a topological
sum 3y X, is well-indexed by » if B = {a(n, o, m): n,m<ow, o<} where, for each
(n,a,m), a(n,x, m)cX, and for each maximal cellular family o< B there is an
a<x with ec{a(m, o, m): n, m<o}.

The above definition says that B is like a n-base for maximal cellular families.
It is probably true that, for a space X = Y'X,, the minimum w such that X has
a m-base well indexed by 5 is a function of the cardinal zw(X ) rather then the
space X itself. In the next section we look at this more closely, for now all we require
is the following fact whose proof is trivial.

22. FACT. If X = 3 X, is a ccc space with aw(x)<w; then X has ¢ n-base B
well indexed by o,. ,

Proof. For each #n, let B, be a =-base for X, and let B = U B,. Let B
={b,: yew;} and for each (n,0) € wxx let {a(n, a, m): m e€w} be an indexing
of {b,: y e «} N B,. Now if ¢ is a maximal cellular family, ¢ is countable. Therefore.
there is an xe w, with o= {b,: yea} and so oc{a(n, a, m): n, m<w).

We now prove our main results. We shall first present the result about nice
remote filters because the proof is easier.

2.3. THEOREM. Assume that b = d. A topological sum X = Y. X, which is ccc
and has m-weight wy, has nice remote filters.

Proof. Let 4 = b = d and choose {r;: £€A}="n so that {r,: £ 4} is well-
ordered by <, and for each fe®w there is a e 1 with S<urge. By 22, let B
= {a(n, «, m): ae v, n, m<o} be a wellindexed 7-base for X. Define I" to. be.
all maximal cellular families from B. '
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Tet o e and choose o = a(o) € w; so that c={a(n,a, m): n,m<w}. Our

procedure will be to define a function g, € 2g so that | {a(n, &, m): a(n, e, m)ec
and m<g,(m)} will be put in the nice remote filter (see 1.1(2)).

Fact 1. Let E<). and let § = min(&, w,). There is an ordinal SG(§)>€.satisfying
the following: for any j<o and any sequence B;: i< =t the:re is a cofinite subset,
A, of w such that, for any ne€ A and sequence {m;: i<j} of integers less than rg(ng,
io_a (n, Bi,m;) # Oimplies thereis an m<rs, @M witha(n, o, m) niD]a(n, Bi,m;) # 0.

! .

Let us defer the proof of Fact 1 until we see its use. The 'followmg 'loosely
stated consequence of Fact 1 may be more readable. The function 75,0 is lal.:ge
enough so that if we have ordinals B;<é (i<j) and integc.rs m(n, i) <rgn) th?\
0 a(n, B, m(n, 1)) # 0 for cofinitely many n then for cofinitely many » there is
‘ <o) is i tion.
an m<rs(n) so that a(n, o, m) meets this intersec )

Sincse (?rg: ¢e 2} is cofinal in ("w,<y) We can choose ¢y(0) Wlth a<&o(o) <A
so that for cofinitely many n<w there is an m<rg,n) with a.(n, o, M) E g We
shall recursively define a sequence &;(o) for j<a (but for convenience we will just
call them ¢&). For each j<o, simply let &y = S,(¢;). Now we define 9.1

= max(rg,(n): j<n) for n<o.

Let qu show {U {a(m, x, m): « = a(0), a(n,, m)e o and 11‘1<g,,(n)}: cel}
forms a nice filter base. Let I'ycI' with |I'j] = k<o. Recurs.wely choose, for
i<k, 6,eT; so that &(q;) is a minimum for {{,(0): & e I\{o;: j<i}}.Let B, = a(o)
(i<k) and note that for i<j<k, Bi<E(a)<Efo)<E1 (o)< (o). .

Now, choose Ny=k, so that for nN, there is an m(n, 0)<reg ooy YVlt%l
a(n, o, m(n, 0)) € 0. Suppose that j+1<k and that we have chosen N; (i<))
and m(n, i) <rgey#) for n=N; so that for n2Nj,

0 a(n, By, m@m, D) =0 and  a(n, Bi, m(n, ) eo; (<))
isj
We can choose an infeger Njy;>N; so that, for n=Nji1, Teiep n() 2 eep()
(i<j)since &(0;41)=E(0y) (<)) Therefore, for n> Ny and i<j, m(n, 1) <rgapy)
By Fact 1 and the definition of &;.1(05+1) there is an Nj, 4 >Njy, S0 tl}at for each
n=N;,q, there is an mn, j+ D) <re ., iee0® w1thi<{1j“a(n,ﬂ,,m(n,t)) # 0 and

a(n, B, m(n, D) € o, (i<j+1). It follows that for 73 Ne-,

N U {a(n, «(e), m): a(n,«, m)ec and m<g,(n)}:i9ka(n, B m(n, i) #0
oely
since, for i<k, m(n,i)<reey(m)<gqs(n). Therefore we have a nice remote
filter base.

It remains to prove Fact 1. Let ¢<A and 6 = min(¢, ,). For any sequence
(B;: i<j)ed and new, there are only finitely many open sets of the fo‘rm
N {a(m, Bi, m): i<j} with my<rgn) (i<j). Since ¢ is a maximal ?ellular family,
there is an integer k, so that, for each of the non-empty sets there is an m<k, so
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that a(n, a, m) is in o and meets the set. Tt follow{ that there is a &’ so that for

cofinitely many » ry(n)=k,. Now we simply let S,(&)< be larger than &’ for each
of the |{|w-many such sequences.

2.4. THEOREM. Each mnonpseudocompact ccc space with n-weight w,, has re-
mote points.

Proof. By Lemma 1.1 it suffices to show the result for X = Y X,. Let u be
any ultrafilter on  and choose {r,: £ €4,}=“w to be well-ordered and cofinal
in (*w, <,). The proof then proceeds exactly as in 2.3 except that every set of
integers chosen to be cofinite is now chosen so as to belong to u and < « 1s replaced
by <,. The remote filter that we construct will then trace on ' X, along the filter u.

We now drop the ccc assumption. As mentioned in the introduction, under CH,.
each nonpseudocompact space with |C*(X)| =c¢ has remote points. Whereas it
is consistent that there is a space with m-weight w, (and [C*(X)] = ¢) which does.
not have remote points. Therefore some set-theoretic assumption is needed for
the existence of remote points for spaces with w-weight w,. Our result shows exactly
what assumption is needed. Also we nct only weaken the CH assumption but extend
the result itself because nw(x) = w; does not imply |C*(X )]<ec. The proof wilk
again require only minor modifications to that of 2.3.

2.5. THEOREM. (1) Every nonpseudocompact space with m-weight @, has remote
points iff 1o = wy. (recall 5y =min{l,: ue w*}). (2) Each topological sum with
n-weight wy has nice remote filters iff there is an wy-scale (i.e. b = d = ).

Proof. The only if of both (1) and (2) is proven in [D3]. We shall prove (2);.
the modifications to this proof for (1) are exactly as those for 2.4.

Let X =YX, and assume that b = d = o,. Fix o, -scale {re: ew} =0 and
let, for ne o, {b(n, «): a<w,} be a n-base for X,. We cannot hope to get a well-
indexed 7-base because X need not be ccc. However it will suffice to let
{a(n, u, m): m e 0} be a listing of { {6(n, B): B & F}: Fis a finite subset of a1}
{9}, for each new and « € w,. Again let I"be the collection of all maximal cellular
families from the =-base.

Let geI. For each n<w, there is a y,<w, such that b(n, y,) € o; let oo (o)
<wy with y, <o for n<w. Choose &(0)=0,(0) so that for cofinitely many n e
there is an m<rg,(n) with a(n, oy, m) € o.

We shall need a slight modification of the Fact 1 in 2.3. The proof is virtually
the same and is omitted.

Facr 2. Let {<a<cw; and suppose that for each ae{a(n, &, m): n, m<om}
there is an a' e o 0 {a(n, o, m): n,m<w} with a n a’ # @. There is an S,(&)<w,
with a<S,(£) so that for any j<w and any sequence (f;: i<j) <4 there is a co-finite
subset 4 of c such that for any n e 4 and sequence {m;: i<j} of integers less than
rem), Y a(n, fi, m;) # 0 implies there is an m<rs g with a(m, «,m n

i<j

nan, B, m) #0.
i<j
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The only difference between the above fact and that in 2.3 is that o is large
to ensure that the ath level-of the m-base contains enough of ¢. Note that each
level contains all finite intersections of elements from earlier levels.

FACT 3. For each £ € w4, there is an a> £ so that for eacha € {a(n, &, m): n, m<w}
there is an a' e 6 N {a(n, a, m): n,m<w} with ana’ #0.

Indeed, for each n, m<w, choose a, , € ¢ so that d,,, N a(n, §, m) # 0. Now
let o> be large enough so that {a(n, o, m): n, m<w}>{d, ,: n, m<w}.

We recursively choose &; and o; for j e e as follows: &;4; = S,(¢;) from Fact 2
(where « = o;) and then o, is chosen from Fact 3. Now, of course, our remote
filter is { U U {a(n, oy, m): an, o5, m) € 6, j<n and m<ry()}: o eI'}. To check

n

that this is a nice filter, let I'; =I” with |I';] = k<w. Again choose, for j<k, o;e I'y
so that £;(s;) is a minimum for {€/0): 6 € I'\{0gs-.s 0;-1}}. Now let f; = a(o))
(j<k). Observe that for i<j<k B; = afo)<&fo)<E—q(0;). We proceed from
here exactly as in 2.3.

3. Larger m-weight. In this section we investigate to what extent the results
in section 2 will extend to spaces with larger m-weight. It is known that 2.5 does
not generalize but with ccc spaces it is possible, in both 2.3 and 2.4 [D1]. Our
generalizations at present depend on which cardinals » have the property that
a cco space of m-weight » have a m-base well-indexed by x.

3.1. TueoreM. Let X be a nonpseudocompact ccc space which has a n-base
well-indexed by x. i

(1) If b = d, »<b and if X is a topological sum then X has nice remote filters.

(2) If x<xy then X has remote points.

Proof. To prove (1) we need only substitute » for w; in Fact 1. For (2), we
must choose u € ®* so that 4,2 and substitute » for w; in Fact 1.

" It would be very nice if it were true that if X" was a ccc space with z-weight
Jess than »x, then X has a m-base well-indexed by some A< x,. This, of course, would
mean that any such nonpseudocompact X has remote points. I do not know if it
is true but it is true for certain n-weights and if there are no measurable cardinals
then it is true for all. )

3.2. DerINITION. For a cardinal », let C(x) be the minimum cardinality of
a family & <[x]” with the property that if Be [x]” then there is an A e & with
BcA. .

The following result is very easy to prove and is probably folklore.

3.3. LEMMA. For ne o, C(w,) = o,.

Our reason for making Definjtion 3.2 is the next result.

3.4, THEOREM. Let X be a ccc nonpseudocompact space with aw(X) = x. If
C(x)<ny then X has remote points.

Proof. It suffices to assume that X =) X,. We simply show that X has
a m-base well-indexed by C(x) and apply 3.1. Indeed let {d,: £<C(3)} =[x]” satisfy
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the property in 3.2. Also, for ne w, let {b(n, 0): o €2} be a w-base for X,. Then,
for £<C(x) and n<w, let {a(n, &,m): mew} be a listing of {b(n,a): aeAg.
Now if ¢ is a maximal cellular family from the m-base, let B = {o: for some
n,b(n, ) € a}. By the choice of {A,: £<C ()}, there is a £<C(x) so that Bed,.
Clearly o={a(n, &, m): n,me w}.

3.5. CoROLLARY. For each ne w for which w,<x,, any nonpseudocompact cce
space of m-weight w, has remote points,

3.6. THEOREM. If there are no measurable cardinals then each nonpseudocompact
cce spdce with m-weight less than %, has remote points.

Proof. The assumption we really require is Jensen’s Covering Axiom: When-
ever 4 is an uncountable set of ordinals then there is a B e L (Godel’s constructible
universe) so that 4 < B and 4| = |B]. Jensen has shown that if there are no measur-
able cardinals then the above condition holds [KaMa]. It is very easy to show that
in this case, C(%) = « for x regular and C(x)<x»™* for all . Also, since A, is regular
for all u e ¥, %, cannot be the successor of a singular. Therefore if X is a space
with ww(X) <, then C(nw (X ))<%o. The result now follows from 3.4.

We have one final little result on the function C(.) which seems interesting,

3.7. PROPOSITION. [f M<[x]”, for a cardinal x, where for each B e [x]° there
is an Med with |Bn M| = o then C(x)<M.

Proof. Let {a,: o € x} be a listing of the finite subsets of . For each M e .#,
let Ay =\ {a,: we M}. Let Be[x}” be arbitrary. Choose recursively «, € % so
that a,,<d,,,, and B = |J {d,,: n<w}. Now there is an M e .# with |[{x,: ne o} N
N M| = o and therefore B< | {a,,: o, & M}=dy. Hence C(x)<[M].

4. A space that is not nice., In [D4] we constructed a topological sum of cce
spaces with n-weight w, for which it is consistent that it has no nice remote
filters. In this section we m>’ify the space (and the model) so that it now has
n-weight w; and still no nice remote filters. We will use some basic foreing techniques
and refer the reader to Kunen’s book [K] for background and undefined notions.
We will also be quite sketchy in our presentation and refer the reader to [D4] for
more detail. :

Let M be our model of set theory and let P = {p: p is a function, dom(p)
“w, X w, range(p)=w}. Let G be a generic filter of P. For each a<w, let f, € “w
be the function defined by f,(n) = k where p(a, n) = k for some pe G for n<w.
We work in M[G] for a while.

Let S = {s: for some n<w, s is a function from n to w}. For s €S, let d(s) be
the domain of 5. For a e w; and se S, let U(s, &) = {te S: s=t and for each n,
d(s)<n<d(t), t(n)>f(n)}. The collection {U(s,®): se S, a<w,;} forms a sub-
base for a 0-dimensional topology on S. Let ¥ = S and X = wx Y. For n<w,
se 8§ and aewy, let a(n, s, ) = {n} xclsU(s, @); each a(n, s, «) is clopen in X°

FACT 4. For n<aw, s, teS and a,y<wy, a(m,s,«) cvaln,t,y) # 0 iff sct
and 1(k)>f(k) for d(s)<k<d(t) or tas and s(k)>f,(k) for d(t)<k<d(s).
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We will show that, for X, = {n} x ¥, Y, X, does not have a nice remote filter.
We now work in M and assume that, where appropriate, we are using nice names:
of sets in M[G]. .

Let & be a remote filter on X. Since ¥ is compact it is easy to show that the:
situation described in 1.1(2) is equivalent to & being remote. That is, for each
maximal cellular family o, there are finite subset 0,0 (n<w) with J U o, € &.

n

Now, for x<wy, {a(n, s, 6): d(s)>f,(m)} is easily seen to contain a maximal cellular
family ,. Let o,(n) be fixed so that J U o(n) € & and define /,& “w by h,(n)
n

= max{d(s): a(n, s, o) € 6,(n)}. For each & <w,, n< o, there is a maximal antichain:

Ay <P so that p decides h,(n) for p € 4,,,. Since P is ccc, each 4,, is countable.

Choose A<, so that Axw N dom(p) = 0 for pe | {4,,.: <0y, n<w}. Let ¢ be

a maximal cellular family contained in {a(n, s, 0): d(s)>fu(n)}. As above there are

finite sets c(m)co (n<w) with J U o(n) € . For n<o, let 4,<P be a maximat
n

antichain so that for each p € 4, (n<w) completely decides o(n). Let a<w,, with.

{}xow ndom(p) = @ for pe U 4,.

Finally, suppose that peP and p IF {n<w: Uc,n) n Uo(n) = O} is finite;:
we shall derive a contradiction thus showing that X has no nice remote filters in
MIG]. Let j<o and p,op so that p, It for n>j, U o,(m) n | o(n) # @. Since p, is
finite we may choose n>j so that w, x{n} n dom(p,) = @. Choose ¢; € 4,, 5o
that p; Ug, €P and let k<w be large enough so that (x,m)edomg, implies:
m<k and gy Ik h(n)<k (i.e. we can extend p; U ¢, so as to make f,(k) as large:
as we like). Choose g, € 4, and m<w so that p; U g, U g, ep and g, IF f,(M >k
and s(k)<m for each seo(n); (we may do this since (iy,n)edom(p, U gy)).
Finally we may choose p,2p; U g4 U ¢, so that p, - f,(k)>m. Therefore p, I+ In
>7 3k (h(n) <k <fy(n) and s(k) <f,(k) for s € o(n)). However, since ¢, =p,, p,l- d(r)
<h,(n) for te o, (n) and so by Fact 4, p, FAn>j({) o.(n) n U o(n) = ). This is
our desired contradiction.

This is in fact a very interesting situation. We have just shown that, for each
remote filter &, there is an Fe # with |{n<w: Fn X, = @} = w. Therefore
o* # N {clge{n<w: Fn X, # @}: Fe #}. On the other hand, since nw(X) = o,
by 2.4, we have for each u € o* a remote filter #, on X with

{{n<w: FnX, + ©@}: Fe &} =u.

5. Questions,

(1) Do all ccc nonpseudocompact spaces with weight at most ¢ have remote
points?

(2) Do all cce nonpseudocompact spaces have remote points?

(3) Is there a compact space X which is nowhere ccc (i.e, no non-empty open
subset of X is ccc) and yet wx X has remote points in ZFC?
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