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Equivalence relations induced by extensional formulae:
classification by means of a new fixed point property

by

Claudio Bernardi and Franco Montagna (Sienna) * .

Abstract. Any formula F(v) of P4 induces an equivalence relation on o defined as follows:
x ~py iff Fpa F(X)<>F(3). It is proved that if F(») is extensional then ~ either is recursively
isomorphic to the relation “provable equivalence” (defined in the set of sentences) or enjoys
a “fixed point property”. The subject is studied within the framework of numeration theory (in
particular, we find a characterization of positive precomplete numerations); an algebraic trans--
lation is also discussed.

1. Introduction, The theory of numerations, due to Ju. ErSov [4], has been applied.
to logic first by A. Visser in [13] and then by the authors and A. Sorbi in [1], [10],
[12]. We recall that a numeration y is a pair (v, S, where S is a non-empty set.
and v is a function from @ onto S; given a numeration y, we can define an equi--
valence relation ~, as follows: x~,y iff vx = vy. In fact, if we identify S with
o/ ~,, we can speak indifferently of a numeration or an equivalence relation on w.

A significant example is the numeration yp, of Peano Arithmetic: actually,
Godel numbers implicitly define a numeration, where S is the Lindenbaum algebra
of PA (regarded as the set of equivalence classes of provably equivalent sentences).
The corresponding equivalence relation ~py is obviously defined as follows: x~p,y-
iff the sentences of Godel numbers x,y are provably equivalent in PA. As may
be expected, the relation ~p, enjoys many unexpected properties (see [1] and [10]).

Now, our purpose is to carry this subject further, studying in particular ties
between numerations and formulae of PA. (We always consider PA: in fact, we
could consider any theory in which recursive functions are representable and which
possesses partial truth predicates).

In the sequel, we mostly consider positive equivalence relations, i.e. those:
equivalence relations 2 for which the set {{x, ¥); x#y} is r.e. (and, when speaking.
about relations, we always refer to positive equivalence relations defined on e,
which are non total).

A formula F(v), with only the variable v free, induces a relation ~p defined
as follows: x~py iff Fpy F(X)F(¥). A Theorem of [1] says that every positive
equivalence relation coincides with ~j for a suitable formula F(z). Now, from

* Partially supported by a grant from the Italian CNR. (USA - Italy, Cooperative Science:
Program supported by CNR - NSF).
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‘a metatheoretic point of view, most significant formulae are extensional, i.e.
preserve provable equivalence (in the sense that bpyperq implies Fps F(P)<+F(7)).
So, we are mainly concerned in the study of the equivalence relations which are
induced by extensional formulae. In this case we prove (Theorem 4) that either
the induced relation is recursively isomorphic to ~p, or the formula F(v) enjoys
the following fixed point property: for every total recursive function / there exists
an n such that Fp, F(7) < F(n).

But before examining the properties of the relations of the type ~p, we need
‘some general lemmas, which are stated in Section 2: we provide new characteri-
zations of ~p, and of precomplete equivalence relations. - :

Tn Section 3, we prove the above mentioned result about extensional formulae,
as well as a result which can be regarded as an inverse of it. Then we give several
conditions for a formula F(v) to induce a relation with the fixed point property
and we consider many examples: in particular, we show that, if Theor(v) is the
standard formula which numerates the set of theorems of PA, the relation ~ .,
is precomplete and hence enjoys the fixed point property.

In Section 4 we just discuss some consequences of this fact by means of al-
‘gebraic methods. In fact, algebra can be very useful in studying fixed point pro-
perties, as is shown by C. Smorynski in [11] and by G. Boolos in [2]: we refer, in
particular, to the concept of diagonalizable algebra introduced by R. Magari,
(More generally, our opinion is that both recursive methods and algebraic ones
.can be fruitfully applied to logic). We find new fixed points related to the formula
Theor and translate the situation in algebraic terms: in this way we come to defining
an equational class (properly included in the equational class of diagonalizable
algebras) of which the first properties are discussed.

2. Precomplete and u.f.p. positive equivalence relations. In order to simplify the
notation, we express every notion related to numeration theory in terms of equiv-
alence relations. So, for instance, if £, & are relations, a morphism from # into
& is regarded as a recursive function & such that, for every n, m, if n#m then nShm.
A morphism £ is said to be one-one if it maps distinct equivalence classes modulo %
in distinct classes modulo &, that is: n#m iff AnS hm; similarly, & is said to be onto
if for every m there is an n such that in%m. Lastly, & is said to be an isomorphism
if it is one-one and onto (}).

DEpRINITION 1 (see [4]). An equivalence relation & is precomplete if for every
partial recursive function y, there is a total recursive function f such that, for every n,
if yYn converges, then fm&yn. (We say that f makes  total modulo #.)

PROPOSITION 1 (ErSov fixed point theorem; see [4]). If # is a precomplete
equivalence relation, then, for every total recursive function f, we can uniformly find

() Since Z and & ate positive, any isomorphism % admits an inverse isomorphism k (in the
sense that kin %n for every n). This property should be explicitly required in defining isomorphism
between non positive relations.
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a number no such that fny%n,. (By “uniformly” we mean that there is a partial re-
cursive function N such that if z is an index for a total recursive fumction /o N con-
verges.on z and fNz&Nz) (3).

In view of the application to logic, we are mainly concerned with relations
induced by formulae: in such context, we shall see that the fixed point property
(in the sense of the previous proposition) has remarkable consequences, whereas
the notion of a precomplete relation seems to have minor direct consequences.
Therefore, in the sequel we shall consider precompleteness essentially as a criterium
for the fixed point property.

DEFINITION 2 (see [LO]). An equivalence relation 22 is uniformly Sinitely pre-
complete (in short: w.f.p.) if, for every partial recursive function Y such that range
¥ is finite, there is a total recursive function f which makes i total modulo R, and
an index for such an f can be found in a uniform way starting from an index for W
and a canonical index for a finite set containing range 1.

As regards w.f.p. relations, Er§ov proof of the fixed point theorem carries over;
so we get

ProrostrioN 2 (see [10]). If 2 is a u.f.p. equivalence relation, then, Jor every

partial recursive function Vs having a finite range, there is an ny such that, if yny con-

verges, then ymog@Rng; moreover such an ny can be found in a uniform way starting
Jrom an index for y and a canonical index for a finite set containing range .

Clearly. every precomplete relation is u.f.p.; the converse, however, does not
bold: in fact, the relation ~p, (provable equivalence in PA) is u.fip. (see [10]),
but it cannot be precomplete because the recursive function 7 has no fixed point
(if PA is consistent). In [10], the relation ~, is characterized as follows.

PROPOSITION 3. dn equivalence relation & is isomorphic to ~ p, iff it is positive,
u.f.p. and there is a total recursive function 4 such that, for every a, ..., a,, we have
Aldg, ..., 4,y not Ra; for every i.

Now, we intend to improve this characterization, in order to conclude (Corol-
lary 1) that ~p, is the unique (up to isomorphism) positive u.f.p. equivalence re-
lation which does not enjoy the fixed point property.

Turorem 1. Every positive u.f.p. equivalence relation & admitting a total re-
cursive diagonal function is isomorphic to ~p,. (We recall that a function d is said
diagonal if Jdx not Z#x for every x.)

Proof. Let & be a positive u.f.p. relation and let d be a total recursive diagonal
function for #. We get a 4 as in Proposition 3 as follows. Let 4y, ..., a4, be given;

define
Sx = da, if x%a; (<m) (3),
~ 7 )divergent otherwise .

(® As shown in [4], the existence of a total recursive function N as above characterizes pre-
complete relations.
® A formal definition is, as usual, by dovetailing.
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Clearly, range & is finite; therefore, by Proposition 2, we can uniformly find
(starting from ay, ..., 4,) an n, such that, if én, converges, then dn,%n,; now,
on, diverges, becanse, by definition, dx not %x for every x € Domd. Since Domé
= ) [a;]a, we can deduce n, not Za; (i<m): therefore it suffices to define

i<m
ALag, ..., ayy = ny. & satisfies the hypothesis of Proposition 3 and hence is iso-
morphic to ~p,.

COROLLARY 1. Let Z be a positive w.f.p. relation; if & is not isomorphic to ~py,
then for every total recursive function f, there is an ny such that fnoZ%ny. In other
words, & enjoys the fixed point property.

Proof. Obvious.

Now, we introduce a simple notion in order to compare equivalence relations;
this notion will provide characterizations both for positive u.f.p. relations and
precomplete ones (Theorems 2 and 3). We recall (see [1]) that a positive equiva-
lence relation £ is said to be m-complete if, for every positive equivalence relation &,
there is a total recursive function & such that, for every n, m, we have n%m iff n%hm
(in other words, if for every & as above there isa one-one morphism from & into #).

DermiTIoN 3. Let %, % be equivalence relations; we say that 2 is less fine
than & if, for every n,m, if n%m then n%m. Moreover, we write 225 for %,
up to isomorphism, is less fine than &.

Lemma 1. (i) Let Z, & be positive equivalence relations; then A2 iff there
is a morphism from & onto A.

(i) (see (1. If Z and & are equivalence relations and A2, then if & is pre-
complete (u.f.p.) also & is.

Proof. Straightforward.

THEOREM 2. A positive equivalence relation & is u.fp. iff A2 ~pa.

Proof. One direction is an obvious consequence of Lemma 1 (ii). Now, let
Z be a positive u.f.p. relation. We define a recursive function f by induction as
follows.

Stage 0. We put f0 = 0.

Stage 2n+1. Assume that, at the stages 0, ..., 21, we have defined S on the
set Ay, = {dy, ..., d,} in such a way that a;~p a; implies fa,%fa;; let ay,.; be
the smallest natural number which does not belong to d,,; define

PRty o fay i x~pyay,
divergent otherwise .

Since range ¥*"*! is finite and 2 is u.fp., we can uniformly find a function
P"** which makes y*"** total modulo £; then we put Jttansy = P ag, ..

Stage 2n+2. Let u be the smallest natural number which does not belong
to the set {fag, ..., fiz,41}. Let 4 be a recursive function such that ALag, .oy dyy
not ~psa; for every i (see Proposition 3): define a,,,, = A4{ag, ..., dyys) and
Jasn42 = u.
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It is casily seen that f is a morphism from ~p, onto %; by Lemma 1,
@ =2 ~PpAr :

THEQREM 3. A positive eq:ivalence relation # is precomplete iff B2 for every
m-~complete relation &.

Proof (=). Let & be m-complete and let f bz a one-one morphism from %
into &; we define a morphism % from & onto % by induction, as follows.

Stage 0. Define
the first element in the list of f~1{y} if xe [1]y

for some y e range f,
divergent otherwise .

Yox =

Let {/° make y° total modulo #; define k0 = §f°0.
Stage n+1. Define

the first element in the list of f™Y{y} if x first

appears in [y], for some y erangef,
l//n'l-lx =
hi if x first appears in [il, for some i<n,

divergent otherwise .

Now, let f"** make y"** total modulo %; define h(n+1) = F"*(n+1).

By a simple inductive argument, we can show that 4 is a morphism from &
onto #; therefore, by Lemma 1(0) Z2%.

(«=). Let. & be any positive precomplete relation; by [1], & is m-complete,
therefore #2¢; then, by Lemma 1 (ii), £ is in turn precomplete.

3. Positive equivalence relations induced by extensional formmlae. The results
of Section 2 allow us to characterize, up to isomorphism, the equivalence re-
lations ~p which are induced by extensional formulae F(v) (see Introductiom).
First note that the total relation is induced, for example, by the extensional for-
mula v = v. Of course, in the following, we restrict ourselves to the formulae which
induce non-total relations.

THEOREM 4. A positive equivalence relation is isomorphic to a relation induced
by an extensional formula iff it is wf.p. In particular, the equivalence relation induced
by an extensional formula either enjoys the fixed point property or is isomorphic
10 ~pa-

Proof. Let # be isomorphic to ~ for some extensional formula F(v); since
F(p) is extensional, ~p2 ~p,; since ~py is ufp., by Lemma 1 (ii) also £ is.

Vice versa, let # be a positive w.f.p. relation. By Theorem 2, £ is isomorphic
to an equivalence relation & which is less fine than ~p,; by [1], there is a formula
F(t) such that ~  coincides with &. Since & is less fine than ~p,, F() is extensional.

In the sequel we say that an extensional formula F(v) is of the first kind if ~p
is isomorphic to ~p,; otherwise, i.e. if ~p enjoys the fixed point property, W
say that F(v) is of the second kind. :
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We are mainly interested in studying the formulae of the second kind; as
regards them, let us point out that this fixed point property is not a direct con-
sequence of Diagonalization Lemma and, in certain respects, is analogous to Re-
cursion Theorem. Our aim is now to provide some useful criteria for deciding
whether an extensional formula F(v) is of the second kind; to do this, let us consider
the following conditions.

(1) F(v) induce a precomplete relation (and therefore is of the second kind).

(2) The partial recursive function ¢ defined as follows+

Jthe first element in the list of the set {k: F(k)~psx7}
ox = if this set is non-empty,
ldivergent otherwise

can be made total modulo ~. (In a sense, we can regard ¢ as a function inverting
the formula F(v)).

(3) The domain of F(v) can be “bounded” by Z, (for a suitable n>1) in the
following sense: for every sentence p, there is a Z,-sentence ¢ such that Fp, F(P)
«F(g) (in other words p and ¢ have the same image under F(v) up to provable
equivalence).

(4) For every partial recursive function ¥, there is a formula H(v) such that
the function Ax. H(X) makes i total modulo ~.

(5) There is a formula H(v) such that the function Ax. H(X) makes the func-
tion ¢ defined in Condition (2) total modulo ~p.

(6) There is a formula H(v) such that, for every n, Fp,F(fi)>F (_1:.[—(—77))

THEOREM S. The following implications hold:

GB=BO=@ed=0=1.

Proof. Theimplications (4) = (6), (4) = (5), (4) = (1), (6) = (3) and (1) = (2)
are trivial; thus, we have only to prove (2) = (1), (5) = (4) and (3) = (4).

(2) = (1). Let i make the above defined function ¢ total modulo ~j and
let Y be any partial recursive function. Define ix = F(ix) (here and in the follow-
ing, F(x) is an abbreviation for Ay [yx = YAF()]; if Yx converges, say yx =y,
then obviously Fp, F(Jx}->F(3).

We claim that 4 makes ¥ total modulo ~ r. Indeed, supposc that l//\ = z;
then fx~p, F(Z); therefore, by the definition of @, @x converges and [’((m[ Xy

~paWx~pp F(Z); then hfx~ poifx~pz = x.
(5) = (4). The proof is quite similar to the one of 2) = (D).
(3) = (4). Let i be any partial recursive function; define
the first element in the list of the sct {k €Z,: bpu F(R)F(Jx)}

if ¥x converges,
divergent otherwise,

Y =
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Now, define H(v) to be the formula Tr,({v), where Tr,, is a partial truth predicate-
for X,-sentences. If yx converges, then yx~p, H(X), whence §x~H(X), since
F(v) is extensional; then yx~pfx~pH(X).

Remark 2. The implication (2) = (3) does not hold: in fact, in Example 1
below we construct a formula which induces a precomplete relation, but does not.
satisfy Condition (3); let us premise the following lemma.

LemMA 2. Let F(v) be an extensional X ~formula; assume that there is a X,-sen-
tence q such that {[F(i)].ps: me o} = {[pleps: p € 5, and Fpyq — p}. (Referring
to the Lindenbaum lattice of %, -sentences, we can say that F(v) is onfo the filter
generated by q.) Then F(v) is of the second kind. The analogous dual statement
(Fpap — @) holds too.

Proof. Let  be any partial recursive function and let ¢ be defined as in.
Condition (2). Define ix to be the formula F(jx) v g and put ix = ofx. By our
hypothesis, for every x, there is a k such that yx~p, F(k); therefore, by the de-
finition of ¢, /1 is total; now, suppose that yx converges, say yx = y. Then
Ux~ppa F(7), whence Fpy F(piix) <+ F(3), that is, ix = o¥x~py = ¥x. Then 1
makes ¥ total modulo ~p.

ExAMPLE 1. Let pg, ..., Py, ... be @ primitive recursive list, without repetition,,
of all X,-sentences; we define a recursive function & from @ onto {pg, ..., Py, ---}
by stages as follows.

Stage 2n. Let r, denote the input of % at the stage 7, and let v be the smallest.
natural number which does not belong to the set {ry, ..., Fay—1}-

Define ’

yrr = {ln:j if, for some ]_‘<2n, we have x~p, 1y,
divergent otherwise;
h = Tr,(f>").

Stage 2n+1. Let ¢ be the least v such that r;e %, for every i<2n. We can
find, uniformly from #, a sentence g provably equivalent to no X,-sentence; then
define /1ig &= p,, where s is the smallest z such that p, ¢ {Brgy cues ¥}

Now, let A(v) = Try(iv); we claim that A(v) is of the second kind, but does
not satisfy Condition (3). First, for every n, hn~ps A(); moreover, by a simple
inductive argument, wé can show that n~pym implies hn~pyhm; therefore 4 (v)
is extensional. Since /1 is onto the set of all Z,-sentences, the hypothesis of Lemma 2
is satisfied: then 4(v) is of the second kind. Lastly, let us show that for every n
there is a sentence p such that for no Z,-sentence ¢, Fps 4 ()« A(g). We only
sketch the proof. Let n be given and let i be an arbitrary natural number; by the
definition of h, for 10 I € Z;, rajeq~pal; moreover, either ry;~pa7; for some j<2f
or hrs, is a false sentence. Now, let us consider a k>2n+1 such that the
following conditions hold:

a) hry is a true X,-sentence;

b) for every i<k, hr; not ~pphry.
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It is a matter of routine to verify that for no X,-sentence g we have fiy~ pahiq;
since, for every s, A(S)~p,hs, the formula A(v) does not satisfy Condition (3).

We give four more examples of extensional formulae.

ExampLE 2. Theor(v), the usual X, formula expressing provability in PA, is
of the second kind. This is a consequence of the following result, independently
obtained by W. Goldfarb and H. Friedman [5].

PROPOSITION 4. For every X-sentence p such that tp,"1Conp, — p there is
a Xi-sentence p' such that by, p <> Theor(p’).

Thus, the hypothesis of Lemma 2 is satisfied because Fp, 71Conp, —> Theor(f)
“for every p. In Section 4, we shall discuss the consequences of this fact.

ExXaMpLE 3. We do not know whether the Rosser Predicate is extensional
or not (see [7]); however, we can prove that a slight variant of it is. Indeed, let,
“for every n, gn compute the end formula of the nth proof in PA; clearly the Rosser
predicate R(v) is provably equivalent to the formula

Fullgu = o) AVw<uTl(gw = 10)];

‘now, we define a total recursive function f, which, provably in PA, enumerates
‘the set of theorems of PA and such that the formula

RI@) = Qul(fu = ) AVw<u™1(fw = T0)]

is extensional; the required f is defined by induction as follows.

Stage n. Define D,_; = {x: fx has been defined at the previous stages};
R,y ={p:3x e D,y (fx =p)AVye D,_,(y<x) = (fy # 71p)}. Let p, denote
the conjunction of all formulae in R,., (if R,_, is empty, we define p, to be an
arbitrary tautology) and let & be the least number of w—D,.;; we distinguish
“three cases:

a) if p, — Tlgn is not a tautology, we define fk = gn;

b) if p, — TIgn is a tautology and gn is not of the form g, we define fk
= Tgn, flk+1) = gn;

o) if p, = gn is a tautology and gn is of the form —ig, we define fk = ~Ign,
JUe+1) = g, flk+2) = gn.

One can easily formalize in PA the following facts:

1) range f = range g;

2) the set Ry = U R, = {p: Jx(fx = p)AVy<x(fr # “Ip)} is consistent;
New

3) R, is closed under modus ponens, i.e., if g, p = ¢ € Ry, then ge Ry;

4) if PA is consistent, R, coincides with the set of theorems of PA; otherwise,
R, is complete.

By 3), we obtain Fp, R/(B) AR/ (p = g) - R/(7). Then R’ is extensional.

We claim that R(v) is of the first kind: indeed, by formalizing the previous
properties (2) and (4), we get, tespectively, Fp, TR/(B) v IR (Tp) and Fp, —1Cong,
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- (RY(p)v R¥(7p)) for every p. Now, if R' were of the second kind, there would
be a sentence g such that by, R/(g) <> RY(T74). So, it would follow Fpa TR7(g) and,
on the other hand, b5, 1Conp, —+ Rf(3); we could conclude Fpa Cong,, contradicting
the Second Incompleteness Theorem.

ExampLE 4. In [1] it is shown that there is an extensional formula F(v) which
is injective in the sense that, for every two sentences p and ¢, by, p « ¢ iff Fpa F(P)
> F(7). Clearly, any injective formula is of the first kind.

ExaMPLE 5. Tt is know that there are formulae F(v) which induce homo-
morphisms from the Lindenbaum sentence algebra of PA into itself (see for in-
stance [6]). Every such formula is of the first kind, otherwise there would be a psuch
that Fps F(P) <> F(71p); since F induces a homomorphism, we would also have
FpaF(TIp) < T1F(P), a contradiction. ‘

Remark. Let 98 be the Lindenbaum sentence algebra of PA; every extensional
formula F(v) induces a mapping F from 9 into . Tt can be proven that F(v) is
of the first kind iff there is an injective formula G(v) such that range G = range F;
in particular, any two extensional formulae F(v), G(v) such that range F = range &
are of the same kind.

4. Hyperdiagonalizable algebras.

NoTATION. In this section, we denote Boolean operations by the symbols
+, 9,0, 1; the terms (*) x — y and x—y are defined in the usual way. We shall
not distinguish between an algebra and its base set. :

R. Magari introduced the concept of a diagonalizable algebra in order to
study the properties of the formula Theor(v) in an algebraic context. We recall
that a diagonalizable algebra (in short, a'DA) is a Boolean algebra enriched with
4 unary operation 7 satisfying the following identities:

1l =1; 1(x'y) =1x-1y; TX<LT1Tx;  T(1% = X) = X

(for the properties of DA’s see [11]). In the sequel we shall use the symbol t"x
{where »n € @) defined as follows:

0

0% = xox LA

and X = 1t"x.

For instance, considering the Lindenbaum algebra of PA and defining z[p)
= [Theor(p)], we get the diagonalizable algebra of PA, which will be denoted by P.

Diagonalizable algebras have been deeply studied, both in an algebraic con-
text and in the language of modal logic. Among other things, a fixed point theorem
has been proved to hold for every diagonalizable algebra: for every term (or, more
generally, for every polynomial) fx in which x occurs only within the scope of a «,
there exists in every diagonalizable algebra a unique a such that fa = a. Therefore,

(%) The meaning of the words term and polynomial is defined as in [3]: in particular, a po-
lynomial is a term in which some variables have been substituted by elements of the considered
algebra.

3 — Fundamenta Mathematicae CXXIV/3
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an algebraic translation of Diagonalization Lemma holds true in every diagonaliz-
able algebra.

Now, $ince ~yeor 18 & precomplete equivalence relation, from the Ersoy fixed
point theorem it follows that, in fact, many other fixed points do exist in the di-
agonalizable algebra . Namely, for every function f: % - P which is induced
by a total recursive function, there exists a sentence ¢ such that 1/[q] = r{q].

From an algebraic point of view, this suggests the study of a subclass of the
equational class of diagonalizable algebras: the subclass constituted by the di-
agonalizable algebras in which

(¥)  for every term px there exists an a such that Ta = tpa.

This requirement is obviously satisfied in the so-called trivial diagonalizable
algebras, i.e. in the diagonalizable algebras in which tx = 1 for every x, but it fails
to be satisfied in every diagonalizable algebra. For instance, consider the equation
7x = 7vx (a solution of which corresponds, by a logical point of view, to a Rosser
sentence). If & is a solution, ¢ = tva = t(a'va) = 70; but on the other hand we
have the following simple lemma. R

LeMMA 3. In every non trivial diagonalizable algebra satisfying the identity
(lin) t(xrtx = Pty ry o x) =1

there is no element a such that ta = tva.

(The identity (lin) has been studied in [9]; it holds in the free diagonalizable
algebra on the empty set and in the Lindenbaum algebra of ZF, where tx translates
the formula “x is true in any natural model of ZF”).

"~ Proof. By contradiction, let @ satisfy ta = tva = 0. Substituting ¢ and va
for x and y respectively in (lin), we can easily get

t(tva »va)+t(ta—»a)y=1, e watrza=1.

So, we conclude 70 = 1 and the algebra is trivial.
Now, in view of condition (¥), we give the following

DErINITION 7. A hyperdiagonalizable algebra (in short an HDA) is a structure
B ={(B,+,,v,7,0,1,(¢,)ye0y Where the following conditions hold:

(@ ¢B, +,",v,7,0,1) is a DA;

(b) denoting the terms in just ome variable by pyx, p(x,p,x, ..., for every
ne o we have 1p,c, = tc, (where, of course, only the constants ¢; with i<n can
occur in p,x).

It is clear that HDA’s constitute an equational class.

The first example of an HDA is of course the DA P enriched with a suitable
succession of constants (whose existence is granted by the precompleteness of
~ Tneor) Actually, we can find simpler examples and, in particular, finite non-trivial
HDA’s.

icm

7, oy

Equi relatior d by ex I formulae 231

Let us start by considering the equations of the form 7(vwx+7"0) = wx (%).
Let us assume that each of these equations admits a fixed point a,.

LEMMA 4. If a satisfies the equation 1(vx+b) = tx, then ta = tb. In particular,
a, = 7" *10.

Proof. It is obvious that ta = t(va+b)>1h. Conversely, ta = 1a-t(va+b)
= 1(a-b)<1h.

LEMMA 5. (i) We can assume that a,<t"710 for every ne o.

(if) For any m, the constants a, can be chosen in such a way that a,<a,.,
for n<m;

(ili) If the HDA, as a Boolean algebra, is isomorphic to #(X) for a suitable X,
the constants a, can be chosen in such a way that a,<a, ., for every n.

Proof. (i) If s is an element such that t(vs+<"0) = 15, also s-7"*10 satisfies
the same equation: indeed

T(v(s " 10)+1"0) = T(v" "0+ (vs+7"0)) = 7(t(vs+70) — (vs+1"0))
= 7(»s+7"0) = 10 = ¢(s-2"*10).
(ii) If s is as above, s-a,.4 can be taken as g,: indeed
T(v(s* Ay 1) +7"0) = 7(dy 4y = (¥5+7"0))<T"20 = "0
We get
TV (5 ys1) +7"0) = T(V(5* @y y) +7"0) T2V (5 @yuq) +70) = "H10.
(iif) (We assume some knowledge of representation theory for DA’s — see
[8], [11]). Let K, = {¢ € X]3f €170 and f<a}. On the one hand, it is necessarily
K,ca, and, on the other, we can assume ,=K, . (the argument is similar to the

previous ones).
In order to comstruct a simple example of an infinite non-trivial HDA we

_consider the Boolean algebra $ = 2(w) and define a binary relation < in w as

follows:

n<m iff n is greater than m and n is even.

Since the relation < is transitive and reversely well founded, if we put, for
every XS 2 (w), 71X = {n|V m (n<m = me X)}, we geta DA (see [8]). It is easy
to verify that, for instance, 70 is the set {mjm = 0 or m is odd} and t"*'0—<"0

= {2n}. )
In the DA $ there exist constants a, satisfying the above considered equations:
indeed, we can define @, = {0, 1, ..., 2n} and it is readily seen that each a, satisfies.

the corresponding equation. (The representation of § as well as the constants a,
are illustrated by Figure 1). More generally, we have

THEOREM 6. § is an HDA, ie. in $ the equation tx = tpx admits a solution,.
where px is any term or any polynomial.

(%) The choice of these equations is quite natural: indeed, if other equations of the same:
degree of complexity are considered, a solution can be easily found.

3%
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Proof. If the constant 1 is not the desired solution, then pl is different from I:
let 1 be the lowest number not belonging to pl. Let us distinguish two cases:

() n is even; we put a = {0, 1, ..., n} (i.e., a is equal to the closure of n with
respect to <):

(i) n is odd; we put a = {0,1,...,n—2,n}.

Fig 1

We claim that a is a solution of the given equation. We need the following

LEMMA 6. For every polynomial px, if x*m = y-m, then px-tm-m = py-tm-n,
where x, y, m are elements of any DA.

Proof of the lemma. It suffices to note that x and y are congruent modulo
the z-filter generated by m, which is the Boolean filter generated by m-tm.

End of the proof of Theorem 6. From the obvious equality 1-a = a-4,
by Lemma 6 it follows pl:ta-a = pa-ta-a. Since ta-a = a, we have pa-a = pl-a
= a—{n}. Now, in both case (i) and case (ii), it is only a matter of routine to verify
that, on the one side, 1pa = {0, 1, ..., n}+10 and, on the other, ta = {0, 1,...,n}+
-+10, as required.

As a consequence of Theorem 6, it is now easy to construct finite (non-trivial)
HDA’s: it suffices to consider the quotients of $ modulo the filters generated
by a, (i.e. the Boolean algebras #(a,), where the relation < between the clements
of a, is defined as above).

We conclude with a conjecture: the existence of the constants «, is a sufficient
<ondition for a DA to satisfy (x); in other words, if a DA possesses the constants a,,,
then it can be made an HDA (the conjecture is suggested by the following fact:
as is shown in Smorynski [11], if in the definition of DA’s we assume only the first
three identities concerning © and an algebraic version of Diagonalization Lemma,
the last identity can be proven. So this identity may be regarded as an instance of

E indr
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Diagonalization Lemma, but this single instance is enough to redemonstrate
Diagonalization Lemma in its full generality; analogously, maybe that from the
existence of the constants @, one can deduce that condition (*) holds in general) (°).
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() Added in proof. As shownina férthcoming paper by the first author and M. Mirolli,
the conjecture is true if the terms that are considered in (¥) are built up by using only the
operations of DA’s while it is false if also the constans a, are allowed to occur in the terms.
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