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A generalization of abstract model th,eory
by

Daniele Mundici (Florence)

Abstract. We generalize the traditional axioms of abstract model theory so as to include
those logics which deal with enriched structures, e.g., topological, monotone, weak, uniform
structures.

To these structures we then generalize a number of results in abstract model theory,
among which the identity “Robinson Consistency = Compactness + Craig Interpolation” and
the Duality Theorem between logics and equivalence relations.

0. Introduction. Together with a great number of logics for ordinary structures,
i.e., structures with relations and functions only, in recent years several logics have
been developed for structures enriched by some additional machinery, such as
4 topology (see, e.g., [FZ], [Ga], [MK], [MZ] and [Sgl]), a monotone system (see,
e.g., [EZ] and [MT]), a measure (see [Mo]), a uniformity (see [FZ]), and so on.
‘The main motivation for introducing such logics is clearly expressed, for the case
«of topological logics, in Abraham Robinson’s pioneering paper [Ro, p. 504]:

“What I have in mind is a theory which is related to algebraic-topological
structures, such as topological groups and fields, as ordinary model theory is
related to algebraic structures (e.g., groups and fields).”

In a few cases (see [Zi], [Sg2] and [FZ]) also Lindstrom-like characterization the-
-orems for such logics have been proved, which makes it desirable to correspondingly
.generalize abstract model theory.

Before investigating the nature of a generalized logic L, one must however
say which structures L is to speak about: for short, one must find a reasonable
notion of “universe of discourse” ¥ for logic L. As [Bro] and [Bru] show, if we
let ¥ be a mere class of structures, without giving in advance also a notion of
-embedding or of substructure, then we may encounter additional problems at the
very beginning of our generalization. Therefore we prefer to start with a category €
whose objects are (enriched) structures, and whose arrows are suitable isomorphic
embeddings: for instance, topological logic shall have to deal not only with topo-
logical structures, but also with homeomorphic embeddings, i.e., homeomorphisms

" from one structure onto the topological substructure of another structure. We
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shall be careful to maintain the categorial notions used here at the most ‘rudimen~

tary level.

As % is devised to be a “universe of discourse”, one naturally expects ¢ to
be sufficiently large, and closed under the basic model-theoretical operations,
such as expansion, renaming, formation of pairs and disjoint unions. In our first
Definition 1.1 we make precise the above requirements, and call a semantic domain
any category satisfying them. Semantic domains encompass the most generalk
categories of structures which are suitable as universes of discourse for logics. In
many interesting cases, the isomorphic embeddings of # also enable one to un-
ambiguously speak of the substructure of a structure in . We then simply say
that ¥ has substructures (Def. 1.2). Many classes of structures, upon being equipped
with a suitable notion of isomorphic embedding, become semantic domains with
substructures: for example, topological structures with the above mentioned
homeomorphic embeddings, monotone structures with monotone embeddings
1.6.3 —as_well as ordinary structures with ordinary isomorphic embeddings.

Having made precise what a universe of discourse is, in Section 2 we define
logics. Our notion of a logic L on the semantic domain % is a faithful adaptation
of the familiar definition in ordinary abstract model theory (see [Ba], [Fe], [FI]);
thus allowing for the greatest generality.

As a matter of fact, our definition encompasses all logics existing in the litera-
ture extending first-order logic L,,, and whose universe of discourse is a semantic
domain; e.g., topological, monotone, weak, uniform logics —as well as every
ordinary extension of L.

All the familiar properties of logics are now defined precisely as in the ordinary
case: this holds in particular for Robinson’s consistency (also called, Robinson’s:
property) to the effect that whenever 2 and B are L-equivalent in type Ty N 73,
then they are jointly L-equivalent to some structure M of type 7y U 7. Naturally,
we regard Robinson’s consistency as a general property of equivalence relations,.
following also [Mul-Mué6].

As for the crucial notion of relativization, to the effect that-all that can be said
in L about ¥, also can be said about a definable portion of %, we give a general
Definition 2.3 entirely in terms of isomorphic embeddings, after assuming that
the semantic domain of L has substructures.

The main results of this paper apply to logics with relativization: in Section 3,
for any such logic we prove the identity:

“Robinson consistency = compactness -+ Craig interpolation”,

thus generalizing the result proved for the ordinary case by the author in the Spring
of 1979 (see [Mul, Mu2]) and, independently, by Makowsky and Shelah (see
[MS2]). The proof given. in Section 3 is entirely self-contained, and has been written
down for high-school studénts. As in the ordinary case, we require that |Stc(t)]
always exists: .the example of L, shows that this requirement is indispensable.
The discussion in [MS2, Section 5] also shows that some large-cardinal hypothesis.
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is necessary for the above identity to hold: indeed, our proof depends on the follow-
ing set-theoretical axiom (denoted by h and provably weaker than V =L, or
0%, or ' TILM:

every uniform ultraﬁlter on any regular cardinal » is A- descendmgly mcomplete
for every infinite A<<x.

In Section 4 we generalize the Duality Theorem between logics and equiv-
alence relations, proved by the author in [Mu3] for the ordinary case. For X a class
of (generalized) structures of finite type 7, we let span(X) be the smallest collection
of classes of structures obtainable from X by repeated applications of the first-order
operations (including relativization). For ~ an equivalence relation on structures,
hull(~) is the collection of those classes X with finite type such that every
Yespan(X) is a union of equivalence classes of ~. We say that ~ is. separable
iff every two ~-inequivalent structures can be separated by some X € hull(~),
and we say that ~ is bounded iff the collection of ~ -equivalence classes of typé t
has a cardinality, for each 7. The hard direction of our duality theorem vields:in
a' rather concrete way, for any bounded separable equivalence relation ~ with
Robinson’s property, finer than =, coarser than 2, and preserved under reduct,
a unique logic L with relativization and whose sentences are all of finite type, such
that ~ = =,. In addition, L is compact and satisfies interpolation, and |Stc(1)|
always exists. The easy direction of the Duality Theorem is the converse of: this
fact. For the proof we use Theorem 3.1. The above results together with the re-
markable fact that there are several logics with the Robinson property (see [FZ])
add new life to some old problems of abstract model theory, and might motivate
further study of its generalizations. For example, consider the problem of which
universes of discourse are suitable for which first-order logics. Here “first-order”
might be tentatively approximated by “Robinson” (in the light of [Fe], [MSI,
MS2], [Mul-Mu6]), or by “Robinson + axiomatizable”, and we might also try
to replace “universe of discourse” by “semantic domain”. Then the results of this
paper show that the problem has an algebraic equivalent formulation in terms of
equivalence relations on certain categories of structures.

Eventually, semantic domains might be replaced by purely categorml notions,
perhaps calling for a global categorial formulation of Robinson’s property and,
why not, of the large-cardinal hypotheses used in this paper.

While looking forward to the time one will be able to study abstract model
theory without even mentioning ordinals, cardinals and sets, throughout this paper
we traditionally let «, f, y and denote ordinals, and x, A, u, v, and @ denote cardinals.

1. Axioms for universes of discourse. In this paper we use the name of ordinary-
structures for those structures having only relations, functions and constants. For
A # @ a set, the superstructure V4 of 4 is given by

A A
Vo=A, Vi, =ViuPVi vi=U V],
n<w
where P is the power-set operation.
1+«
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There is no change in the definition of (many-sorted, similarity) types, i.e.,
possibly infinite sets of sort, relation, function and constant symbols, as in [Fe].

A (generalized) structure of type < is a function I which sends each sort symbol
¢ of 7 into a pair (4,4, p,) With 4, a nonempty set and p, € VA=, and sends each
relation, function, or constant symbol of © into a relation, function or constant
with the same arity (i.e., number of places) and acting on the same sorts. Thus
a structure looks like an ordinary structure enriched by some additional machinery
taken from the superstructure of each universe. 2, B, D, MM, N, & are structures
with universe 4, B, D, M, N, S respectively. :

Most mathematical objects are structures in this sense, e.g., topological, uniform,
monotone structures —as well as ordinary structures.

One can easily extend the above definition so as to include also structures

(like measure spaces) where the additional machinery is a function from an element
of the superstructure of some sort into an element of the superstructure of some
other sort; indeed all the results of this paper apply to these structures as well;
however, we shall not consider this further generalization for the sake of simplicity.

The forgetful function |{-|| sends each structure 2 into the unique ordinary
structure ||| having the same type Ty of 2 and where the additional machinery
P, (0€1y) of A is absent.

If TSty then A} 1, the reduct of A to 7, is naturally obtained by adding to
|{21|] } = the p, of A only for e . ‘

If ¢: ©— 7" is a renaming, then A is naturally obtained by adding to {|2][®
the extra machinery of 2, which is now understood as pertaining to the super-
structures of the renamed universes. For f a function, f? denotes the function
acting on the sorts of ¢’ exactly as f acts on the sorts of =.

A’ is called a strict expansion of W iff A and A have the same sorts and p, = p,
for each sort o €1y, and ||| is an expansion of [|A||. In other words, a strict
expansion of U leaves unchanged all the universes and superstructures, and only
adds ordinary machinery to 2. An important case of a strict expansion of 2 is the
diagram expansion 4, whose definition is the same as for ordinary structures;
similarly, if f: A — B, then B, is defined as in the ordinary case (see [Ke2]). The
second kind of expansion is obtained as follows: if 2 and 8B have 1y N 174 = @,
then the disjoint pair [, B] is just WU B (recall that structures are functions,
hence, in particular, they are sets, since so are types and universes). Thus [, 3]
has type Ty U 7y and its reduct to 7y (resp., to Ty) is U (resp., B). We say that
[0, B] is a pair expansion of WA (as well as of B).

As already remarked in the introduction, if € is the “universe of discourse”
of a logic L, then ¢ must be (i) sufficiently large, (ii) closed under the familiar
model-theoretical operations, and (iii) equipped from the very start with some
natural notion of isomorphic embedding. We let @ denote the standard universe
of discourse, i.e., the function which assigns to every type t the category 0(7)
= (Str(r), Emb(z)) whose objects are the ordinary structures of type 7, and whose
arrows are the (ordinary) isomorphic embeddings from one structure into another
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structure. For definiteness, let us call @ the ordinary semantic domain. Generalizing
this, we have the following definition (see [Go] or [ML] for the rudiments of
category theory used in this paper): ’

1.1. DEFINITION. A semantic domain is a function % which assigns to every
type T a category ¥ (r) = (Ob(), Arr(t)) whose objects are (generalized) structures
of type 7, and whose arrows, called the isomorphic embeddings of ¥, are functions
with ordinary composition, satisfying the following ‘ conditions:

Junctor: ||-|| preserves identities and compositions, i.e., if f is identity on A
in %, then f'is identity on ||| in @; if

!
N->B
N\ ¢ Commutes in €,
D
then
!
1] — [1B]] .
N e commutes in @.
il ‘

closure: {J Ob(r) is closed under reduct, renaming, strict and pair expansion,
T

and under the formation of disjoint union, the latter meaning that for any set of
structures {%,},<,=Ob(z), = without constants, there exist % & Ob (7) and arrows
Jur W, - A (a<x) having pairwise disjoint range whose union is A.
richness: each ordimary structure can be obtained from % via ||-]], ie
Ve Str() A’ € Ob(r) such that ||U]| = A; :
finite reduct: f: W — B iff [f: A 15> B} 1,,V1, finite Sty (=19)];
renaming: f+ A —» B = f°: A Be; o
pair: f: W Mand g: B - R (withtg N 75 = B) = fug: [A, B] - [, 95
diagram: f: W — B = f: Ay —» B,
Intuitively, the above axioms say that in |j Ob(z) there are many structures,

T
that one can perform here the usual model-theoretical operations, and that the
embeddings are well-behaved with respect to ||-||, }, ¢, pair and diagram expansion.
Notice the “concrete” character of ¢ (see [ML, p. 26)).

As it will be evident below, many important semantic domains come equipped
in advance with a natural notion of “substructure”, in the sense of the following
definition:

1.2. DeriNITION, We say that a semantic domain ¥ satisfies the substructure
axiom, or, for short, ¥ has substructures, iff % satisfies the following conditions:

existence: if A' (< A) is the range of an isomorphic embedding into ||| in @;
then A’ is also the range of an isomorphic embedding into % in €.

Jactorization: if A 7 M—B and range(f)crange(g), then Ih: A - B
14
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such that f = gh; in categorial terms: if range(f) Srange(g) then fSg as sub.
objects (see [Go, p. 77].
Here are some simple facts about semantic domains with substructures:
1.3. PROPOSITION. If m: M — % and m is onto N, then m: M =M (where,
_of course, = is isomorphism with respect to the category under consideration).

Proof: We have the following commutative diagram:

M—— N

als \ o

932<———

where p is as given by the factorization axiom, since range(iy) = N by the functor
axiom. Therefore, mp = iy and pm = iy (iy denotes identity on B). W
1.4. ProrosTioN. If U - DB and f, g have equal range, then A = B.
S g .

Proof. By the factorization axiom we have the following commutative diagram:

ol
LN
A - B

B

By the functor axiom, the following also commutes:

ol
LN
l12dl - 111l

The last diagram shows that f, g, & are 1-1 and / is onto B (otherwise range(f)
s range(gh),. which is impossible). By the above Proposition 1.3 we have that
h: A~B. A

1.5. Remarks. (i) If % is a semantic domain, then all the implications (=)
of the renaming, diagrém, existence and factorization axiom can be reversed: to
see this, it 15 sufﬁcwnt to apply the renaming, reduct and functor axiom in a very
direct way.

(if) The existence axiom in Definition 1.2 has not yet been used, but will have
an important role below: its effect is that there are in % sufficiently many sub-
structures, and that the notion of a subset A’ of 4 being the universe of some sub-
structure A’ of 2 is essentially the same as the familiar 7-closure notion (see [F1},
[Mu3], or the definition of relativization is Section 4 below): notice that, by Prop-
osition 1.4, if 4’ is the range of some isomorphic embedding into 2, say f: B — A,
then B is unique up to isomorphism; in this sense we shall often speak of the sub-
structure M| A’ with universe A’, even if |A4’, strictly speaking, is only the iso-
morphism class to which B belongs.
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1.6. EXAMPLES OF SEMANTIC DOMAINS.

1.6.1. 0, the ordinary structures with isomorphic embeddings. One immediately
sees that @ satisfies all the axioms for semantic domains with substructures.
A disjoint umon U of structures {U,},<, of type 7 can be obtained by first taking
the disjoint union 4 of the universes Ay, then expanding 4 to some structure
e Str(t) via the inclusion functions f, from 4, into 4. Notice that if constants
were allowed in 7, then in 2 each constant would have x-many interpretations,
'which is impossible. Also notice that if = has relations or functions, then there are
many degrees of freedom when defining them in 2C (for n-tuples whose components
are not all in the same A,): however, our closure axiom does not require the unij~
queness of the disjoint union.

1.6.2. 7, the (many-sorted) topological structures. Here the proper notion of
isomorphic embedding is that of a homeomorphic embedding f: W — B, ie., a
homeomorphism f from 2 onto the topological substructure B[f(4) of B whose
universe is f(4) (perhaps composed with the natural inclusion function). 7~ is closed
under formation of disjoint union: given topological structures {2,},<, one equips
their disjoint union 2 with the direct sum topology (see [ML]). As in 1.6.1, there
are many possibilities for 2, if the 2, have relations or functions. It is easy to see
that J satisfies the substructure axiom.

1.6.3. A, the monotone structures. Here the proper notion of f: % — B being
an jsomorphic embedding is that f is a monotone isomorphism from ¥ onto the
monotone substructure B[f(4) of B with universe f(4). B|f(4) is obtained by
intersecting the monotone sets in B with f(4). A monotone isomorphism is an
isomorphism which maps each monotore set of the input onto a monotone set of the
output, and vice versa. . is closed under direct sum: given {2,},<,, construct 2,
by letting the monotone sets in U be all possible disjoint unions of monotone sets
in the U,. See also [MT]. .# has substructures, as is not hard to see.

1.6.4. W, the weak structures (see [Kel]). This is a semantic domain with sub-
structures, as can be easily seen by arguing as in 1.6.2 and 1.6.3; see also [Bro]
and [Bru).

Further examples of semantic domains with substructures can be found in the
literature (see, c.g.,, [FZ]): roughly, every collection of (generalized) structures
closed under direct sum (or coproducts) and having a natural notion of isomorphism
and of substructure, will give rise to a semantic domain.

2. Axioms for logics. Our definition of a logic is an obvious generalization
«of the familiar abstract model theoretical notion (see [Ba], [Fe], [Fl]). A logic (on €)
is a triple L = (%, F, Stc) where 4 is a semantic domain, Stc is a function giving,
for each type t, a class Stc(t), called the class of sentences of type T, (in L), and F is
a binary relation, called the satisfaction relation (in L) from objects of % into sen-
tences, satisfying the following axioms: ‘

type: Wk @ only if ¢ e Ste(ry);
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occurrence: Yo A, Yrlp € Ste(@) iff 127,];

isomorphism: A = B =[Nk o iff BFe];

reduct: Yo, ¥, t[peSte(r) and 151y = (AE @ iff Ad1F @)];

renaming: Yo Vo: 1, - v ¢’ € Ste(x’) YA € Ob(z,) [Ak @ iff EP';

negation: Yo Iy e Ste(z,) YU e Ob(z,) [AF  iff not Ak o);

conjunction: Yo,y 3y € Ste(r, v 7y) YA€ Ob(r, L 7y) [UE y iff UF o and
WAE Y]

existential: Vo Ve constant I e Ste(z,\{c}) Y e Ob (e N\{c}) [AFy iff A
has an expansion B E ¢];

atomic: for every atomic sentence o in L,,, there is ¢ e Ste(z,) such that
YA e Ob(z,) [Nk o iff || A EL, 2]

2.1. Remarks. If there is danger of confusion, we write L = (€, Fp, Stey).
All the logics existing in the literature and dealing with such semantic domains
as topological structures, monotone, weak, or ordinary structures, evidently satisfy
the above list of axioms. On our general logics we can already define all the
familiar abstract model theoretical notions: we limit ourselves to a few examples:

mod®p (for t27,) = {A e Ob()|AF @}
(Here we may drop superscript t if there is no risk of confusion.)
th(2A) = {p € Ste(ry)|AE ¢} .
A=,B iff thQ) =th(B) (nL).

is an equivalence relation on |J Ob(z) given by A = B iff

T

In particular, =

Ul =g, 1Bl
For § a first-order sentence of type t,2{x}, with x a constant symbol, we let

B = XBEYM = {ae 41| Fr,, Blal} .

L>IL' means that for every sentence in L' there is in L a sentence having the
same type and the same models. If, in addition, L' L, then (by abuse of notation)
we write L’ = L: as a matter of fact, in this case L' and L have exactly the same
expressive power and their only possible difference is in the way sentences .are
written down in L and L'. As usual (see [Mu3] or [MS2]) we say that L has the
Robinson property, or L satisfies Robinson’s consistency theorem iff so does =, as
an equivalence relation on |J Ob(1), i.e., VM e Ob("), VIt e Ob(z"), if t = 7' n 7"

T

and M} 7 =,MN}1, then there exists DeOb(r' L), with Dp7' =, M and
D} 7" =, N. Notice that 1, v and 7"/ need not all have the same sorts. As the
reader can see, the above definitions are the same as for the ordinary case: s0 we:
will not insist on repeating the definition of, say, L satisfying Craig’s interpolation,.
A-closure, compactness, and refer the reader to, e.g., [MS1].

With respect to abstract logics L'>L,, in ordinary abstract model theory,
one sees that in the above list of axioms there is nothing ensuring that L
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= (¥, F, Stc) can express the simplest algebraic properties of %; in particular,
there is no axiom to the effect that in L one can say that fis an isomorphic embedding.
of 4. By contrast, already in L,,, hence in every extension of it on 0, one can ex-
press this fact. The following definition makes more precise our discussion:

2.2. DERNITION. We say that isomorphic embedding is projective in L
= (%, F, Stc) il ¢ has substructures and V= s.t. Ap with 7, = 1, Vg: = » ' with
Tt =@, V function f¢ U t', there exists a sentence VioreSte(tut U {fH
such that V& e Oblc U v U {f}) [S kb, il &= [A, B, 7] is a strict expansion
of {2, B], for some A e Ob(r), Be Ob(z'), and /2 A - V).

Roughly, the above sentence ;. » expresses in L the fact that fis an isomorphic
embedding (up to a renaming); compare with [Fe]. All L>L,, on € satisfy the
above condition, if each sentence has finite type; under this clause, in topological
model theory a logic L satisfies 2.2 whencver one can express in L the fact that f is
continuous: examples of such logics are, among others, in [FZ] and [Sgi].

Despite its naturality, the above requirement is superseded in applications
by the following one, dealing with the crucial notion of relativization, which natu-
rally generalizes the usual notion: ‘

2.3. DeFiNITION. We say that L = (%, F, Stc) satisfies the relativization axiom,
or, for short, L has relativization, iff % has substructures and:

for any boolean combination of atomic sentences « with 7,2{x}, for any ¢
there is W & Stc(r, U (r,\{x})) such that Y e Ob(r, U (t,\{x})) we have that
[AE Y iff {x[u(x)}’“ is the range of some isomorphic embedding /@ B — A} 1,
for some B F .

Roughly, ¥ says that ¢ holds upon restriction to {x]a(x)} in . Notice that
we incorporate the so-called 7,,-closure in the definition of relativization (see [FI],
[Mu3], and Section 4 below). By Proposition 1.4, the structure 8 in the above de-
finition is unique up to isomorphism. Instead of ¥ we write o™} and call the latter
the relativization of ¢ to {x|e}. For notational simplicity we limit ourselves to-

single-sorted relativization: actvally, repeated relativization may result in many-

sorted exponents, as in [Mu3]: the gencralization is however obvious, so we omit it.
(Incidentally, the same applies to Definition 2.2). Requirements 2.2 and 2.3 are
related, as the following proposition shows:

2.4. PROPOSITION. [f L = (€, F, Stc) is 4-closed and in L isomorphic embedding
is projective, then L has relutivization.
Proof. Let o be a boolean combination of atomic sentences, of type 7, 2{x}.
Let ¢ be a sentence of type 7, and 9L & Ob(r, U (t,\{x})). Now we have
() {xla(x))¥is the range of /2 M — AP 7, for some Nk ¢ for some isomorphic:
embedding /' it AfFc(x 1, = @) do: 1 7,AN of type 7 such that
R, A, F1E e, and ME ¢ and {xja(x)}" = range(/).

On the other hand, by Proposition 1.4 and the isomorphism axiom we have
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@ {xle ()} is not as in (1) iff either {xa(x)}" is not the range of any isomorphic
embedding altogether, into W} 7, or {x|e(x)}* is the range of some iso-
morphic embedding g: D — A} 7, with DF Te.

‘By the existence clause in the substructure axiom (and by 1.5 (1)), the first alternative
in (2) is equivalent to {xa(x)}"™ being not the range of any isomorphic
embedding in @. This can be expressed by a first order sentence, hence by a sentence
of L, since the latter is closed under negation, conjunction, existential quantifier
and contains (equivalents of) the atomic sentences. The second alternative is, too,
expressible by a sentence of L, by arguing as for (1), since isomorphic embedding
is projective in L. Therefore the property in (1) is both PC and complement
of PC (see [Fe]), hence, by 4-closure, it is expressible by some sentence 0 in L.
Now 8 is equivalent to ™%, W ’

2.5. Remarks. Thus, topological logic L, (see [FZ]) has relativization, as it
can express continuity and is well known to be A-closed.

We now deal with the familiar fact that in a compact logic sentences depend
on finitely many symbols only (see [FI] or [MS2]).

2.6. PROPOSITION. dssume that L = (%,F, Stc) is a compact logic where' iso-
inorphic embedding is projective. Then we have :

Vo 31, finite = ‘ra,kVQI, BeOb(r,) [Ut v 2 Blv, = WUFo iff BE@)].

Proof (by analogy with [FI]). Let M, N be arbitrary structures of type Tp
and f: M = N Let ¢: 11, with T A1, = F. Let MW = M™*, Notice that
I (M)® =N, hence .

S =[N, flEY, .y and fis onto.

By the finite-reduct axiom, together with the functor axiom, we have

GEfis onto  and N Vo

) 0 finiteSt
Let S be an arbitrary model of the above (consistent) theory. Then, by the finite-
reduct axiom, © = [, 9t,f] is a strict expansion of the pair [/, N] with /: (')
= 9t; here one also has to recall Proposition 1.3, and the functor axiom. Therefore,
by the isomorphism axiom we have

S is onto and A VoesF ot o0,

0 finjteSt
Since 7 is a set and L is compact, the above theory has a finite subtheory, e.g.,
fis onto and g, r A ... AYrg,, ", Which still implies that ¢ < . For a suitably
large finite type 1, we have that

) Fisonto and Y, ke ep,
Now let o, B & Ob(z,) be arbitrary, with f: WP 1o B 7o, Then we have
[P 1), Bl 2o, /1S is onto  and Y,
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By reduct we can write
. e, B, f1E Ve, and fis onto.
Assume now €k ¢; then by (1) and renaming we have
‘ A, B, f1Fp, since A et
whence, by reduct, BE ¢. W '

Remark. The list of results from abstract model theory one can immediately
generalize to the present context, is by no means limited to the above propositions:
for instance, the familiar implications between different interpolation and defin~
ability properties of logics (see [MSI]) are easily proved also for generalized logics.
In the following sections we shall devote our attention to two abstract model
theoretical results whose generalization requires a more detailed analysis of the

effect of our axioms for semantic domains, with particular reference to the sub-
structure axiom and to closure under disjoint unions.

3. An abstract model theoretical identity. Following [Mu2], we denote by Y
read: natural) the set-theoretical axiom given by:

Vu regular 2w, YAz o, every uniform ultrafilter D on B is A-descendingly
incomplete if A<x.

" See, e.g., [CK] for this terminology. In [DIK] it is proved that Lr (viz.,
there is no inner model with an uncountable measurable cardinal) implies Y.
A fortiori, V =L, or even "10¥, are both stronger than Y .

3.1, Tueorem (H). Let L= (%, F,Stc) be a logic with relativization, where
|Ste(x)] exists for every v, and all sentences are of finite type. Then L satisfies Robinson’s
consistency [ff' L is compact and satigfies Craig’s inferpolation.

Proof. (<=): There is nothing new with respect to the argument for the ordinary
case; (see [MSI]).

(=): Since for compact L, Robinson’s consistency is equivalent to interpolation,
then it suffices to show that Robinson’s consistency implies compactness. Therefore
assume L satisfies Robinson’s consistency and L is not compact (absurdum hy-
pothesis). Then L is not (4, w)-compact for some infinite cardinal 2. Assume 4 is the
least such cardinal. Then there is a type 7" and an inconsistent theory 77 = {{/,}s<s
of type 1/, with cach Tq = {1//,,},,“ being a consistent subtheory, (2 <2). Let U,k T,;
we can safely assume that ©* has no constant symbols: one can always replace any
such symbol ¢ by a relation R,, with the additional stipulation that

' 31 xR x A V(Rex = Y (x/0)) »

for all @<, using closure of L under 3, 71, A, and renaming, and the fact thzf.t
atomic sentences are in L. Notice that 1’ is a set. For simplicity we also assume ' is
single-sorted: the proof is the same even if 7' has many sorts, but the notation
becomes heavier. :
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Let 9 be a disjoint union of the 2, with isomorphic embeddings f,: A, — A
(as given by closure under disjoint union). Let 9t of type {<', b,},<, be such that
|9 = {4, <, 2),<; {as given by the richness axiom). Structure [, N] is stilt
in %, by the latter being closed under disjoint pair. Form the strict expansion
[0, N, /] where /2 A— N is such that f(a) = the only a<A with a e range(f,):
here we use closure under strict expansion. Let T, = th[2, N, f] in type 7' U
U {<’, b}ecs Y {f}. The following sentences are in T (for a<f<A):

")
i.e., the yth component of A4 is the range of an isomorphic embedding from a model
of T,. Here we use the fact that each sentencs of L can be relativized to boolean
combinations of atomic sentences, and closure of L under the other first-order
operations.

CLAIM 1. The b, (a<Ai) are unbounded in every model of T,.

Proof. Otherwise (absurdum hypothesis), let (M, m) F ToAb,<'m for each
oc<) Then by (1) we have (for all a<i):

(M, i) kg H=m

This means that there are embeddings and structures g,: B, — M ¢’ with B,k T,
for each a<A. By Proposition 1.4 any two such B,’s are isomorphic, since the g,’s
have. their range equal to {x| f(x) = m} in (MM, m). By the isomorphism axiom
of L every B,, hence, in particular, B, is a model of the whole theory {y,},<z»
which is impossible.

Having proved our claim, let 1= 2 be-regular and otherwise arbitrary. Expand
the ordinary structure (u, <, ¢,),<, to some generalized structure M, in ¥ of
type {<, C}acy Such that ||]] = {u, <, ¢, Y.<, use the richness axiom. Form
the strict expansion M, of M, obtained by adding a unary relation symbol P, for
each scyu, and a unary function symbol f, for each r: u — p, and by giving them
the natural interpretation. Form the disjoint pair [[2, 9,f], M,], for short
[, N, £, M,]. Form the strict expansion &, = [A, N, f, M,,j1 where j is the
natural embedding from ||9] into IRLMIE Let T* = th{A, N, f, m,, j1

CLAM 2. The ¢, (a<p) are unbounded in each model of T*.

Proof. Otherwise (absurdum hypothesis), let (&, m) F T*A c,<m, for every
« <. Define a collection D of subsets of u by de Diffdep, |d| = w S, myEPm.

It can be shown without difficulty that D is a uniform ultrafilter on x. To
prove our claim we shall show that D is i-descendingly complete, thus contra-
dicting B . As a matter of fact, assume (absurdum hypothesis) that D is A-de-
scendingly incomplete, so that we have, for a suitable descending chain:

<’ is a linear ordering on N and b,<'by and Vy(b,<'y = YL/ &=M0)

dy=2d,2 ... 2d,2 ... (oc<i d,e D), that () d, = @ We may safely assume that
a<i
for any limit ordinal .y <l N d, = d,. We are thus enabled to define function
L a<y
i: u— 1 by
1y =a f Ped Nd,,.

icm
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Function ¢ says how long f stays in the descending chain. Now we have

(i) (a<l) Gy, &k Vux(t(x)<e, » TPy, ()
since GQ =, €; we also can write (for each <)

(ii) (&, myFtim<e, - Py, (m)

and

(iii) (&, m)Etmy>c,.

From (iii) we can thus write

(iv) (&, m)EVx(x<e, — ‘1(m)>x);

as a matter of fact, if (iv) were false, then we would have, for some m’ in the
universe of &:

)

By Claim 1, m’ can be replaced by some ¢,<c, (recalling the definition of j), so
that we have

(vi)
which contradicts (iii). Thus (iv) is true. Therefore we have
(vii) S, @ EIpVx(x<c, > 1(3)>x),

which shows that ﬂldz # @, a contradiction.
o<
Having proved our second claim, we conclude the proof of the theorem as
follows. Consider the family of the T* as p ranges over the regular cardinals > 4;
it is no loss of generality (in view of the renaming axioms) to assume that for any
a's @', the only common symbol in 7% and T*" is <.
Cram 3. T O T is inconsistent whenever ' # 1.

Proof. Otherwise (absurdum hypothesis) let
BETH T

(S,m,m'yEm’ <e; A tmy<m'.

(8, m, )k cu<ent(my<e,

with 8 = (B, <, ¢) s o Daappen -
Assume p'<p’. By Claim 2 (and by reduct axiom) the ¢} are unbounded in B;
thus, in the ordinal (¢ 1¢'') given by the interpretations in B of the ¢j, we can find
an unbounded chain of length 4/, which contradicts the assumed regularity of p'.
This proves our third claim,

Let now 7§ = T n Ste{<}. By Robinson’s consistency, and by Claim 3,
TH O T is an inconsistent theory of type { <}, while T is complete and consistent.
By the assumption about |Ste(r)], the collection of complete consistent theories
of type {<} has a cardinality, On the other hand, the above construction: yields
as many different 7§ as there are regular cardinals g2, This is a contradiction,
and shows that L must be compact, M
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3.2. Remarks. In [FZ] one can find examples of logics (other than first-order
logic) satisfying the assumptions of Theorem 3.1, in the light of Remark 2.5. The.‘
orem 3.1 was originally proved for the ordinary case in [Mu2] and, independently,
in [MS2]. Notice that for the theorem to hold, L need only be closed under
relativization to boolean combinations of atomic sentences. The examples of L,
and L%, (see [MS2]) show that one cannot dispense with imposing restrictions on
the size of Stc(z), or of the type of sentences in L. .

The above proof reveals a rather unexpected interplay between the categorial
notion of coproduct and the model-theoretical notions of compactness and inter-
polation: the question naturally arises whether Theorem 3.1 still holds for logics
on categories of structures which are not closed under coproducts.

In the following section Theorem 3.1 will be used to generalize the Duality
Theorem between logics and equivalence relations, originally proved for ordinary
logics in [Mu3].

4. A duality theorem. If L = (%,F, Stc) is a compact logic with relativization
and interpolation, and where |Stc(c)| always exists, and ,, is finite for every ¢, then
by the easy direction of Theorem 3.1, =, is an equivalence relation on {) Ob(z)

T
satisfying Robinson’s consistency, finer than = (by L being closed under the first-
order operations), coarser than = (by the isomorphism axiom satisfied by L);
in addition, =, is bounded, i.c., Yt the collection of equivalence classes of = on
Ob(z) has a cardinality; also, = is preserved under reduct, e, W=, B = At¢
=, B}, by the reduct axiom. Considering now the collection Ty given by the
classes mod™ ¢ (as ¢ ranges over the sentences of L), we see that T has the property
that whenever 9 %, B, there is X'e §) of some finite type o suchthat ¥} 1o e X,
but B} 1, ¢X. We describe this by saying that X separates N and B,

The duality theorem proved in this section yields a converse of the above fact:
namely, any arbitrary equivalence relation ~ with: the above properties can be
written as =, for precisely one logic L with relativization and sentences of finite
type. And L is Robinson’s! ‘

The preliminary span-hull machinery developed below is just the same as
in [Mu3]:

Let % be a semantic domain with substructures; a finite-type class X is o pair
X = (S, 7) with ¢ a finite type and SSOb(1). X is elementary il it is the class of
models (in %) of some first-order sentence (in the sense of Scction. 2),

Given finite-type classes X, ¥ respectively of type ty, Ty, and given renaming

0 and constant symbol ¢, one naturally defines gX, X A ¥, ~1X, X, VeX as for
the ordinary case (see [Mu3] for details). A boolean function B(X |, .., X)) is a com-
position of 7, A, and v acting on the X7, ..., X,. A prenex function Qo ¢ is a com-
position of the form Qe ... O,¢, where each ¢; is a constant and each Q, is either
3 or V (depending on j). To complete our list of first-order operations on finite-
type classes, we now deal with relativization; following [Mu3], we shall limit
ourselves to relativization to boolean combinations of atomic sentences: see [Mu3}

icm°®
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for a discussion on rolativization. Notice that in our definition below we shall in-
corporate t-closure; also, for notational simplicity, we shall limit ourselves to
single-sorted relativization. Again let % be a semantic domain with substructures:

4.1, DerNITION. For o a boolean combination of atomic sentences with type:
r,2{x}, and for an arbitrary type t we define I by

Ae G {xa}" is the range of some isomorphic embedding f: B — A} ¢
for some B of type T,
(for 2 € Ob(t L (1,7\{x}))), and we say that CI1® is the class of t-closed structures
upon restriction o {xla}.
We picture the above situation as follows:

For X an arbitrary {inite-type class of type tx, we further define X e (called
the relativization of X to {x]a}) by

e X9 iff {x]a}" is the range of some isomorphic embedding f: B — U} 1y,
for some BeX :

(for A e Ob(ty U (t,\{x})).

Notice that by Proposition 1.4, if g: ® — A} 1y, too, and g has the same
range as f, then automatically e X, provided X does not separate isomorphic
structures,

Having completed our list of fiest-order operations, we now define the span
of the finite-type cluss X (lor short, span(X)) by

Yespan(X) ilf ¥ has the form

Y == Z.) ° EB((le')(xt]ﬁl), e (QrX)(xr|“r}1 El: ey EP)

whete {0 @ = ©,¢y... 0, i8 & prenex function, B is a boolean function, Ey, ..., By,
are clementary classes, cach g, is 4 renaming with domain 7y, each «; is a boolean
combination of atomic sentences, and the x, are constants. Thus, the span. of Xis
the smallest collection of finite-type classes one can get from X and the elementary
classes by repeated applications of the first-order operations, including relativization,
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Let now ~ be an arbitrary equivalence relation on J Qb(t); we define /udi(~)
as in [Mu3] by

Xehull(~)iff X is a finite-type class and each Yespan(X) is a union of
equivalence classes of ~.

Thus X & hull(~) iff no finite-type class Y which is obtalmble from X by the first-
order operations can separate two equivalent .structures.

We finally say that ~ is separable iff for every type t and structures 9, %
€ Ob(r) with A+B, A, finite =7 and X € hull(~) of type 7, such that At 75 X
and B} 7, ¢ X. Thus ~ is separable iff every two inequivalent structures can be
separated by some class in hull(~). Now we can state our generalized duality
theorem:

4.2. THEOREM (}). Let € be a semantic domain with substructures. Let ~ be an |

arbitrary equivalence relation on {} Ob(t). Then the following are equivalent:

* :

(i) ~ is bounded, separable, has the Robinson property, is preserved under
.reduct, finer than = and coarser than 2 ;

(i) ~ = = for precisely one logic L with relativization and having all its
sentences of finite type; in addition, L satisfies compactness and Craig's interpolation,
and |Stc(t)| exists for every <.

For the proof we prepare some lemmas, among which one might find one
or two results of independent interest. Our first lemma is the generalization to %
of Proposition 5.1 in [Mu3]:

4.3. LemMA. Let X, Y be finite-type classes which do not separate isomorphic
structures; let o, B be boolean combinations of atomic sentences, g.a renaming, x, ¢,y
constant symbols. Then we have:

) (X = A Xy,
@ (X" = (@)™ ;

€) @) = Fe (X nae));

@ (XA Y)Y = ylae o yledad  clxled
) (YOI = Gl A OOt -

Proof. (1) If U i§ 7y-closed upon restriction to {x{«}, then 9{{x{a}™ is uniquely

defined up to isomorphism, by Proposition 1.4. Notice now that X does not separate
isomorphic structures, and that (T1X)*¥ < B by definition,

(2) By a simple application of the renaming axiom for %. As usual, «® denotes
the sentence obtained from a by renaming o.

(3) We prove that (3eX)™™ c3c(X™1% Aa(c)). We can draw the following
picture:
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mrz\ e}
S
e
D
ByTthe diagram axiom we have
4 (e eD
I

A

I

|
D
Now, flc) satisfies o in M,y; hence M has an expansion M’ =
that the following holds:

Therefore M e Id(X ™ A a(d)), by jus?wjgg

complete by renaming bound variabley,
2 ~— Fundamenta Mathematicae CXXIV/1

(M, f(c)y such

d = f(c), and the proof becomes
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(3)" We prove the converse of (3)' by hypothesis, we have that
M ede(XH An(e), ie.,

[ uND

By the reduct axiom satisfied by ¥ we have

(’Jthx\{c})ea cX

* Therefore M e (FcX)™* and the proof of (3) is complete.
(4y Assume Me (XA )%, so that we have the following:

icm°®
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By reduct we also have the following (together with e CEI ).

xUTY/ "

NeyeX

S LOT%

so that Me X4 A Y,

1" " {ola) |
(4)" Assume now M e XA YHDA CE < then we can write:

OBEY

ask”

NeO0b(zy ury)

()
@

By making use of the reduct axiom satisfied by % we have:

Moy

O )

WEX

Now, by Proposition 1.4, ANty and B=N} 1y, whence RNPyeX and
N rye ¥, by X and ¥ not separating isomorphic structures, so that NReXAY

and we finally can write the following picture
2%
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m
MEXAY

(5y Assume Me (XEH)OP, 5o that we have the following picture:

{xte}

Nex

Crane. range(fg) = {JIB}™ n {xla}™.

Proof. As a matter of fact, if x erange(fy) then x satisfies f in 9, Fiw)
satisfies o in 9, so that x also satisfies « in 9, since, by the functor axiom, f preserves
validity of atomic sentences: therefore (I, x> FaAp.

Conversely, if x satisfies both « and § in 9, then x satisfies « in N because f
preserves validity of atomic sentences, whence g~Mx) is in D because range(g)
= {x|a}". Therefore x e range(fg), which proves our claim.

Now, {xjaa B}™ is the range of fg, the latter being an isomorphic embedding
from some model D of X, and {y]ﬁ}'m is the range of some isomorphic embedding
f fiom a structure M of type Ty U (t,\{x}). In symbols,

M XAl A Cﬁi'ﬂ’(m\(x)) ’

which yields the desired conclusion.
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5y g {xlanfy , ~iylB) -
o ll(r'.ie) Assume now Me X A C,,yclu(,u\(x),, so that we have the following
pi : - .

n EOb(rxu(za\{ xl}))

By the factorization axiom, there exists g such that % = fg, so that we have
the following picture:

By arguing as in (5), we see that f~*{xaAf}™ = {x|a}"; therefore, range(q)
=f"x|un f}™ by the functor axiom, and {x|a}" is the range of an isomorphic
embedding g from some model D of X, whence Ne X and M e (XHHOH,
as required, M

4.4. LemMa. Let' L be a logic on the semantic domain €, having relativization.
Assume that each sentence of L is of finite type. Let ¢ and  be sentences of L, o be
a b;)oleczn combination of atomic sentences of type t,2{x}, x, c constants. Then.
we have: '
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(1) Hce)¥1? is equivalent to Je(p™ A a(e)); )

) (Yep)™1 is equivalent to Ve(u(e) = @¥) A @ v “10)¥9, where 0 is an
arbitrary sentence of type T N{C}s

3) (@ AWTI® is equivalent to (p(”l"‘}m//{"l“’/\(av —10)*, with 0 arbitrary and
of type T,V Ty;

@ (V)& is equivalent to (¥ vy H A0V 16y, with @ arbitrary and
of type T,V Ty

Proof. Apply 4.3 to mod™ ¢ as ¢ ranges over the sentences of L. Notice that
there is always in L a sentence expressing z-closure (for © finite), in view of the
existence part of the substructure axiom for #: one can take, for instance, the
relativization to {x|a} of any valid sentence of type 7. Also notice that (¢ v )™
s not merely ¢ vy#?, as our axioms for ¢ do not ensure that 7’ -closure
together with t’-closure imply (v’ U t'")-closure: a similar remark applies to (2)
and (3). W

4.5. Levma. Let L' and L' be two logics on the same semantic domain €, both
with relativization and with every sentence being of finite type. Let L=L' 0 L" be
their union, i.e., the weakest logic stronger than both L' and L''. Then the sentences
of L are (up to equivalence) precisely those having the Sfollowing form:

0] v = 0 kB(@}, ..., o Oy s Om)

with 0 o ka prenex function, B a boolean function, every @i L' and every ofel".

Proof. Clearly every ¥ as given by (o) must be equivalent to some sentence
of L, as the latter is closed under prenex and boolean functions. Conversely, the
class C of sentences given by (o) is closed under the prenex and boolean functions,
and encompasses both L' and L". Closure of C under relativization to boolean
combinations of atomic sentences can be proved, by induction on the complexity
of ¥, using Lemma 4.4. B

Remark. If the sentences in L' and L'’ above were no longer assumed to have
a finite type, then, when applying, say, 4.4(3) there might not exist any sentence 0
of type Ty U T, (in either of L' and L") for some ¢’ € L' and ¢"' € L", and L would
not be closed under relativization.

4.6. LEMA. Let L' and L' be as in Lemma 4.5. Assume further that both logics
have the Robinson property, and that =y = =yp». Let , a sentence of L' w L, be
given by (o) in 4.5, Then  does not separate L'-equivalent structures, i.e., for all
A=, B we have that Wk Y if BELY.

Proof. Word by word as in Proposition 2.2 of [Mu3]. B

4.7. LemMA. Under the hypotheses of 4.6, let L = L' 0 L'"; then =, = =, and,
in particular, L has relativization, Robinson’s. property, and each sentence of L is of
finite type. o

Proof. First notice that = is finer than =,; by 4.6, it is also coarser, whence
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=, = =,. So L has Robinson’s property, as the latter only depends on =,. L has
relativization and its sentences are all of finite type by Lemma 4.5. B

4.8. LEMMA (H). Let ~ be a bounded equivalence relation on semantic domain €
with substructures: assume ~ has Robinson’s property. Let =;. = ~ = =,. for
L', L' two logics with relativization, and whose sentences have finite type. Then
L' = L', and both logics satisfy compactness and interpolation, and [Stc(v)| exists for
every T, in both logics. ‘ s

Prpof. The collection of sentences of L' with type ¢ has (mod. logical equiv-
alence) a cardinality, for every 7, by ~ being bounded. L' satisfies Robinson’s
consistency, as so does =,.. By our identity in Section 3, L’ satisfies compactness
and interpolation (here we use 1 and the assumption that L’ has relativization).
Notice that in the proof of 3.1 we use only relativization to boolean combinations
of atomic sentences. Let L = L' U L'". By 4.7, L has relativization, Robinson’s
property and |Stc (z)} always exists (by 4.5). Again by applying Theorem 3.1 we
see that L is compact. By a familiar finite-cover argument (see [F1]), since L=L’,
it must be that L = L'. Similarly, L = L'/ and the lemma is proved. B

4.9. LEMMA. Let ~ be an équivalence relation on semdntic domain € with sub-
structures; assume ~ satisfies (i) in 4.2: then hull(~) is closed under renaming, boolean
and prenex operations, as well as under relativization to boolean combinations of
dtomic sentences.

Proof. Exactly as the proof of Lemmas 6.1-6.7 in [Mu3]. However, instead
of Proposition 5.1 therein, one must now use Lemma 4.3 above.

4.10. Proof of Theorem 4.2. The easier direction (ii) = (i) has already
been proved in the discussion at the beginning of this section, except for separability.
To see that ~ = =, is indeed separable, let A+ B; then some sentence ¢ of L
separates U and B, ie, Aemode and B¢ mode. Now observe that X
= (mod g, 7,) is in hull(~), since for every Yespan(X), Y is mody for some
sentence V in L, by definition of span, and by L being closed under the first-order
operations (including relativization to boolean combinations of atomic sentences).
Therefore, Y is a union of equivalence classes of ~, and X €hull(~) separates
A and B.

Conversely, let us now prove (i) = (ii). As in [Mu3], define L = (%, F, Stc) by

+) peSte(r) iff @ehull(~) and 7,<7,
and
(++) ALy iff 1,519 and At €0,

for any structure U in ¢, for any type t.

L satisfies the isomorphism axiom, since ~ is coarser than & ; the occurrence
axiom follows from direct inspection of (+) and (+ +), the same applies to the
type axiom; L satisfies the reduct axiom, as ~ is preserved under reduct. L is closed
under the first-order operations, including relativization to boolean combinations
of atomic sentences, by Lemma 4.9; each sentence of L is of finite type, by direct
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inspection of (+); |Stc(r)| always exisis by the assumed boundedness of ~, One
proves that ~ = =, by first noting that =, is coarser than ~ (here one again
uses the assumption that ~ is preserved under reduct); then one shows that =, is
finer than ~, by using separability. If necessary, see [Mu3, Claim 2 in 6.8] for
details. The fact that L obeys compactness and interpolation now follows from =,
having Robinson’s property, in the light of Theorem3.1 (here one uses i ). Uniqueness
of L among logics with relativization, and with sentences having finite type, is given
by Lemma 4.8 (here, again, one uses H) m

410, COROLLARY (). Let =, be the equivalence relation on the topological sem-
antic domain & described in 1.6.2, given by topological logic L, (see [FZ)). Then
L, is the only logic L with relativization and with sentences of finite 1ype such that

=p.

=r

Proof. Use Theorem 4.2 and Remark 2.5, and recall that L,, herce =,, satisfy
Robinson’s consistency. B

4.11. Remarks. The assumption about every sentence of L having a finite
type in the easy direction of Theorem 4.2, might be rephrased in (essentially) weaker
terms, in the light of Proposition 2.6, once we assume that in L isomorphic em-
bedding is projective. As for the harder direction, notice that with respect to [Mu3},
here L is asserted to be unique among logics (with relativization and) whose sen-
tences have a finite type: this latter requirement was not imposed in {Mu3] As
a matter of fact, in the ordinary case t’-closure together with ¢''-closure imply
(' v t')-closure, and the remark following Lemma 4.5 above is no more necessary.
By adding some sort of regularity requirement for 2 as a basic axioms for % (for
instance, the requirement that =2 has the Robinson property, as in the ordinary
case) one should be able to drop the assumption about the sentences of L being
of finite type, and prove the exact correspondent of the duality theorem in [Mu3]

However, we have preferred to give the present list of axioms for €, due to its
simplicity.
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