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Borel sets in compact spaces:
some Hurewicz type theorems

by

Fons van Engelen and Jan van Mill (Amsterdam)

Abstract, Let X be a compact metric space, and let 4 be a Borel subset of X We identify
two subspaces S and T of the Cantor set, and prove that:

(1) 4 is not the union of a complete and a countable subset if and only if X contains a Cantor
set K such that KNA~RP and KN AxQx C.

(2) A is not strongly o-complete if and only if X contains a Cantor set X such that K\4
~QOxP and KN AXT.

(3) A is not the union of a strongly o-complete and a countable subset if and only if X con-
tains a Cantor set K such that KNAXQx P and KN AxS.

As an application, we give topological characterizations of QxS and Qx T.

1. Introduction.

All spaces under discussion are separable metric.

In his 1928 paper [6], Hurewicz proved that a Borel subset A of a compact
space X is not a G in X (i.e. 4 is not topologically complete) if and only if there
exists a compact subset K of X such that K n A~ Q (the rationals) and K\NA~P
(the irrationals). A theorem of the same type was proved in 1978 by Saint Raymond
([101): he showed, among others, that a Borel subset A of a compact space X is
not the union of an F, and a G; of X (i.e. 4 is not the union of a o-compact and
a topologically complete subspace) if and only if there exists a compact subspace X
of X such that X m A~ Q x P. However, he did not prove anything concerning X\A.
To the light of Hurewicz’s result, this suggests an obvious question; in this paper,
we will answer this question, and prove some more “Hurewicz-type” theorems.

We identify a ¢ertain zero-dimensional space T, which can easily be visualized
as the remainder of @'x P in some compactification of @x P, and we prove that
a Borel subsct A of a compact space X is not the union of a ¢-compact and a topo-
logically complete subspace if and only if there exists a Cantor set K in X such that
Kn Az QxP and KNA~T. This theorem can also be stated in a slightly different
way. Call a subset ¥ of a space X strongly o-complete if ¥ = U {¥;: 7 € N}, where
each ¥, is topologically complete and closed in ¥; it is easily seen that 2 subset Y
of a compact space X is strongly o-complete if and only if Y is the intersection
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of a o-compact and a topologically complete subspace of X (Lemma 2.1). The
above-mentioned theorem then states that a Borel subset 4 of a compact space
X is not strongly o-complete if and only if there exists a Cantor set X in X such
that K A~T and K\A~QxP. Thus, in a sense, T' is minimal among the non-
strongly ¢-complete Borel sets. If a Borel set in a compact space does not come
too close to being strongly o-complete, then we can prove a somewhat stronger
statement; for this purpose, we identify another zero-dimensional remainder of
O x P, which we call S, and which is “larger” than T . contains a closed copy
of T, but not conversely. Then we show that a Borel subset 4 of a compact space
X is not the union of a countable and a strongly ¢-complete subspace if’ and only
if there exists a Cantor set K in X such that K n A~S and K\A= Qx P. In the
proof, we will use another result & la Hurewicz: a Borel subset 4 of a compact
space X is not the union of a countable and a topologically complete subset if and
only if there exists a Cantor set K in X such that X n A= QxC and KNAxP
(here C denotes the Cantor set). As an application of the above results, we obtain
topological characterizations of QxS and @xT.

The space S has been topologically characterized by van Mill in [9]. For T,
this was first done by van Douwen ([4]); since his proof has not yet been published,
we include a new proof of this characterization in an appendix to this paper.

2. Known results and preliminary lemmas. Notation is standard, as e.g. in
Bngelking [5]; A~B means that 4 and B are homeomorphic. The diameter of
a set A is denoted by diam(A4). All metrics in this paper are denoted by « and as-
sumed to be bounded by 1; also, if the space in question is topologically complete,
we always take d to be a complete metric. A subset of a space X is clopen if it is
both closed and openin X. A space X is strongly o-complete if it is the countable
union of closed and complete subsets of X; we use “complete” as an abbreviation
Ffor “topologically complete”, i.e. being an absolute Gj.

2.1. LeMMA. A subset A of a compact space X is strongly o-complete if and
only if it is the intersection of an F, and a Gy of X.

o
Proof. If 4 is strongly o-complete, then 4 = () 4;,

i=q
and Complzte Hence 4; 1s a Gyin Ay, so ANd, is an F, in 4; and hence also in X,

SoX\4 = U (AN4) v ﬂ (X\4)) isthe union of an F,and a Gy of X; cquwalcntly,

( u A G,
les ]
where each F; is closed in X" and G is complete. Then F; A G = F; n 4 is closed
2]

= {J (F, n G) is strongly ¢-complete. M
i=1

where 4, is closed in 4

A is the mtcrsectlon of an F,, and a Gy of X. Conversely, suppose A =

in A4, and in G, hence complete. So 4

We will now give topological characterizations of some Borel subsets of the
Cantor set. Here, if £ is a topological property, then a space is nowhere 22 if none
of its non-empty open subsets has £; note that if 2 is a closed-hereditary property
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of a zero-dimensional space, this is equivalent to none of the non-empty clopen
subsets of the space having 2. Of course, “unique” is “unique up to
homeomorphism”.

2.2. THEOREM. (a) (Brouwer [31). The Cantor set C is the unigue zero-dimensional
compdct space without isolated points.

{b) (Alexandroff and Urysohn [1]). The set of irrationals P is the unique zero-
dimensional complete, nowhere locally compact space.

() (Sierpinski [L11). The set of rationals Q is the unigue countable space without
isolated points.

(d) (Alexandroff and Urysohn [1]; van Mill [8]). Q@ x C is the unique zero-di-
mensional o-compact, nowhere countable, nowhere locally compact space; equi-

0

valently, it is the unique zero-dimensional space X such that X = \) C;, where C;=C,
=1

and each C, is a nowhere dense subset of Ci.,.
(e) (van Mill [8]). @xP is the unique zero-dimensional strongly o-complete,
nowhere o-compact, nowhere complete space; equivalently, it is the unique zero-

o
dimensional space X such that X = \) P;, where P;=P is closed in X and a nowhere
=1

dense subset of P.q.
Now let K, Q be dense subsets of C such that K~ Qx C, Q~ Q. Let P, = C\K,
= C\Q. Then P;~P,~P. Define §,T=CxC by §=(CxCN(Q@xP), T
= (CxCN(@%xPy); then (Cx CNS~(CxCONT~QxP. The spaces S and T
can be characterized as follows (a proof of (b) will be given in an appendix to this
paper):

2.3. THEOREM. (a) (van Mill [9]). S is the unique zero-dimensional space which
is the union of a complete and a o-compact subspace, and which is nowhere o-com-
pact and nowhere the union of a countable and a complete subspace.

(b) (van Douwen [4]). T is the unique zero-dimensional space which is the union
of a complete and a countable subspace, and which is nowhere o-compact and nowhere
complete.

Let us note that O x P, S and T are pairwise non-homeomorphic. S and T
are Baire (they contain a dense copy of P), whereas Q x P is not; and S is not the
union of a complete and a countable subspace. Also observe that each of the above
spaces is homeomorphic to any of its non-empty clopen subspaces (this follows.
casily from the characterizations). This implies that each of these spaces is homo-
geneous; in fact, any homcomorphism between closed and nowhere dense sub-
sets can be extended to an autohomeomorphism of the whole space ([8], Theorem:
3.1). That C, P, Q, Q@ x C and Q x P are homogencous is trivial of course; however,
no easy proofs for the homogeneity of § or T" are known.

2.4. LummA. Let X be compact zero-dimensional, and let A be dense in X. Then
Ax QX P if and only if XN\A is « nowhere o-compact, nowhere complete space which
is the union of a complete and a o-compact subspace.
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Proof. If 4~ Qx P, then A is strongly o-complete by Theorem 2.2(e); hence
X\A is the union of a ¢-compact and a complete subspace by Lemma 2.1. If Uis
open in X and UNA is o-compact, then Un 4 is a complete open subspace of A4,
contradicting nowhere completeness of @ x P; thus, X\ is nowhere ¢-compact,
Similarly, nowhere o-compactness of Q x P yields nowhere completeness of X\4.
The converse statement follows by exactly the same argumentation, W |

2.5. LemmA. Let X be any space, and let A, B and K be subspaces such that
O # K is compact, A is howhere dense in B, and 4 n K is dense in K. Then there
exists a countable diserete subset D of B\A such that D = D 0 K; furthermore,
if (e)new 15 a given sequence of positive numbers, we can choose D = {d,: ne N}
in such a way that d(K, d,)<g,.

Proof. For each i e'N, let @, be a finite cover of K by open sets of X of diameter
less than 1/i, say @; = {D(@,j): j = 1, ..., n;}. Then for each ie N and j<n;, we
have D(i,j)n An K # @, say p(i,ij)le D@, HnAnK Let neN. Then there

exists a unique-i € ¥V such that n = (E n)+J for somejsni,‘ and we choose »(i,/)
=
= d,e(B(p(i,)), &) 0 D(i,j) 0 BNA. We claim that D = {d;: neN} is as re-
-1 . ‘
quired. Clearly DcB\4, and if n = ( Z n)+j then d(d,, K)<d(d,, pi, i) <&,

Now take x ¢ D and let x,e D be such that 31n1 x; = x; then either (x); contains
e

@ constant subsequence or we may assume that, for each ie NV, x; = y(i,/;) for

some je{l,..,n}. In the first case, x € D; otherwise, d(x, K)d(x, xg)-+d(x;, K)

<d(x, xp)+1/k which converges to 0. So x & K. Hence D is discrete and DD U K.

Conversely, suppose x € K. Then for each i e N, x ¢ D(i, j;) for some j, & {1 - 1)

Since diam D(i, j;)<1/i for each i, llmy(z,],) =x, 50 xeD. B

3. Dense copies of Q@ x C in P. In this section we will show that, essentially,
Q x C can be densely embedded in P in only one way; more precisely, we well show
that, given two dense copies 4, and 4, of @ x C in P, there exists an autohomco-
morphlsm h of P which maps 4; onto 4, (i.e. Pis “Qx C dense homogencous ).

3.1. DeenvioN. Let X'e {C, P}. A skeletoid in X' is a subset A = U A, of X,
tet
with' 4;<= 4,44, such that each 4, is nowhere dense and compact, and such that

for each £>0, cach me N, and each nowhere dense compact subsct B of X, there
exists an ne N dnd a homeomorphic embedding f: 4, W B — 4, such that /|4,
= id and sup{d(f(x),x): x € 4, U B} <e.

Note that if X = P, then the “nowhere dense” can be deleted. Using [2]
(Corollary IV. 3.1 and Proposition IV.4.1) and [8] (Theorem 3.1) it is casily scen
that this is equivalent to the usual definition of a 2 -skeletoid in P (resp, C), where
."f is the set of compacta in P (resp. nowhere dense compacta in C). Thus we have:

3.2, TeEOREM ([2], Theorem IV.2. D). If Ay and A, are two slw]uton{s in P

L then
there exists a homeomorphism h: P — P such that h[4d,] = A,.
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Hence to show that P is @ x C dense homogeneous, it suffices to prove:
3.3, TueoreM. If 4 is a dense copy of QX C in P, then 4 is a skeletoid in P.

Proof. Fix ¢>0, me N, and a compact subset B of P. Let 4 — U A;, where

Ay~ C and 4, is a nowhere dense subset of ;41 (Theorem 2.2(d)). Embed PinC
as a dense subset. Since P is nowhere locally compact, each 4, is a now here dense
compact subset of C; by [9], 4 is a skeletoid in C, Also, B is nowhere dense in C,
so by Definition 3.1 there is an ne N and a homeomorphic embedding f: 4, U
U B~ A, such that fld,, = id and sup{d(f(), x): x e 4,, U B} <s. Again by De-
finition 3.1, A is a skeletoid in P. B

3.4. COROLLARY. If Ay and A, are two dense copies of Qx C in P, then there
exists a homeomorphism h: P - P such that hldy] = 4,.

4. Borel sets which are not complete. Recall that Hurewicz’s original theorem
states that if’ 4 is a Borel subset of a compact space X" which is not complete, then
there exists a compact subset X of X such that K n 4~ Q and ENAxP. We will
first show that for X we can even choose a Cantor set.

4.1. TarOREM. Let X be compact, and let 4 be a Borel subset of X. Then A is
not complete if and only if there exists a Cantor set K in X such that KnAd=Q
and KNA= P, ‘

Proof. Clearly, if 4 contains a closed copy of Q, then 4 cannot be complete.
Conversely, if' 4 is not uomplctc, then by Hurewicz’s theorem ([6]; for a different
pmof see [10] or [12]) there exists a compact subset X' of X such'that K’ n A~ Q
and K'\N4A=P. Let Q be a copy of @ in C, and let f: O — K’ n A be a homeo-
morphism. Since both C and K’ are compact, we can apply Lavrentieff’s theorem
(see e.g. [5], Theorem 4.3.21) to obtain homeomorphic G-subsets B and D of C
and K, respectively, such that B>Q and DoK'~ A4, In particular, D is zero-
dimensional. Now if D contains an open (in D) compact subset U, then Ux C and
Un A= Q whence UNA=P; so put K = U. If this is not the case, then D is no-
‘where locally compact, hence homeomorphic to P by Theorem 2.2(b). Now let P be
any copy of P, and let K, be a copy of C contained in P; let Q, be countable and
dense in K, and let Q; be countable and dense in PNK,. Then Q = Qy v O, is
countable and dense in P, By [5] (Excreise 4.3E) there exists a homeomorphism
]1;1“ P 1) such that 2[Q] = K' n A, Then K = h[K,] is as required. M

We will now turn to the proof of our first Hurewicz-type theorem; in our
arguments we will use techniques from [10]. In the remainder of this section, as
well us in the next section, we will denote by M the set of all finite sequences of
natural numbers (including the empty  sequence @). If s = (sy, ..., 8) € M, then
for cach e IV, “s, n” denotes the. sequence (sy; ..., 5, 1) € M; |s|' = k'is the length
of s and v(s) = v+ ... +5; we put |B| = v(&) = 0. If ¢ is an infinite sequence

of natural numbers, then “s<o¢” means that 5 is ap initial segment of o.

o 4.2, TurorM. Let X be compact, and let A be a Borel subset of X. Then A is
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the union of a countable and a complete subset if and only if A does not contain u closed

copy of OxC.

Proof, If 4 is the union of a countable and a complete subspace, and if B is
closed in A, then also B = Fu G, where F is countable and G is complete. If
B~(QxC, then B contains uncountably many closed disjoint copies of @, hence
one of those is contained in G; but @ is not complete, a contradiction.

Conversely, suppose that 4 is not the union of a countable and a complete
subset. Since 4 is Borel, there exists by [7] a continuous surjection ¢: P — X\A4.
Put W = {x e P: there exists a neighborhood V, of x in P and a o-compuct sub«
set E, of X such that ¢[V,]=E, and E, n A4 is countable}. Then W is open in P,
and there exist countably many open ¥, in P and e-compact £ in X such that

7

W=V o[VilcE;, and E; A 4 is countable for each ie V. Then K = () E,
i=1

i= ]
is o-compact, ¢ [W]<E, and £ n 4 is countable, Put F = P\¢~*[E\A] Then Fjs
a G, in P, hence complete. We claim that F is non-empty. Indeed, if ¢~ '[E\d] = P,
then EoX\4 and 4 = (X\E) U (E n A). However, E is a-compact so X\F is
complete, and E n A is countable, contradicting our hypothesis on 4. So F # @.
Also if @ # U'is open in F, say U = U’ n F where U’ is open in men o[UY
= ¢[U] U @[UN\U]cp[U] v E which is g-compact; since U'&W, (¢ [U] U E) n

N4 = (p[U] n4) U (En 4) is uncountable, whence (p[U'_]_n 4 is uncountable.
Thus, ¢[U] n A contains a copy of the Cantor set ([7]).

For each s e M, we will now construct Cantor sets K, in 4 and open subsets
W, of F, such that the following hold for each se M:

1) Ksed n (p[W,, ;
(2) for each neN: o[W,,] n K, = &;

(3) for each n,meN: Mnm = @ if n#m

(4) for each neN: W, ,cW, (here closure is taken in F);

(5) diam(W,)<27 ¥l (here the diameter is taken w.r.t. a complete metricfor F);
(6) diam(p[W,)<27";

(7) for each neN: d(K,, K,, )2t =",

‘We proceed by induction on |s]. First, put Wy = F; then m N4 s un-
countable, so it contains a Cantor set Kj. Then (1), (5) and (6) are satisfied since
our metrics are bounded by 1. Next, suppose that W, and. X, have been constructed
for |s|<k, in accordance with conditions (1) through (7). Fix se M with |s| = k;
we will construct W,, and K,, for each neN. By (1), K4 n WS], since
o[Wl=X\4, K, is nowhere dense in K, U ¢p[W,] and we can apply Lemma 2.5
to obtain a countable discrete subset D, ='{y,,! ne N} of ¢[W,] such that D,
= D, U K;, and d(y,,,, K)<27"™" for each neN. Let U, be a neighborhood
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of »y, in ANA such that diam(U, <270, T AT, = @ if n % m, and
U,.n K, = @, for cachne N.Since y, , & ?IW.], you = 9(x,,,) for some x, , & W
henee there is an open neighborhood W, , of Xy,n i F such that W, ,c w,, diaﬁx( W)

<27W™ and ¢[W,, 1< U, ,. Then (2)-(6) are satisfied. Since oW, 1 n Ais un-
countable, it contains a Cantor set K. To verify (7), note that

Ay Ky ) SAUK,y 9 TW,, D+ diam (o [W, D <d(K,, 7, )+ 27,

This completes the induction. Now define B, = (J {Ke: Jsi<i}. We claim that
o

UO By is closed in A and homcomorphic to @x C. We first show that B;~C for-
i
cach feN. Since K~ C for each se M, each B, is zero-dimensional, being the
countable union of closed zero-dimensional subspaces. Clearly, it contains no-
isolated points; hence it suffices to show that each B, is closed in X. This is trivial
for i = 0, so suppose it is true for i = k. For each £>0, let B} = {xe X:d(B;, x)<e},
and M; = {se M: |s| = k+1, K,#B}}; then each B! is compact, and each M: is
finite by (1), (6) and (7). Since B, is compact, B, = () Bf, and

>0

Bus = () (Biu U (s se M)

is compact being the intersection of compacta. From (2) and (7) it is obvious that:
B, is nowhere dense in B, 4 for each 7, and thus we may conclude from Theorem -
o0

2.2(d) that B = 'UIBW Qx C. To show that B is closed in 4, take x € B\B, and

fix ie N. Since x ¢ B;, x ¢ Bj for some ¢>0. From (1) and (4) it follows that B

c:I (I_J'rp[W,] w By, and from (1) and (6) that ¢[W,]< B} for all but finitely many

seM Y/ith !sl = i. Hence for some finite My<={se M: |s| = i}, we have BcBf U

v U ¢[W]. Then xe @[W,] for some s e M,, and this s is unique with |s] = 7
seMo

by (3). So by (4), there exists an infinite sequence o of natural numbers such that

xe () @[W,] which is a one-point set by (6); also () W, = (} W, is a one-point
yea s<g

s<a

set by (5) and by completeness of F. Hence if {z} = () W,, then @(z) € () ¢[Wi]
s<a

. s<g
= {x}, 80 ¥ € p[P] = X\A; thus B\B=X\4 and B is closed in 4. W

4.3, TruowriM. Let X be compact, and let 4 be a Borel subset of X which is not
the union of « complete and a countable subset. Then X contains a Cantor set K
such that K N Ax Qx C and K\AxP.

Proof. By Theorem 4.2, 4 contains a closed copy B of Qx C. Also, we can
embed @ x C as a subsct D of the Cantor set, Let f* B — D be a homeomorphism.
As in the proof of Theorem 4.1, we can apply Lavrentieff’s theorem to obtain.
a zero-dimensional Gy-subset G of B such that G>B. Now if ¢ contains an open
(in. G) compact subset U, then U~C and Un.d = Un BaQx C whence U\A
= UNBaP; so put K = U. If this is not the case, then G is nowhere locally com..
6 ~ Fundamenta Mathematicae CXXIV/8
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pact, hence homeomorphic to P by Theorem 2.2(b). Now let P be any copy of P,
and let K, be a copy of C contained in P. Let By~ Qx C be dense in Ko; since
P\K,= P, there also exists a dense copy By of @xC in P\NK,. Now B=ByuB
is dense in P, and clearly o-compact and nowhere countable; it is also nowhere
locally compact: if @ # V is open in B and locally compact, then V' n By = &
since By is closed in B and nowhere locally compact; hence V< By, contradicting
nowhere local compactness of B;. Hence' Ba 0 x € by Theorem 2.2(d). By Corol-
lary 3.4, there exists a homeomorphism ji: P — G such that n[B] = B. Then K
= h[K,] is as required. B ‘

5. Borel sets which are not strongly o-complete. We will now prove our main
theorems; the argument we use is much like that of Theorem 4.2. However, the
situation is more -complicated now. Although we can build @ x P inductively, we
.can not apply the same method as.in Theorem 4.3 to obtain a copy of @ x P with
remainder homeomorphic to T (or ), simply because P is not Q x P dense homo-
.geneous. We have to make certain in our induction that we define a copy of @x P
in X with zero-dimensional closure in X. :

The proofs of the two main theorems are very similar; hence we will give only
.one proof (the more complicated one) in full detail, and give a sketch of the other.

5.1, TueoreMm. Let X be compact, and let A be a Borel subset of X whicl is not
the.union of a strongly o-complete and a countable subset. Then A contains « Cantor
set K such that K AxS and KNAR QX P.

Proof. Since A is a Borel subset of X, there exists a continuous surjection
«@: P — A. Put W = {x e P: there exists a neighborhood ¥, of x in P, a ¢-compact
subset E, of X, and a countable subset D, of A such that p[V]<E,, and D, L
U (ExA) is o-compact}. Then W is open in P, and there exist countably many
.open: V; in P, o-compact E; in X, and countable subsets D, of 4 such that W

w0

. . @
= Vi, o[Vil<E;, and D, U (ENA) is o-compact for each i & N.Then E = {J E,
i=1 w i=1
is g-compact, D = |J D, is a countable subset of A, D u (ENA4) is o-compact,
=1

and g [W]cE. Put F = PN\¢™'[E n 4]. Then F is a G, in' P, hence complete. We
claim that F is non-empty. Indeed, if ¢ '[E N A] = P, then AcE, hence N4
= (X\E) U (ENd) and (AN u D = (X\E) v (pu (ENA)) is the union of
a complete and a o-compact space. Thus A\D is the intersection of a complets
and a g-compact space, i.e., AND is strongly g-complete (Lemma 2.1); so A is
the union of a countable and a strongly o-complete subset, contradicting our
hypothesis on 4. So F # @. Also, if @ # U is open in F, say U= U' n F where
U is open in P, then ¢[U'] = ¢[U] v o[U\Ul=@[U] L E which is o-compact;
since U'¢ W, Ny ((([) [Ulv E)\A) is not o-compact for any countable N=d-
Since D is a countable subset of 4, and D U (E\A) is g~-compact, we have that

N U(p[UNA) is not o-compact for any countable NcA. Hence ¢[U] n A is not

the union of a complete and a countable subset. So by Theorem 4.3, };[U ] contains

e ©
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a Cantor set K such that K n A~ Qx C and K\A~P. Recall that M denotes the
set of all finite sequences of natural numbers. We will construct Cantor sets K.
in X, open subsets W, of F, and finite collections %; of open subsets of X, for eac];
se M and each 7€ N, such that the following hold: |

W) K=o lW,];
(2) for each ne N: @[W,,] n K, = G;
(3) for each n,me N: [W,,] n m =@
(4) for cach ne N: W, ,<W, (here closure is taken in F); ‘
(5 diam(I’Vs)§2"|s| (here the diameter is taken w.r.t. a complete metric
for F);
(6) diam(p[W])<27"9;
 (7) for each me N: d(K,, K, ,)<2t """,
(&) K,n A= QxC and KNA~P;
) B, = U {&,;: ls<i}=C;
(10) B;=U %;;
(D U el U
(12) {U: Ueu} is pairwise disjoint;
(13) diam(U)<1/i for cach Ue U;.

’ We proceed by induction on |s| and 7. First, put Wy = F; then ¢[W5] n 4
is not the union of a countable and a complete subset, so it contains a Cantor set Ky

© such that Ky n A= Q% C and Kp\A~xP. Put %, = {X}, then (1), (5), (6), (8),

(9), (10), (12) and (13) are satisfied since our metrics are bounded by 1. Next, sup-
pose that W, K, and %, have been defined for |s|<k and i<k, in accordance with
conditions (1)-(13). Fix s € M with |s| = k; note that by (1), K,ce[W,]. We will
first prove the following:

CCLAamM, K, U (@ [WINe W) is nowhere dense in @ [W ]

We distinguish two cases.

Case 1. Letye K, ﬁ[Ws], say y = @(x) with x € W, and let U be an open
neighborhood of y in @ [W,]. By continuity of @: W, —~ ¢@[W], there exists an open
neighborhood ¥ of x in W, such that @ [V]=U n o [W,]. Suppose Un @ [W]=K,.
Then @[V K, n A which is a-compact by (8). Since ¥ is open in W, it is open
in /7 osay V==V AF with ¥ open in P; then ¢[V']=@[F]ue[l"'\V]
e (K, n A)w I which is o-compact, and D U(((K; n A) U E)NA) = D U (ENA)
is o-compact, But V& W, a contradiction. Hence (U n @ [W,D\K, # &.

Case 2. Let p E;;fﬁ;;j\(/)[w‘], and let U be an open neighborhood of y in
PIW,) Then U o[W,] # @, sayze Un W] If z ¢ K, we are done; if ze K,
then ze K, o p[W,], so (U o[WD\EK, # & by Case L.

[
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By the claim, we can apply Lemma 2.5 to K, K, (p[WINe W] and
@ [W.] to obtain a countable discrete subset D = {ysn: ne N} of @[WINK, such
that D, = D, u K, and d( 3, K277 for each neN. Of course, we may
assume that D= {J %,. The sets W, (neN) satisfying (2)-(6) are 'now defined
exactly as in the proof of Theorem 4.2, with the additional requirement that
@[W, 1= U %, for each n e N. Since ¢ [W,,] N A is not the union of a complete

and a countable subset, @[W,,,] contains a Cantor set X, such that K, , n4
~QxC and K, \NA~P; (7) follows easily. As in the proof of Theorem 4.2, we
can show that U {K,,: |s|<k,ne N} = By, ~C; note that By,  =U %. Lot ¥~
be a cover of B,..; by disjoint clopen subsets of By, of diameter less than 1/(k+1).
By normality, there exist open subsets ¥ of X (for ¥ ¥"), which can be taken
to have diameter less than 1/(k+1), such that ¥/ ~ By = Vand ¥ = {V': Ve 7}
is pairwise disjoint. Again by normality, we can shrink ¥ to obtain an open cover
Uy of By, satisfying (10)-(13). This completes the induction. Now put X

= (U B)~; we claim that X is as required. Clearly, K is a compact space without
=1

isolated points. Also, from (10) and (11) it follows that K= U {U: U e %} which
is a pairwise disjoint closed cover of K by sets of diameter less than 1/i; hence
{UnK: Ue,; ieN}is a clopen basis for K, so K is zero-dimensional. Thus

K= C by Theorem 2.2(z). As in the proof of Theorem 4.2, we have that K\(iU B)
© v
c@[P] = 4, whence K\A = |J (B\A). Fix i € N. Clearly B\A is closed in K\A4;
i=1

since B, is nowhere dense in B, by (1), (6) and (7), and since B4 is dense in B,
by (8), also B4 is nowhere dense in B;.,\A4. From (2), (3) and (8) it follows that
Bind= {K,ndA4: |s5|<i} is a countable disjoint union of closed copies of
Qx C, whence B; n 4 is also o-compact, nowhere countable, and nowhere locally
compact (see the argument in the proof of Theorem 4.3, showing that B~ @ x C) and
thus homeomorphic to @ x C by Theorem 2.2(d); hence BN\A=P since B; N 4 is

dense in B;. So K\AxQxP by Theorem 2.2(e). It remains to be shown that '

Kn A~S. By Lemma 2.4, K n A is a zero-dimensional nowhere o-compact space
which is the union of a o-compact and a complete subspace. Now suppose U is
open in K A; then for some ieN, UnB,=UnB nA#>. Since B n
NA=QxC, UnB;n A=QxC; so U contains a closed copy of @xC. By
Theorem 4.2, U is not the union of a countable and a complete subset, so by The-
orem 2,3(a), Kn A~S. W

5.2. THEOREM. Let X be compact, and let 4 be a Borel subset of X. Then A is
the union of a countable and a strongly o-complete subset if and only if A does not
contain a closed copy of S.

Proof. Suppose 4 is the union of a countable and a strongly o-complete

o
subset, and suppose S'<A4 is a closed copy of S. Then S’ = Fu {J Gy, where
=1

e ©
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. H i
F is countable, and @, is a closed and complete subset of {J G;. Then GAG,cF
) ) ‘=1 1 i >
so G; is the union of a complete and a countable subset; the same is true of {x}

w0 o

(" - 2] - [ &l LA - M

for each xeF. Hence § -lU] GiuxUF{)s} = U1Ai’ where each 4, is closed
= " i=

in S and the union of a countable and a complete subset. From the characterization
of § it follows that cach A, is nowhere dense in S', contradicting the fact that S is
Baire. The other implication follows immediately from Theorem 5.1. B

We now come to our last Hurewicztype theorem.

5.3. Tunorem. Let X be compact, and let A be a Borel subset of X which is not
strongly o-complete. Then X containg a Cantor set K such that Kn AT and RNA
m=QxP.

Proof. Let ¢: P A be a continuous surjection, and, as in [10], put W
= {x & P: there exists a neighborhood Vi, of xin P, and a o-compact subset E,
of X such that ¢[V,]<E,, and ENA is g-compact}. Then @[W]=E for some
g-compact subset E of X with the property that E\A is also o-compact. Put F
= P\@"!'[E A} I Fis empty, then ¥\d = (X\E) U (E\4) is the union of
a complete and a ¢-compact subspace and hence 4 is strongly o-complete by
Lemma 2.1, a contradiction. So F # @. If @ U is open in F, say U= U'NF
where U’ is open in P, then ¢[U'] = @[U]u (p[U’\U]c?p_[F]uE which is
g-compact; since U'¢ W, _aﬂ:l_ since E\A is o-compact, we have that E[TJ—]\A
is not ¢-compact whence ¢[U] n 4 is not complete. So by Theorem 4.1, ga_[_lﬁ
contains a Cantor set K such that X n A~Q and K\4~P. Now define X,, W,,

and %; as in the proof of Theorem 5.1 such that conditions (1)-(7) and (9)-(13)
are satisficd, as well as;

(8 Kyn A~ Q and KNARP,

(The only major difference with Saint Raymond’s proof is the addition of tlie
hypotheses (10)-(13).)

) =2}
Again, we defing K = (‘IU B,)", and prove that K=~ C, KN( U B)co[P] = 4,
] i=1

and K\ x Q% P. So all that remains to be shown is that X n 4 ~=T. By Lemma 2.3,
K d is o zero-dimensional nowhere o-compact, nowhere complete space. Also,

3l w o

Knd=(UB)" nd=KJ(UB)v U(B; 4.
Lt =1 =1

s o

Since |J B; is a-compact, K\( U B)) is complete; and B, n 4 = U {K, n A4: |s| <i}
1= 1= @

is a countable union of copies of @ by (8"), hence (J (B; n 4) is countable. So
1=1

KA is the union of a countable and a complete subset; by Theorem 2.3(b),
Knd=T W
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5.4. TueporeM. Let X be compact, and let 4 be a Borel subset of X. Then A is
strongly o-complete if and only if A does not contain @ closed copy of T.
Proof. Suppose A4 is strongly ¢-complete, and suppose T'cA is a closed
o

copy of T. Then 77 = U 4;, where each A, is complete and closed in 7. Since
i=1

T is nowhere complete, each A; is nowhere dense in T, contradicting the fact that
T is Baire. The other implication follows immediately from Theorem 5.3. B

6. Topological characterizatiens of 0xS and O xT. Throughout this section,
o denotes the class of all zero-dimensional spaces which are the union of a strongly
o-complete and a o-compact subspace, and which are nowhere the union of
a complete and a o-compact subspace, and nowhere the union of a countable
and a strongly o-complete subspace. Similarly, 2 denotes the class of all zero-
dimensional spaces which are the union of a strongly ¢-complete and a countable
subspace, and which are nowhere the union of a complete and a countable sub-
space, and nowhere strongly o -complete.

The following theorem shows that both # and 2 are non-empty.

6.1. THEOREM. O xSe A and QxTe 4. .

Proof. Write S = Fu G, where F is o-compact, and G is complete. Then
oxS= U {g}xF) v U{g}x0). Since each {g}xS is closed in @xS,

€ qe .
U ({q};GQ) is strongly UQ-complete, and U ({g}x F) is o-compact. Let & # U
aeQ

ae . €
be open in Q xS, and suppose & # Uy and @ # U, are clopen subsets of Q and S,

respectively, such that Uy x U, < U. Since U,~Q and U,xS, U contains a closed
copy of @ xS, and thus also a closed copy of S. By Theorem 5.2, U is not the union
of a strongly o-complete and a countable subspace; hence QxS is nowhere the
union of a strongly ¢-complete and a countable subset. In particular, Uy x U; is
nowhere the union of a countable and a complete subset, and nowhere o-compact;
s0 if U is the union of a complete and a o-compact subset, then so is Uy x Uy, and
hence Uy x U,S. But § is Baire, whereas clearly @ xS is not. So @x S is nowhere
the union of a compléte and a c-compact subset. Hence QxSed. The proof
that QxTe 2 is similar; we apply Theorem 5.4 instead of Theorem 3.2 to prove
that @ xT is nowhere strongly o-complete. M

The results from Section 5 now enable us to show that the above properties
completely characterize @x S and OxT.

6.2. THEOREM. Up to homeomorphism, A" and 2 each contuin only one element.

Our argument heavily relies on the following instance of a theorem from [8]:

6.3, THEOREM. Let A & {S,T}. Then Qx A is the unique spdce which can be
written as a countable union of closed subspaces A, (i€ N) such that each A; s
homeomorphic to A and a nowhere dense subset of Aijry.

0

L o
Proof of Theorem 6.2. Let Xe o, say X = UF,u UG, where each
i=1 i=1
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. . ©
Fyis compact, and each G, is complete and closed in {J G,. Then GAG,=F = G F
t 13 - i
i=1 i=1

wlhlch is o-compact, Su_me. G;is a Gy in G;, GN\G, is an F, in F, hence GG, is
also g-compact. Thus G; is the union of a complete and a o-compact subset; the
;
® 5

. w0 @PD
same is true of each F,. Hence X = ) F,u UG, = U 4;, where each A4, is
i is i .
i=1 =1 i=1 S

cl.oscd in X and the union of a complete and a g-compact subset. Since X is zero-
dunm}sim‘ml, we can find a disjoint clopen cover @ of X\4, such that for each
D e, diam(D)y<d(D, A,). Since D is not the union of a cour,xtable and a strongl

o-;complctc subspace, it contains by Theorem 5.2 a closed copy S(D) of S I;éui
Xy = A 0 U S(D). Clearly, X, is closed in X, Write S(D) = F(D)u C.?(D),

Ded

where (D) is o-compact and G(D) is complete. Then |J F(D) is o-compact, and
Dea ’

DE—L) (D) is complete since 9 is clopen and disjoint. Since 4, is also the union of’

a complete and a ¢-compact subspace, so is X,. To show that X, ~S, we must
prove that it is nowhere o-compact, and nowhere the union of a1 con;plete and
Fountable subspace. Since S(D)~ S for each D e @, and since S(D) is closed in X

it suffices to show that UnDE)gS(D) # @ for each non-empty open U in X;. Slc;

suppose to the contrary that some non-empty open subset U of X, is contained
in Ay, say U= U"nX; where U’ is open in X, and let xe U. Let 6>0 be suchr
that B(x, g)<U’. Since X is nowhere the union of a complete and a o-compact
space, B(x,$¢)d=4y, whence B(x,4e) n D # & for some DeP. Since diam(D)
< (D, A;)<}¢ for this D, we have S(D)cDcB(x, &)= U’, and S(D)cU’ n X.

= UecA; which is impossible. Thus' X ~ S, and from the above argument it alscl)-
follows that 4, is nowhere dense in X;. Now replace 4, by X; U 4, and construct.
a closed copy X, of S in X such that X U A4, is nowhere dense in X,; in general

we can find closed copies X; of S in X such that X; is nowhere dense in X, anci.

Aje Xy, for each ie N. Then X' = U X, and X~ QxS by Theorem 6.3.
=1
Now suppose X &.%; asin the proof of Theorem 3.2, we can write X" = 6 A;,
i=1

where cach A; is closed in X and the union of a complete and a countable subset.
Now follow the same line of argument as above; the closed copies T(D) of T'in D
can be obtained from Theorem 5.4 and the fact that X is nowhere strongly o~com-
plete.

Using the characterizations of Theorem 2.2 and 2.3, it is easily seen that the
properties characterizing Q%8 and @ x 1" cannot be weakened; also, they show
that Ox P, S, T, @x S and Qx T are pairwise non-homeomorphic.

Appendix: A topological characterization of T. Let & denote the class of all
zero-dimensional spuces which arc the union of a o-compact and a complete sub-
space, and which are nowhere g-compact, and nowhere the union of a complete
and a countable subset. Let & denote the class of all zero-dimensional spaces which
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are the unjon of a countable and a complete subspace, and which are nowhere
o-compact and nowhere complete.

Theorem 2.3 states, that & and 7~ each contain only one element, up to homeo-
‘morphism. For the class & a proof of this fact was given in [9]. A proof for the
«class 7~ was given by van Douwen ([4]); since our proof for g is very similar to
‘that for &, we first sketch the proof from [9].

A.l. Lemma (9], Corollary 5.2). Let S<C be dense such that Se&. Then
there is a sequence P, (ie N) of closed and complete subspaces of C\S such that
for dll ie N:

1) PicPiyy, and‘ U P, = C\S;
=1

|

(2) P, is nowhere dense in Py 3
(3) PaP,xQxC.
A2. Lemma ([9], Theorem 2.3). Let K, L=C be dense copies of QxC, and

let >0 be given. Then there is a homeomorphism ¢: C— C such that o[K] =L
and d(g,id) <e.

A.3. TueorEM ([9], Theorem 5.3). Let Sy, ;< C be dense such that Sy, S, € &.
Then for each &>0 there is a homeomorphism @: C — C such that @[S;] = S and
d(p,id)<e.

0 @

Proof of Theorem A.3. Write C\S; = UP(1), C\5, = U P;(2), with

=1 i=1

P1), P{2) as in Lemma A.l. Using a Bernstein-type argument, define for each
ie N homeomorphisms };, g;: C - C, such that ¢ = lim gitohyoaogitoly

n-a
is a homeomorphism and such that for some sequences of natural numbers 1 = m,
<my<..and n;<ny<.. we have:

M gt ehogitiohqooegrtoh[Pu_,(D]=P, ()
(2) gi—l ohyo gi——11 ofljeg oo 91_1 ° hI[Pmi(l)]:Pni(2>;
) if kzi+1, then gyt o Blgi o hyo o git o [Py, (D] = id.

Then @[C\S,] = ¢[C\S;] and hence §;~S,. Conditions (1) and (2) can be
satisfied using Lemma A.2. H

Now the proof for 7 is exactly the same once we replace & by 7 and @ x C
by Q. Lemma A.2 with Q instead of @ x C can be easily proved using the fact that
C is countable dense homogeneous (see e.g. [S], Exercise 4.3H): il ¢>0 is given,

n

we can write C as a finite disjoint union {J C;, where cach C; is a clopen subsct

i=1 &

of C of diameter less than ¢; then if K, L are two dense copies of @ in C, we can
n

find autohomeomorphisms ; of C; such that 2 [Kn C)] =L C,. Then = {J I,
i=1

is an aytohomeomorphism of C, #[K] = L, and d(h, id)<e.

icm
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Hence to complete our proof, we only have to prove the analogue to Lemma A.1.
A.4. LEMMA. Let T C be dense such that Te J. Then there is a sequence P;:
(ie N) of closed and complete subspaces of C\T such that for all ie N:

(1) PicPyy amiig Pi'm C\T;

(2) P, is nowhere dense in Py, ;

@) PAP~Q.

Proof. Since C\T~Qx P by Lemma 2.4, there exist complete closed sub--
spaces B, of (NI such that C\T = G E,. Fixie N. Since ENE; = E;n T is-
a closed subset of T, it is the union of ;:clom_plete subset G; and a countable subset.-
Hence ENG, is o-compact, say ENG, =1D1 K(i, J), where each K(i, ) is compact,-

and K(f,/)\E; is countable. Put {M,: ne N} = {K(,)) n E;: ie N, je N\N{@}
Then each M, is closed in C\T' and contained in some E;, hence complete,
and M, \M, is countable for each ne N. Put R, = M,. By Lemma 2.5, there
exists a countable discrete subset D of (C\T)\R; such that D = D'u R, (note
that R, is nowhere dense in C\I since Q X P is nowhere complete). For each x € D,
choose a clopen neighborhood ¥V of x in C\T"such that ¥V, n R, = @, and such-
that diam(V,)<d(x, R,), and {V,: xe D} is pairwise disjoint. Since C\T is no-'
whete o-compact, V, is a Borel subset of ¥, which is not an F, in ¥,; hence by’
Theorem 4.1 there exists a copy C, of the Cantor set in ¥, such that C,.n V,~P"
and CN\V,~Q. Put K; = | C, U R,. We claim that K;~C. Indeed, suppose’

xeD

ye (U C':j\( U Cy, say y = limy,, y,&C,,. Since y¢ U C,, and C, is closed-
xa D xaD n-reo . xeD
for each x e D, we may assume that x, # x, if # # m. By compactness, (x,), has-

a convergent subsequence (%), say lim X,y = x. Then since D= DURy,
k-0

x must bo in Ky, and since diam(V,,,) <d(*,y,» K1), als0 yug9 — x. Hence ye Ry

< K, so K, = K,. Since X, clearly does not contain any isolated points, K, ~C

by Theorem 2.2(2). Now put Py = K{ A (C\T). Then P, is complete since K;\Py

= | (CNV) v BN\R =@ is an F, in K;; also Ry is nowhere dense in P;. Now’
xald

replace R, by Ry = Py U M, and construct P, likewise. Proceeding in this manner,
we obtain complete subsets P, of C\T containing M, such that R, = P, i UMg-
is nowhere densc in £,. Then {P;: ie N} is as required. M

A.5. ToeoriM. Let Ty, To=C be dense such that Ty, Ty 7. Then for edcht
e>0 rthere is a homeomorphism ¢: C — C such that @[Ty] = T, and d(e,id)<e.

Proof. Same as the proof of Theorem A.3. W

From Theorem A.5 it not. only follows that J contains only one element (up
to homeomorphism), but also that C is T dense homogeneous. By Lemma A.2
and Theorem A.3, C is also @ x C dense homogeneous and S dense homogeneous.
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Hence, in Theorems 4.3, 5.1, and 5.3, the partition of the Cantor set K in a cop
of 0% C and a copy of P (resp. S and @ x P, resp. T and Q x P) is unique. Inother
words, given a Cantor set K = K; U K,, where K, rQxC, K,~P, and K; 0 K,
= @, then in any compact space X containing a Borel set 4 which is not the union
of a complete and a countable subset, X can be embedded in such a way that
KndA =K, and KN4 = K,; similarly for the cases of Theorems 5.1 and 5.3.
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