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IL?-behaviour of the integral means of analytic funetions

by
M. MATELJEVIC and M. PAVLOVIE (Beograd)

Abstract. Various results on IL?-behaviour of power series with positive coeffi-

cients are extended to Lipschitz spaces. For example, we have a characterization

" (decomposition) of these spaces, which enables us to describe an isomorphism of

a Lipschitz space onto a solid sequence space and to egtablish new connections hetween
some classical inequalities concerring Hardy spaces.

1. Introduction. In [15] we have considered some theorems on LP-be-
haviour of power series with positive coefficients and their applications
to H? spaces. In this paper we continue the investigation in this direction.
First we introduce some notations and then we list some known results
from this srea.

Throughout the paper let f(2) = > a,2" be an analytic function

n=0 .
in the open unit dise. Unless specified otherwise, the letters p, g, r, ¢ denote
numbers satistying 0 < p, ¢<< 0,0 <r<1, 0 < a< oco. The letter ¢ al-

ways denotes a non-negative increasing function defined on (0, 1] for

which

{1.1) p(r) < Ofp(r), O0<t<1,
and

(1.2) plr) = 0 Pelr), 0<t<1,

where ¢ and 8 are positive real numbers. Note that 8> o> 0.
We use the usual notations for the integral means of f:

2
1 y
M(r, ) = 5= [ 1P, p< oo,
0

Meo(ry f) = sup 1 (re™)l,
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and we write
1l = sup My(r, ).
r

For our purposes it is convenient to introduce the class X = H(p, ¢, ¢)
of functions f for which F e L%(0, 1), where

F(r) = (1 —r)"p L —r)My(r, f)
and L%(0, 1) is the usual Lebesgue space. The norm in X is given by

Ifllx = IFlza-

If @ (r) =+, we write H(p, ¢, o) instead of H(p, ¢, ¢). An account of the
properties of H(p, ¢, a) may be found in [5]. . ‘

Since Mi(r,f) = Xla,/*r™®, various results on IL®-behaviour of
power series with positive coefficients may be expressed in terms of the
spaces H(2, ¢, a). We begin with a result of Hardy and Littlewood [7],
Theorem 3.

THEOREM (HL I). Let ¢ < 2. Then f € H(2, q, o) implies
(1.3) {(n1)"er12=1ag 1%  e12,

If q=2, then (1.3) implies fe H(2, q, a).

Askey and Boas [1], Theorem 2, have proved the following stronger
result. -

THEOREM (AB). The function f is in H (2, q, a) if and only if

{n+1)" " s, llebng €79,
where

n
su(?) = suf(2) = D) 2",
k=0
In [15] another characterization of H (2, q, a) is given.

THEOREM (MP). Let I, = {0}, I, = {k: 2" ' k< 2"} (mn =1,2,...)
and ; ‘

An(z) = An.ﬂz) = Zakz".

kel,,
Thenfe H(2,q, o) if and only if

27 N dplledrn, €17
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The first implication in Theorem (HL I)is an immediate consequence
of the inequality

(D) =@ = 30", 0<p<1,

n=0 n=0
and may be used (cf. [6]) to prove the following result of Hardy and
Littlewood [4], Theorem 6.2.

TeeoREM (HL II). If feH?,p <2, then
D (1P a,|? < co.

Indeed, this theorem follows from Theorem (HL I)and the inclusion
HP < H(2,p,1/p—1/2), p < 2, which is & special case of another theorem
of Hardy and Littlewood [4], Theorem 5.11.

TEEOREM (HL ITI). Let p < g < oo, 8 2 p. Then
HP = H(q,s,1/p—1/q)-

It is the aim of this paper to extend Theorems (AB) and (MP). The
main results are Theorems 2.1 and 2.2. Using some elementary inequali-
ties, we prove that

(1.4) {p@ " dullp}n-0 € ¥

is a sufficient condition for f to belong to H(p, ¢, ¢) (see Theorem 2.1 (a)
below). Applying the Riesz projection theorem, we prove that condition
(1.4) is also necessary in the case1 < p < co(Theorem 2.1 (b)). The counter-
esamples given in Section 4 show that this equivalence does not hold
for the extreme values of p (p =1 or p = oo). However, Theorem 2.2
gives a characterization of H(p, ¢, ¢) for 1 < p < oo in terms of the (C.1})
means of 3 a,2". From Theorem 2.2 we derive a generalization of Theorem
(AB) (Theorem 2.3). An easy consequence of Theorem 2.1(a) is Theorem
(FIL IIT) (see Corollary 2.1).

We briefly discuss some applications of Theorem 2.1 to multiplier prob-
lems. (A more complete discussion will appear in [16].) Using only The-
orem 2.1(a) and Khintchine’s inequality, we show that the smallest solid
superspace containing H (p, ¢, ¢), for 2 < p < oo, is H(2, ¢, ). A profound
result of Kigliakov [12] and Theorem 2.1(a) show that this is also valid
for p = oo.

Theorem 2.1(b) and a classical result on interpolating polynomials
enable us to describe an isomorphism of H(p, ¢, »),1<p < oo, onto
a solid sequence space (Theorem 2.6). As a corollary we have (for L <p
< oo0) Lindengtraugs—Pelezynski’s result [13] that H(p,p,1[p) is iso-
morphic to 7.
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In Section 3 we give further consequences of the main results. Theorem
3.1 generalizes Theorem 2.1 to the fractional derivatives of f and as a
special case includes a stronger version of a theorem of Sledd [18], The-
orem 3.2. Section 4 is devoted to the proofs of Theorems 2.1 and 2.2.

2. Main results. For a positive function y defined on (0, 1] we denote
by HA(p, ¢, v) the space of those functions f for which

4= {p@7")Mnlptime €17

We define the norm in ¥ = HA(p, g, ) by

Iflly = A

In the case w(r) =+ for a real number B we write HA (2,4q,8)
=HA(p, q, y).

THEOREM 2.1. (2) HA(p, ¢,¢) < H(p, q, ¢).

(b) Hp,q,¢) = HA(p,q,9),1 < p < co.

() H(1,q,9) < HA(p, q, ¢), p<1.

(d) If p <1 or p = oo, then inclusion (a) is proper.

An ingpection of the proof, which is postponed to Section 4, shows
that all the inclusion mappings in (a), (b), (c) are continuous. Thig means,

for example, that for X = H(p,q,¢), ¥ = HA(p, g, p)and 1 <p < oo
we have .

O7flx < Ifle < Cflix-

Here and elsewhere the letter (¢ denotes a positive congtant which. de-
Dends only on p, g, a, 8, @, v and need not be the same on each, occurrence.
COROLLARY 2.1. Theorem (HL III).

Proof. In the usual way (cf. [4], p. 87 ) the theorem reduces to the
cage p =2. Let feH”, 2 <q< 00,822 and a = 1/2—1/g. Then
14ally < N4 ALNET < (277 | 4,,) 04,32 = 2m2) 4, ],
Hence

i co
227 4e< 34,8 < oo

n=0 n=0

ThusfeH4 (9, s, o) and, by Theorem 2.1 (&), fe H(q, s, a).
In Section 4 we shall prove the following characterization of H ( D, g,y P
{See also Theorem 5.1.)
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THEOREM 2.2. Let 1< p< co. Then feH(p,q,p) if and only if
(2.1) {o{1/(n+1))(n+1) "o, lp} im0 €17,
where ‘
{ n
0,(2) = 0,f(2) = Z(l —kj(n+1))a,2".
k=0
As an application of Theorem 2.2 we prove the following general-
ization of Theorem (AB). ‘ ‘
TasorEM 2.3. Let 1< p< co. Then feH(p,q,p) if and only if

2.2) {o (1) (n+1)) (n4+1)"e s, L} om0 € 12

Proof. The implication (2.2)=feH(p, q,¢) follows from Theorem
2.2 and the inequality {logll, < 8,40, 2 = 1, [19], Ch. Iv, p 1{&5.
Let feH(p,q,¢), 1 <p< co. By the Riesz projection theorem

[19], Ch. VII, Theorem 6.4, oy, > Clisn0onllp- Hence

. 2 ,
Hgﬁnup = o] lsn_ msn

¥4
L

> 0lsaly— gy 194)

>0 (Isalo— gy fsls) > 01l

ivhere we have used Bernstein’s inequality [19], Ch. X, Theorem 3.15,
in the form [isy[, < nli8,lly, » > 1. Now the desired result follows from

Theorem 2.2 and inequality (1.2). )
A further consequence of Theorem 2.1 is

TeEOREM 2.4. If fe H(2,4q,p), then for almost every choice of signs
{en}, the function g() = > e, a,2" belongs to H(p, q, ) for all p < oo.
Proof. Let f e H(2, ¢, ¢). We have to prove that mes(T) = 1, where

T = {t: fieH(p, q,p) for all p < oo}y
file) = D) a,Bu ()"

and R, are the Rademacher funetions on [0, 1]. To prove this we use
the inequality

(2.3) [ 14,uf 1,0 < C@) 1 4alay P < o0
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‘which is an immediate consequence of Xhintchine’s inequality. We assume
that C(p) > 1. Put

Top = {t: 145l < O(py*+ 14ulle}s  @>0.

Since feH(2,q,9) =HA(2,q,¢), it follows from the dcfinition -of
T, and Theorem 2.1 (a) that

(2.4) I'> N1, foral z>0.

P <co

On the other hand, using ineguality (2.3), it may easily be scen th@t
mes(T,,)=1—~C(p)y® &>0.

Applying this to relation (2.4), we conclude that

mes(T)=1— D'0(m)y™® for all 3> 0

m=1

and consequently mes(7) > 1. This concludes the proof.

A_sequence space 4 is called solid if {a,}e A and |b,| < |a,| for all
n > 0 imply {b,} € A. Regarding H(p, g, ¢) a8 being a sequence space
we have ’

COROLLARY 2.2. The smallest solid space containing H
B<p < ois HE. g q) g H(p,q,p) for

In fact, a much stronger result is valid.

TeBOREM 2.5. The smallest solid space comiaing ?
| & ing H(co, q,p) s
H (2,vq, cp)7; Moreover, if feH(2,q, p), then there is a sequence j{bn’} such
that X b,2" € H(oo, ¢, p) and |b,] > |a,| for all n.> 0. '

- This is an easy cousequence of Theorem 2.1 and the f i §
found result of Kisliakov [127. © IOAHOWJHg e

THEOREM (K). For any sequence {a,}¢_,. (0 < m < 1) there is a poly-

n
nomial k() =h=2,;. bpd" satisfying |by > lay) for m < % <n and
k3
Pl < O ( 3 lagf2}p.
l=m

‘We finish this section by showing that the g
Ve : ] pace H(p, ¢, ¢) for 1 <
< oo is isomorphic to the space I(p, ¢) of those sequences {én},ﬁ“;o for whicll:z

{(kf;: |bk¥”)1/p}:=0 el

The norm in I(p, q)‘ is defined in an obvious way (ef. [11]). We point out
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that I(p, p) = IP. We shall generalize the case 1 <p < oo of the following
result of Lindenstrauss and Pelezyriski [13].

THEoREM (LPe). The space H(p, p,1[p), 1< p < oo, is isomorphic
to 1P.

Although our method does not work in the cases p =1 and p = oo
we can explicitly describe an isomorphism of H(p, q,¢) onto I(p, q).
‘We need

Leyma 2.1([19], Ch. X, Theorem 7.10). Let e, = exp (27 /2™ 7YY,
n>=0and 1 <p < oco. Then

O 1A, <27 3 14u(e)P12 < 014,
kely,
THEOREM 2.6. Let 1 < p < o and U(f) = {by}neo, where

blc — (P(g—n)z—n/pdn(ez), kel,.

Then U is an isomorphism of H(p, q, ¢) onto 1(p, q).
Proof. Let X = H(p,q,¢) and Z =1(p, q). Theorem 2.1(b) and
Lemma 2.1 show that U(X) <« Z and, moreover,

CHflx<IU)llz < ClUFllx-
Tt remains to be shown that Z « U(X). Let {¢,}n, € Z. Since
card{ef: kel,} =2"", =nx>1,

there is a sequence {,}, of polynomials such that h, is of degree onl 3
and h,(eX) = ¢, for k e.I,, n>1. Then {o,} = U(g), where

9(2) = G+ X o272 T Ry ().

n=1
This completes the proof.
3. Some applications to H? spaces. Theorem 2.1 enables us o establish

a connection between some classical inequalities concerning H? spaces.
The following result is due to Hardy and Littlewood and may be found

in [8].
TEROREM (HL IV). Let p <2< g < oo and f(0) = 0. Then

1
[ =m0, far < Olfl,

1
IFIE< O [ (L —n)My(r, fdr.
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A consequence of the well-known theorem of Littlewood and Paley
[19], Ch. XV, p. 233, is

THEOREM (LP). Let 1 < p <2< ¢ < oo. Then

DA< 0Nl and RSO D45

N==0 n=0

It has been shown by Sledd [18], Theorem 3.2, that Theorem. (LP)
may be sharpened in the following way.

TEEOREM (S). Let 1 < p <2< g < oo. Then

0 1
(31) Dl <O f @—nMyr, f)ar
n=1 o
and
1 )
(3.2) [ @=nagyr, frar <0 3 14,02
0 n=1

We shall prove that the conditions » <2 and ¢ > 2 are superfluous.
More precisely, we have

PrOPOSITION 3.1. The inequalities (3.1) and (3.2) are valid for 1 < p
<o and 0 < g < oo, respectively. If p <1, then

0o 1
DI < € [ @—n M, far.
n=1 0
Combining this with Theorem (HLIV) we obtain the inequality

D I4E<CIfIE, p<1.

Proposition 8.1 is a consequence of the following more general fact.
Here f'*! is the fractional derivative of f, i.e.

o T K

n=0

TumorEM 3.1. Let X=H(p, q,¢), ¥= HA(p, ¢y9) Z = H(1, ¢,9)

where y(r) = @(r)r~". Then (fP)x < Clflly for all p; |flly < OIf®|x
Jor 1< p< oo; |Ifly < Ol |, fojp<1. i 23 e 1770

For the proof we need the following lemma.

©

o
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n
Lumma 3.1, Let k(z) = 3 62", 0 <m < n. Then

k=m
[Bll,r™ < My (r, B) < [Rllpr™.
Proof, It is easily seen that
My(r, h) = Mp(1)r, 9",
where

g(z) = Z @, 2" x.

k=m

Since ¢ is a polynomial and 1/r > 1, we have
Mp(l/’r7 g) = Mp(1! g) = ”h”p~

This proves the left-hand side inequality. The rest of the proof is similar.
Proof of Theorem 3.1. Let

E,(f) = sup(L—rfH My (r, 4F), n>0,8>0.
»

Then, by a result of Hardy and Littlewood [9],
(3.3) 07 K, (0) < Eo () < CK,(0).
On the other hand, using Lemma 3.1, it is easily proved that

07K, (B) < 27"C+V |47, < OK,(B).
Thus
(34 . 0712 | 4,ll, < 148, < 02 |4y
Now the desired result follows from Theorem 2.1.
We remark that, for p > 1, inequality (3.4) is of an elementary char-
acter and can easily be proved by standard arguments (without appealing

to (3.3)). Namely, if p > 1 and > 0, we apply Minkowski’s inequality
(in continuous form) to the relations

1

I(B) An(e") = [ (L —1)7* 40 (re) r,
[

27
ZTCA,[f](’i"eﬂ) — Iv(ﬁ+1)f An(ei(t"-s))(l~7‘e"is)_ﬁ'1d3
0
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and obtain
1
14,1, <O [ (=1 My (r, A7) dry
o

My(r, AP < O =) | 4]l
These estimates together with Lemma 3.1 give inequality (3.4).
Combining Theorems 2.1 (b) and 2.3 with Theorem (HL III), we
obtain
TemoREM 8.2, Let p < oo and g > max {1, p}. Then

(3.5) - Slontri=yi4, 0 < OIf I
=0
and
(3.6) D (1712 s, 8 < OIS
n=0

In the case p > 2 inequality (3.5) is weaker than the inequality

)

N 142 <0lflg, 2<p< oo

=0

This is a known result of Littlewood and Paley [19], Ch. XV, Theorem
4.22, and can be derived from the inequality

[ @=nr a3, fYar < OIfIf,  2<p < oo,

by use of Theorem 3.1. The last inequality is also a result of Littlewood
and Paley [19], Ch. XTIV, Theorem 3.24.

It may easily be proved that the dual of H4(p, ¢, B),forl < p, ¢ < oo,
is HA(p', ¢’y —B), where p’ and ¢ are the conjugate indices of p and ¢.
The pairing is given by

(f: g) = Za’nbn'

==l

Using this duality and inequality (3.5), one ean prove that

(3.7) <0 > 2melg,p, 1< g<p < oo.

=0

An immediate consequence of (3.7) and Theorem 3.1 is the following
result of Flett [6], Theorem 1.

e ©
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COROLLARY 3.1. Let 1 < g <p < ¢o. Thén
If1E < € [ (1—r) a2 Mg (r, ) dr.
0

Now from Theorem 2.3 and Corollary 3.1 it follows that

(88 IfIR<0 Y (A1t sE,  1<g<p< oo
n=0 " . o

TFrom these various inequalities one can deduce some extensions of
Theorem (HL II). For example, taking ¢ = 2 in (8.6) and (3.8), we obtain
the following result of Holland and Twomey [10].

COROLIARY 3.2. Tet A, = 3 (k1) e, Then
k=0

©0

D) AR<ONE i p<2,

n=>0

and
ifz<c Y4142 i 2<p< oo
. n=0

Tinally, we remark that a number of inequalities, including the (0.1)
means, can be proved if we use Theorem 2.2 and Hardy-Littlewood’s and
Littlewood-Paley’s results. An example is the inequality

S 1o B < O, P <1,

=0

which is a consequence of Theorem (HL IIT) and Theorem 2.2.

4. Proofs of the main results. The proof of Theorem 2.1 is based on
Li-behaviour of the functions

Fy(r) = (L —r)""gp(1—r)sup Pr?™: m > 0}
and ' i

Po(r) = (L—1) gL —1) > 2",

n=0

where {4,} is a sequence of non-negative real numbers.
PROPOSITION 4.1. Let B = T or B = Fy. Then

07 1P lize < Mo (27" Audllhe < 1H e

Tor the proof we need some lemmas.

3 — Studia Mathematica 77.3
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LEMMA 4.1, Let w(f) = ()%~ where ¢ < oo, ga—&> —1 and
a satisfies condition (1.1). Then
1

o y(Lfn) < [y —r)riar <Oy (1/w),
¢

rz=1.

Proof. We have

L @
I@):= [y —r)ar = o7 [yllo)—tja)fdt.
0

0

Since ¢ satisfies the conditions (1.1) and (1.2) we have
p(tfe) < 0@+ 1) (1/2), Bz a),

and consequently

O<t<m

I(z) < Oz yp(tfo) [ (80" (L —1 o)~ @t

< Cx~ty(lfx).
This proves the right-hand side inequality. The left-hand side in-

equality is easy and does not depend on the conditions (1.1) and (1.2).
TevMA 4.2, Let w(r) =)r % ce<a and o satisfies (1.1). Then

O lp(lfz) < s1r1pw(1 —)rPiL Oy(lje), w=1.

The proof is similar to that of Lemma 4.1.
Besides these lemmas we shall uge the familiar estimate
D < or(L ),

n=0

(4.1) g>0.

Proof of the proposition. We shall consider only the case ¢ < co.
In the case ¢ = co the proof is similar and is baged on Lemma 4.2.
Let ¢ < co. Then

Fys B () > (L—r) gL —r)au?™  for all &
and, by (4.1),

F(r)z 0 lp(l—r) 22"4*2"1,‘4‘2’"'“,

el
Hence

(4.2) Fr)z= 0ol —r) Zgnzmwlw)_

R

icm®

On the other hand, from Lemma 4.1 and hypothesis (1.2) it follows that
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1
[ o —nu"@Mir > 072 g (27).
(1]

Combining this with (4.2), we obtain the right-hand side inequality in
Proposition 4.1.
Mo prove the left-hand side inequality, let

5,2n—1 _ o—nd an—1
Nn = 2" H 6, =2 Ap? H

where § = a/2 and « satisfies (1.1). Then

(3 2 = (S

n=0 n=0

0

< (Zm}qg 0%

n=0

<O0@—ry® P2,

n=0

where we have used inequality (4.1). Hence

\

FI< Py lr)t < Op(L—r) 327" 30r™ ™,
n=0

i

where y(r) = @(r)%~%"'. Now the desired regult follows from Lemma 4.1.
The assertions (a), (b) and (¢) of Theorem 2.1 are a simple conse-
quence of Proposition 4.1 and the following three lemmmas.

Levma 4.3. Let s =min{p, 1} Then
ME(r, ) < laol -+ ) 1 dppallgr®™
n=0

Proof. By the triangle inequality and Lemma 3.1,

ME(r, ) <laol*+ D) Mp(ry Anya)

n=0
<lagl*+ ) Mnalipr™™.
n=0
LevMA 4.4. Let 1 <p << co. Then

[4,0,7°" < CM,(r, f), n=0.
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Proof. By the Riesz projection theorem and Lemma 3.1, we have
14,y < My(r, 4p) < OMy(r, f)-
LevyA 4.5. If p <1, then ' ‘
14,2 < OMy(r, )
Proof. This follows from the inequality
My(r, 4,) < oM, (r,f)y, »<1,

[19], Ch. VII, Theorem 6.8. :

Proof of Theorem 2.1 (d). We shall consider only the case p<1.
In the case p = oo the assertion ig proved in a similar way by use of
[3], Lemma 1.14. )

Using the inequality M, (r, 4,) < O —7)"" (4], p <1, [4], The-
orem 5.9, and Lemma 3.1, it may easily be seen that

Oyl > 27024y, p<1.
Hence
HA(I’:Q:‘P)CHA(paW,QD)CHA(11°°7"P)7 p<1,
where (r) = @(r)r¥?~'. Thus Theorem 2.1(d) is a consequence of the
following stronger result. ,
PROPOSITION 4.2. Lt p <1 and w(r) = o(r)#*#~%, Then
H(p, q,9) € HA(1, oo, p).

Proof. Liet X = H(p,q,¢) and 'Y = HA(1, co,p) and suppose
that X < ¥. Then, by the closed graph theorem (X and Y are complete),
there is a positive constant ¢ such that

(4.3) @ 4,1l < Clifllxs

To obtain a contradiction we use a generalization of an example due to
T. Riesz [2], p. 599.
Let

nz=0,feX.

Fe) = & (L —e) (L

00
0 an. ul 3
=" (L") Y et
om0

where

_ I(k+2/p)

= — L S - 2/n—1
® 7 TRIT(2/p) = 07 (b1

icm
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Hence
2%—1
n
Apiaf(7) = &° (Z "kzk)7 nz=0.
k=0

Using the inequality

m m
GHZszk”1> !2(70+1)_1 0m-—k+1l7
=0 =
[2], p. 476, we obtain
ClApsiflh = (0 _{_1)241(2/17—1)_

This is a contradiction of (4.3) because, as is easily verified,
Ifllx < €27 @(27").

We pass now to the proof of Theorem 2.2. The following lemmas
will be needed.
LomMA 4.6. Let 1<p< o0 and & =0,1,... Then

logllp® < Mp(r, £) < (L =10 D lioallp (n+1)1"

=0

Proof. The first inequality follows from the inequality M ,(r, N
> M, (r, 0,) and Lemma 3.1; the second follows from the formula

flrey = (1—~r)2§‘cn(a‘“)(n+1)r”.

=0
Tevma 4.7. Lot 1<p< o0, 0<k<n. Then
(’)’b —k +1)“Gkup < (’i’l/ +1) ”Gn”p'

Proof. We have

z I
”dnllp> HUkU'n”p = || O %'l—l O »
- / I .
= logll,— Y llowlly = lowll, — Py liokllps

where Bernstein’s inequality has been used.
Tmvma 4.8, Let F(r) = (L= (1 —7) 3, w0, where {w,} is
n=0

o monotone sequence of non-negative real numbers. Then T belongs to L4(0,1)
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if and only if

1 o0
wrt) ) et
{(P ( g +1 ) ( ) n=0

This is obtained from Proposition 4.1 by a Cauchy condensation test
type argument.

Proof of Theorem 2.2, Consider first the case ¢ < oo. Let fe H(p, ¢, ),
1<p< . Then

A=) —r)ME(r, ) = p(L—1)* EM%(T,J”)’"

Nn O

Zg(L-r) Y lolrety,

n=0

by Lemma 4.6. Now integration yields

o

o0 > f (@ =) (L =) ME(r, Hdr = 07" 3 p(1](n-+1)14n+1) " oy,

n=0

where Lemma 4.1 and condition (1.2) have been used.
Oonversely, suppose that (2.1) holds. Let

@y = D (b+1)(n—k+1) oy,
k=

Then

(4.4) D) louly(n 4;1)7“ = (1L —7)? jmnr".

n=0 n=0

On the other hand, using Lemma 4.7, we see that

Dy, < O(”’ _H[‘)a ”an“p
‘ and therefore

o0

Do (L(n+1))2n+1)""1g¢ < co.

=0

Now we use Lemma 4.8, equality (4.4) and the right ide i i
! . . -hand sid 1
in Lemma 4.6 to conclude that f e H(p, g, ¢). ’ © Teamlity

Finally, suppose that ¢ = oo. The implicati
- i = oo, plication f e H (oo, p, ¢) =(2:1
is a direct consequence of Lemmas 4.2 and 4.6. To prove ﬁhe’g)onvgrsez

icm®
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™~
observe that, by Lemma 4.6,

M, (r% ) S AL —7) D) loglp(n+1)r™

n=0
Hence
(4.5) M, (r2, f) < 4suploglr”, p=1,
n
because '

(L—r)2 D (n+1)~ =1.

n=0

Now the result follows from (4.5), by Lemma 4.2.

5. Remarks. Let u be a positive increaging function defined on
(0,1] and let > 0. Then there is a positive function K (b), b > 0, such
that

1
Gl E@e @) < [ pl-n@—n) T, 0>b,
0
and
(5.2) E®)p(ble) < suppd—n)r*,  @>D.

On the other hand, condition (1.2) is equivalent to
(63) P2 ™)< Cp2"), n>0.

Using these estimates, one can prove that condition (1.2) is necessary
for the wvalidity of Theorem 2.1 (a). However, Theorem 2.1 (e) is valid
for any increasing function p. This may be seen from Lemma 4.5 and the
proof of Proposition 4.1 if the inequalities (5.1) and (5.2) are used.

We also remark that if ¢ > 1, the proof of Theorem 2.2 can be sim-
plified by using the inequality

(5.4) ME(r, ) < (L—r)2 D jould(n+1)r" 1< g< oo

n=0

which is an immediate consequence of Lemma 4.6 and Jensen’s inequality.
In fact, we can do somewhat more. Using (4.5), (5.4) and the fact that
the results of Lemmas 4.1 and 4.2 remain true for ¢ = 0, we obtain the
following partial generalization of Theorem 2.2.

TamorEM 5.1. Let 1 < ¢ < oo and let o satisfies (5.3). Then f belongs
o H(p, q, ) if and only if condition (2.1) is satisfied.
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. The special case p = ¢ = co is obtained by Bennett, Stegenga and
Timoney [3], Theorem 1.4. ' )

ExAMPLE. The function
@(r) = (L +[logr|)™

satisfi‘es (1.2) (or, equivalently, (5.3)) but not (L.1). Theorem 5.1 shows
13ha-t, it 1< g< oo, then feH(p, q, ) (p=1) it and only if (2.1) holds.
Let us observe that the space H(p, ¢, @) is infinite-dimensional because

1
[ @=r)Tlp—)1dr < oo, 1< g< oo,
0 .

Consider the function

9(@) = j &,

n=0

It is easily verified that
F Ml )= 0

and, consequently, g ¢ H(co, 2 ; ]
] 2, ¢). On the other hand, g € Hl(o0, 2, ¢).
ahls) shows that c.onchtion'(z.l) in Theorem 5.1 camnért be r(apluc’ed’ 1(2';

In conclusi i : rni
ond S onclusion we mention a problem concerning Theorems (LPe)
ProBLEM. If ¢ satisfies the condition i
. : 8 (1.1) and (1.2 bhe s
H(1, g, ¢) isomorphic to I(1, ¢)? . 2 15 the space
. We remal:k that some properties of H (1, ¢, a) and I(1, ¢) are similar.
ofm]*LIe):zLample, i1 < g < oo, then these spaces are reflexive, The reflexivity
. (1, f’ a) follovys from a very general result of Muramatu [17], Tllc:-
H(m 4. ;n.partxcula.r, Muramatu’s -theorem asserts that the dual of
thep, q,_a) is 1s.om_orph1c to H(p', g', a), where p e {1, oo} and p/, ¢’ are
Acén{ugate md.lces: 1./19 +1/p" =1, 1/g+1/¢" = 1. See also [5]. (
er completing this paper we knew that if @(r) =+ and ¢3=1,

then Theorem 2.1 2 ived fr i
e (b) can be derived fx 9111 a result of Lizorkin [147, The-

*
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