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Abstract. A sequential definition of M-integrable distributions is given and
connections between the set D% of such distributions and the generalized Orlicz space
Ly and the space Dy of distributions are established.

1.1. A space Dy, of distributions generalizing an Orlicz space Ly (R?)
was introduced [6], 1962, and extended to the case of a generalized Orlicz
space [4], 1973, applying the functional definition of a distribution.
Here we shall show how to define sequentially M-integrable distributions
gtarting with the well-known elementary theory of distributions by J. Mi-
kusifiski and R. Sikorski [5], 1961.

Tet us recall that a sequence of functions ¢, € 0°(RY), n =1,2,...,
is called fundamental if for every g-dimensional parallelepiped I = E?
there exist a sequence of functions &, e(0°(RY, n'=1, 2, ..., and a

 multiindex « such that D&, (@) = ¢,(2) in I and the sequence (@) is

uniformly convergent on I.

Two fundamental sequences of functions (p,) and (v,) are called
equivalent if the sequence @i, ¥y Pas Yoy .-+ jg fundamental. Equivalence
clagses of fundamental sequences with regard to the above notion of
equivalency are called distributions; the distribution f determined by the
fundamental sequence (p,) is denoted by f = [p,]

£ f = [g,], then D°f = [Dgp,] is called the derivative of f of order
a (see [5]). )

1.2. In the following the sign [ will mean always the Lebesgue in-
tegral over the whole space R% A g-function with parameter will mean
a teal function M (f, u) defined in R?xE' and such that (a) M (f, u) >0
always and M(f, %) = 0 if and only if % =0, (b) M(¢,u) is an even,
continuous and nondecreasing (for % > 0) function of u for every ¢ e R?,
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(¢) M (¢, u) is Lebesgue measurable as a function of ¢ for every w e R!.
If, moreover, M (¢, u) is a convex function of  for every ¢ e R?% then A
is called a convex p-function with parameter.

The vector space of all Lebesgue measurable functions f on R fi-
nite a.e., with equality a.e., such that

ox(Af) = [M(t, (1))@ < oo for some 2> 0,

is called the gemeralized Ovlicz space generated by the g-function M with
parameter and is denoted by Ly (R?), or briefly L,,.
Supposing M to be convex, the functional

IFllar = inf{u> 0: gp(fiu) <1}

is a norm in L, called the Zuvemburg norm; Ly is a Banach space with
this norm (see e.g. [8]).

‘We say that a convex g-function’ with parameter M is an N-fundtion
if w~! M (¢, u)—>oco as u—>oco for every t e R4,

N @, u) = sup{julv— Mt v): v>0}

is called the complementary N-function to the N-function M. The fune-
tional '

If18 = sup {[ f(Dg(t)at: oxlg) <1}

is then another norm in Ly, called the Orlicz norm. If M is an N-function,
then there hold the Holder inequalities

|[ f@ga| < Iflolgly  amd | [ F@g(t)at] < IFlseligld
for f e Ly and g e Ly and both norms are equivalent in I,,, namely,

@) Il < Ilae < 20fllar  for fely

(see e.g. [17]).

A g-function with parameter M satisfies the condition (4,) it there
exist & constant 4 > 0 and a nonnegative Lebesgue integrable function
h on % such that M (¢, 2u) < AM (3, w)+h(t) for all t € B? and real u (see
[3])- Tt is easily seen that if M satisfies (4,), then L, is equal to the space
of f such that oy (Af) < oo for every A > 0.

1.3. DErNTION. Let M be a convex gpfunction depending on a par-
ameter. A distribution f will be called sequentially M—integmble if there
exist a multiindex ¢ and a fundamental sequence (@) of functions g,

€G%(R?)nLy, such that f =[D%,] and the sequence (llesllsg) is bounded. The

icm®

On sequentially M-inlegrable distributions 257

set of all sequentially M-integrable distributions will be denoted by
D?%;. Finite sums of sequentially M-integrable distributions will be called
sequentially M-summable distributions; the space of all such distributions
will be denoted by Dy.

A se(iuence (fn) of sequentially M-integrable distributions will be

called sequentially M-convergent to 0, fm—l‘go, if there exist a multiindex
« and fundamental sequences (p,,), ®m = 1, 2, ..., such that f,
= [-Du‘Pm,n,L Pon € C*(RYNLy, lpm,allar < L, forn =1,2,... and all
m, and [Pyl 0 88 m-~»co uniformly with respect to . Moreover, if
I = [Da‘Pm,nL Pm,n € C* (R N\Ly,, (H‘?”m,n”ﬂlﬁ bounded for every m ;}ep-
arately, m = 0,1,2,..., and if f, —f,—0, then we say that fm— 1o

We are going to answer two problems: (1) Does the set D3 contain
the Orlicz space Ly 7(2) What is the connection between D3, Tesp. Dy,
and the space Dy, of distributions defined as linear continuous functionals
over a space Dy (see [67)?

9.1. The following condition (4%) will be of use: we say that A satis-
fies (4%) if there exist constants k>0, #,> 0 and a locally integrable
nonnegative function ¢ on R such that ju| < kM (¢, )+ g(t) for all u == u,
and {e BY (see also [2], D. 140). Let us remark that it M (I, u) = M (w)
is convex and independent of t, then (4%) is always satistied with g ()
= 0. Obviously, we have

9.2. ProvosIIION. If M is o g-function with parameter savisfying
(4%), then every function f e Ly, is locally integrable in R

In order to answer problem (1) we shall need the notion of M-bound-
edness of the function M. .

9.3. DEFINITION. A convex g-function M with parameter is called
M-bounded if there exist numbers k>0, K>1 and a function h(s, u)
> 0 in RYx R? with [k (s, u)du < K such that

M(s-Fu,v) < M(u, ko) +Ti(s, ) for all s,ueR? and ve R

(compare [7], p. 103). Tt us remarlk that if M (1, w) does not depend on ¢,
then it is always M-bounded with &k =1 and h(s, w) = 0. )

Now let (8,) bo a d-sequence in the sense of [B], i.e. 8, e OF(RY) with
8, (@) = 0 everywhore, 8, (x) = 0for 1] > &, where 0 < &0, and [ 8y (w)d
=1 for n =1,2,... Then for every locally integrable func_tionj in R9,
(f*6,) is a fundamental sequence defining thus a distribution f = U(f)
= [f#6,] (see [B]).

9.4, Tumorun, Let M be an M-bounded convex p-function with par-
ameter satisfying the condition (A%) and let @, = f*0ay W =1,2, ...y
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where f € Ly, and (8,) is a S-sequence. Then ¢, € Ly and
I@allzr < 2K || fllar,

where k and K are the constants from 2.3.

Comsequently, f = U(f) = [g,] is @ sequentially M-integrable disiribu-
tion. Moreover, if fneLy,m=1,2,...,00d [fullyy—0 as m->co, then
the corresponding sequence of sequentially M-integrable disiributions (f,,)
is sequentially M-convergent to 0. :

Proof. By Proposition 2.2, f is locally integrable. Applying Jensen’s
inequality and M-boundedness of M, we obtain for arbitrary i> 0

A, 1 & 1
QM(TKT)S—Z—QM(EU)—F? for n=1,2,...

Supposing [[flly < 2K /[Ak, we thus get oy (Ap,/4K%) <1, whence [p,llx
< 4K2/2. Hence g,/ < 2kK|fllz;. The remaining parts of the theorem
follow from this inequality, immediately.

3.1. Let us now recall the definitions of spaces Dy and D}, from [6]
and [4], where M is an N-function with parameter and N is the N-function
complementary to M.

Namely, Dy is the space of functions y e 0°(B%) such that thoe de-
rivatives D°p € Ly for every multiindex a. If p, > 0 are chosen so that
Sp. =1, then

Wy = D) 2allD*plly (14 [D°plly) ™

‘ %s an F-porm in Dy. As it is well known, convergence (boundedness)
in Dy means convergence (boundedness) with. respect to every [.D°y|y,
separately. The space of all linear, continuous functionals over Dy is
denoted by Dj,. Convergence to 0 of a sequence of elements 7T, € Dy
18 defined as uniform convergence T.(p)=0 over every set B of s,
bounded in Dy.

8.2. Let f € Dy ie., f=[D%,], where (p,) is the fundamental
sequence given in Def. 1.3. We are going to associate with fa linear con-
tinuous functional f* over Dy. For this purpose wo shall denote

<o, 9> = [plipt)at for peLy,ypely,
and we shall write

K, ={meR ¢ = (x, s @g)y |l < for §=1,2,...,4},
r=1,2,...
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3.3. THEOREM. Let M be an N-function with parameter satisfying
the condition (4,) and such that [M (¢, 2)dt—0 as 10 for every compact
F:4

K <= R". Let N be complementary to M. If
f =D, e Dy
with a fundamental sequence (@,) such that

Pn€CBY) N Ly, ipullar <L for n=1,2,...

and with ¢ multiindew a, then the sequence ({p,, D°w>) is convergent for every
peDy and f*(p) =lim <g,, D> defines a functional f* = F(f) € Dy
N0

Movreover, the embedding F is continuous from D}y with sequential
M-convergence to Dyy.

Proof. First, let us remark that due to condition (4,), C5°(RY) is
dense in Dy (see [6], where this is shown for M independent of the par-
ameter ?; the extension to M (t, ) is obvious). Now let ¢ € Dy and let
7, € OF (RY) Dbe such that suppy, = K, and $,—~y in Dy. Then, taking
f e D} and applying Hélder inequality, inequalities (1) and the bound-
edness assumption |p,ly < Liorn=1,2,... with some multiindex o, we
obtain

[ggy D> —<epyy DD < 4L D(y — )l 4 [Kps— @5y DG 31

Let &> 0 be given and let us fix ¢+ so that |D*(y —§,)y < £/8L. Now
there exist a multiindex A and functions @, e0®(EY),n =1,2,...,
such that D?&,(») = ¢,(») on K, and (P,) is uniformly convergent in
K,. Then

Kpe—op DG < 2H(D;— @j)XK,. Nar 1D* 5,y

Wher(; xK; is the characteristic function of the set K,. Now let us take
an arbitrary 5 > 0; then there is an index 4, such that |P,(t) —D;(t)| < ¢ for
%, j > 14,. IHence

ol (B —P)ux) < [M(t,mdt  for 4,5 > .
Ky

This shows that gu(A(B;— D))ix,)>0 a8 4, j—>oo for every 1> 0. Con-
sequently,

(P —P)tg, e >0 a8 4,J-> 00,
Hence, there is an ¢, such. that

K(pi — @ Da¢7>l<%£ for ’I:,]. > ’5,.
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Consequently,
psy D 9y — sy DD |<e  for i, >4,

Thus the sequence (¢, D"«p>) is convergent for every w € Dy. Donotmg
) = 11m {pny D*v)>, f* i8 obviously linear, and continuity of ffin Dy

follows from the Holder inequality
If* () < 2L|\D*ylly fox  yeDy.

We have still to show that if f,, € D}, fmﬁo, then f,—0 in Dy, Let f,

= [—Daqym,n]! ”q"m,n ”M < I/m a'nd- .”'7)m,n “M'->0 as m—»oo uniformly Wlﬁh Teﬂpeet

to #. Let B be a bounded set in Dy, ie., for every § there is a ¢3> 0

such that |D'y|y< 0 for all y e B. Taking e, = SuD |lpu,alar We then
n

obtain
[ (0] < 2l@mnllar [ DYl < 265,0,>0 88 m—>o0

for v € B, whence f},—>0 in Dj,.
Let ug still remark that due to the linearity of the space Dy, also
distributions f € D;; may be embedded in Dy,.
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On the range of purely atomic probability measures
by
C. FERENS (Tychy)

Dedicated to Professor Jan Mikusifiski
on his 70th birthday

Abstract, An cxample is given of some purely atomic probability measure
P = (pyl » € N), with a range non-homeomorphie to the Cantor ternary discontinuum,

such that p,..1 < p,, for all positive integers # and the inequality p, > 2 1% holds
{=n-
for infinitely many n.

It is well known that the range of non-atomic probability measures
is the unit interval I. On the other hand, in the case of a purely atomic
prebability measure P = (p,| » € N) with p,,,, < p, for each n belonging
to the set N of all positive integers, the condition

O<p,< S?i

i=n+1
is necessary and sufficient for the range of P to be the unit interval (e.g.,
see [1], p. 80). Jim Nymann has proved that if the above inequalities
hold for almost all » e N, the range of P is a finite union of some intervals.
He hag also proved that if
0
Py > Z Ve

Pl

for almost all n & N, then the range of P is homeomorphic to the Cantor
ternary discontinuum O and asked if the same holds under the weaker
assumption that the lagt inequality is satistied for infinitely many n e N.
The aim of this paper is to eonstruct a counterexample.

Let P = (p,| neXN) be a purely atomic probability measure with
Pns1 <P, Whenever n e N. Let us extend the mapping f: ¢ —I given
by the formula

Sfl@) = ézwnpm

Nl
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