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Consequently,
psy D 9y — sy DD |<e  for i, >4,

Thus the sequence (¢, D"«p>) is convergent for every w € Dy. Donotmg
) = 11m {pny D*v)>, f* i8 obviously linear, and continuity of ffin Dy

follows from the Holder inequality
If* () < 2L|\D*ylly fox  yeDy.

We have still to show that if f,, € D}, fmﬁo, then f,—0 in Dy, Let f,

= [—Daqym,n]! ”q"m,n ”M < I/m a'nd- .”'7)m,n “M'->0 as m—»oo uniformly Wlﬁh Teﬂpeet

to #. Let B be a bounded set in Dy, ie., for every § there is a ¢3> 0

such that |D'y|y< 0 for all y e B. Taking e, = SuD |lpu,alar We then
n

obtain
[ (0] < 2l@mnllar [ DYl < 265,0,>0 88 m—>o0

for v € B, whence f},—>0 in Dj,.
Let ug still remark that due to the linearity of the space Dy, also
distributions f € D;; may be embedded in Dy,.
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On the range of purely atomic probability measures
by
C. FERENS (Tychy)

Dedicated to Professor Jan Mikusifiski
on his 70th birthday

Abstract, An cxample is given of some purely atomic probability measure
P = (pyl » € N), with a range non-homeomorphie to the Cantor ternary discontinuum,

such that p,..1 < p,, for all positive integers # and the inequality p, > 2 1% holds
{=n-
for infinitely many n.

It is well known that the range of non-atomic probability measures
is the unit interval I. On the other hand, in the case of a purely atomic
prebability measure P = (p,| » € N) with p,,,, < p, for each n belonging
to the set N of all positive integers, the condition

O<p,< S?i

i=n+1
is necessary and sufficient for the range of P to be the unit interval (e.g.,
see [1], p. 80). Jim Nymann has proved that if the above inequalities
hold for almost all » e N, the range of P is a finite union of some intervals.
He hag also proved that if
0
Py > Z Ve

Pl

for almost all n & N, then the range of P is homeomorphic to the Cantor
ternary discontinuum O and asked if the same holds under the weaker
assumption that the lagt inequality is satistied for infinitely many n e N.
The aim of this paper is to eonstruct a counterexample.

Let P = (p,| neXN) be a purely atomic probability measure with
Pns1 <P, Whenever n e N. Let us extend the mapping f: ¢ —I given
by the formula

Sfl@) = ézwnpm

Nl
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where @ = (@, #,, ...) is the triadic expansion of # in which the digit 1
does not occur, to
' 11

by linear interpolation on each of the components of I\ C. If 4, denotes
the set obtained in the nth step of the geometrical construction of ¢, i.c.,

L3 n
d, Y 4 1
A, = § —i B R
n dil":g»2<i=1‘ 31,! % 3@ 3n>’

RogP = f(C) = F(0) = F(() 4,) = " F(4,)

then

since F' is continuous. The set F({A4,) can be represented in the form
F(An) = U <k1 7‘7+7‘n>!
keKy,

n oo
where K, = {k = 2; e €, =0,1} and 7, = 3 p; ro=1 Let
ts put e
Py = (m+3) 2"7[3%,
wtvlhere m=0,1,2,3,4; 1 =1,2, ..., and record the following defini-
jon:
An interval J < T is s-approximated by aset £ c I it Vo e JAh e K:
0Le—k<es.
n—1
Let ¢, = ¥y, and @, =3 > 7y, We shall show that:
1=0

(i) The interval <k+3e,, k-+3e,> for each T ; - b
mideld py T 3 &ny 5Eny [ b€ Ky, 45 &,4,-approwi-

(if) The interval {a,,}> is e,-approvimated by Kg,.
Proof. Since

=) 3 ) () = ),

m=0 {=n-1

every element % of K, s is of the form

' ' 4
(1) : bo=T+e,, Zem(m -+-3)

m=0

where k' e K, and e, =0 or 1. But

4
{3 enltm+3)i m=o,..., 4} ={0,3,4,...,21, 22, 25},

m=0

icm®
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and so (1) implies e,,;-approximation of the interval
& 436419 k'+228n+1>
by Kspys Now, it suffices to note that
Bens1 = 56 < 36n < 228n11y

and assertion (i) is proved.

Similarly, it can be shown that (5,37 is =-approximated by K,
i.e., assertion (ii) is true for » = 1. Suppose that (ii) holds for some n
and let @ e <{a,.,,%>. We have

&= 3750 €Oy B
and, by the induction hypothesis, there exists ‘a k(z) € K, such tha
@ € (o (@) +2en, (@) +iea)-

Therefore, the induction assertion follows from (i), which ends the proot
of (ii).
The immediate consequence of (ii) is

(2) {Oyy 3 = F(Agy)-
Letting n — oo in (2), we geb
(g 5> = Bng P
using the symmetry argument. Since '
Pon = 3277277 > 2[2T" =1,

for meXN, our counterexample is furnished.
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