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Absteact, Using spline systems we construct unconditional bases in spaces
HpD), 0 < p 1. This is used to give a direct igomorphism between Hp(D) and martin-
gale Hyp spaces. We also ghow that our gystems are bages in Borgman spaces AL < 1,
and wo characterise those spaces in terms of coofficients (this gives an explicite iso-
morphism of A% with lg). Applications to complemented subspaces of Hp,p <1
and to propertics of spline systems in Ip, 1 < p < oo, are also given.

This paper prosents an application of orthonormal spline systems
and gome related gystems of splines to natural I, spaces. The main empha-
sis is pub on M, (D), the classical Tardy space of analytic functions on
the unit dise in the complex plane. Our methods, however, are mainly
those from real variable I,-theory. We use atomic decompositions of
H,functions, as developed in [13] and [31], to prove the ccentinuity
of natural operators associated with expansions with respect to spline
systems. Our hagic result (Theorem 2) gives a construction of an uncon-
ditional basis in H, (D), p < 1. Moreover, the bages we construct can be
used to give explieit isomorphisms between various H,-Spaces; most
notably wo show that J,(D) is isomorphic to the H, space of dyadic
martingales. This extends to p <1 vesults of [24], [4] and [82]. Some of
those Tesults have been obtained with different proofs by Sjélin and
Stromberg [30].

The above-mentioned isomorphisms provide equivalence between
some chaptors of murtingalo theory (ef. [211), constructive function theory
(ct. [7]) and H,-spaces. This equivalence allows us to give new proofs
for some results of Ciesiclski’s [7] and [8] on gpline systems in Ly, p > 1
(Theorem 11 and Corollary 4). ‘

* This roseureh was partinlly supported by & grant from the l\?atiana,l Science
Foundation. It was done while the author was visiting the University of Texas ab
Austin snd Texas A&M University at College Station.



GUEST


290 P. Wojtaszezyk

As an application of our results we give a characterisation of Bergman
spaces A%, ¢<<1 on the unit dise (Theorem 8). This characterisation
is related to the one given in [12]. In particular we get that AZ is isomor-
phic, as a linear topological space, to Z,. The other applieation concerns
complemented subspaces of H,(D). Answering the question from [22]
we show that every infinite dimensional corhplemented subspace of H, (D),
p <1, contains a smaller complemented subspace isomorphic to [

Our notation i standard. For the general background in H,-theory
the reader may consult [13] and [31] and for elements of the theory of
splines we suggest [28] and [7] and [9]. In order to make this paper more.
self-contained, rather lengthy preliminary sections on H, p-theory and
spline systems are added.

. It is my great pleasure to thank Professor Guido Weiss who suggested
to me that atomic and molecular decompogitions can be used to investigate
spline systems in H,-spaces.

1. Preliminaries, spline systems. Our aim in this section is to construct.
some systems of splines on the unit circle 7. We identify 7' with [—1,1).
If m is an integer, m > —1, and V is a partition of T into intervals ¥V
= {I;, I, ..., 1,} then the spline of order m with respect fo the partition
Vis any function f on T such that f is m-times continuously differentiable
and for every j =1,2,...,n, f |1; is a polynomial of degree at most
m+1. The space of all splines of order m with respect to partition V wilk
be denoted by 8™(F).

TIn this paper we will consider only dyadic partitions. For # = 2k 41,
0 <7< 2" we define the partition ¥, of [0, 1] by

s—1

11y Ia=(W,?::T) it 1<s<2l,
—1—1 1

1.2) Iam(i—g,r,s—z,;) it 2l<s<n.

Using this partition we define three partitions of 7 as follows

Vi={cT:1IeV,or —IeV,},
(13) Vi={IcT:IeV,or —TeV,,},
Vi={IcT: IeV,, or ~TeV,}.

We order intervals in V! in such a way that I, equals I, of partition ¥,
if >0 and I, equals —I,,_,, of partition V, it s < 0. Partitions V2 and
V; are ordered analogously. We define 1, a8 the point which is an endpoint
of some interval from ¥, ., but is not an endpoint of any interval from V,,.

e ©
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Given a partition V == {Iy, I,,..., I,,} of the circle T, With-interyals
1, in V ordered consecutively and n > m--2 wo define th(? basie sphns.e
o{r‘ order m with respect to partition ¥, (b})j., by the following two condi-

tions:

(1.4)  for each j the b} is & non-zero spline of order m with respect to
V and the support of by equaly LUl U ... UL (fr>n
then we interpret I, = I_,..),

7
(1.)  for each j the b}* 2 0 and 2 b == L.
Jel

Bagic splines arc investigated in detail in chapter 4 of [28]. In pfcnrtic-
ular, it is shown there that basic gplines exist. We_also ?m.ve that if the
lengths of intervals in ¥ are comparable (e.g. their ratios are between
1/2 and 2 28 is the case for partitions V3, V5, and V) then

(1.6) ( ! o) ~ 7};

Moreover, in this case (cf. Th. 4.41 of [28]) the set of bior’gho'gonal funec-
tionals 4 on 8 (V'), i.0., functionals such that 4,(d") = 8y,4,§ =1,2,...
ooy m, satisfies

.7 ZAGHIES c)/;;( f ]f|i‘)”2 for every feS8™(V).

supp ,);n

Tt is also true that every spline in 8™ (V) is a linear combination of basie

splines. . :
Lmmma 1. Let (b)) denote all basic splines of order m with respect to

partition V2 (or V2 or W), There ewists a constant IC,, such that for all n

and all (ay)
- /2
L8 K (3 |a,|n)”“g(a [yza,bm’)”” < K (07 3 1oyl
Proof. We have by (1.7) and (1.4)
Dla< 3| ( St
i k
< 0; " f '%: ay ;?

supp b}”’

‘<on |3 apf
.
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On the other hand,

[|Zonrf =3 J1 3 et

Iml

< Z‘f §’ [a{f‘[bm[“/GZWflla 2.

k L «-m—-

The above estimates give the lemma.
Let & denote the element of 8™ (V) which is orthogonal to S™(¥;)and
hag L,(T) norm equal 1. This is well defined for n > L. We put 47" == const.
LEMMA 2. There arve constants € > 0 and ¢, 0 < ¢<< 1, independent
of n such that

(1.9) mm ) < O'/%qnd(t tn)

where d(t, t,) denotes the distance on T between t and t,.
Proof. Let (b")i.., denote basic splines with respect to the partition
V3. Let us define the matrix % by

Ay = o7, B

(-, > denotes the natural scalar produet in IL,(T)). Clearly, we have
a; = 0 if suppdPnsuppdl” = &, and by (1.6) we have lay| < On~' We
infer from Lemma 1 that the matrix % defines an isomorphism of the
space 12 and {n- || and [|(n2) 7} are bounded independently of #. The re-
sult of Domsta [15] or the periodic version of Lemma 2 of [14] gives that
the entries b;; of the matrix %~ satisfy

(1.10) [byy| < Eng?®)

for some constants XK > 0 and ¢, 0 < ¢ < 1. Symbol ¢(¢,j) denotes the
number of intervals from V3 between I;and I;. If we write

(L.11) By ot
7

we have
g = Y e so = Z bﬁ<71§"f, o
7
Let us observe that if ¢, ¢ suppd then b e S™(V,), so {7, b7y = 0.
This observation, (1.6) and (1.10) givus ‘
(1.12) o] < CVmgPn,
where 7 ig defined by t, eI, e Vi,

iom°
From (1.11) and (1.12) wo get

[y (t) 12 oy by (¢ ‘ <

Hyspaces, p < L, and spline systems 294

2 l ajl S Ol/;gnd(tw‘) .

Jit apupp b;"'

Remark 1. The above proof works only for # > m--2. For smaller
» we clearly have the desived estimate for some constants. ;

O0ROLTARY 1. If BMF(8), 0 < T < m--1, denotes the L-th derivative
of by then

(118)

or some 0 and ¢, 0 < ¢ <1

Proof. We use (1.11) and (1.12) and the expression for the derivative
of the basic spline given in Theorem 4.16 of [28].

Tot ug now introduce two operators acting on functions on 7.

Df(t) = (%),
nf (1) = fj' 8)ds — fff 8)dsdt.

l h;r:l.k (t)l < Onk"}'l/z qnﬂ(l,t")

The basic relation between those two operators is
- f FOVB(t

Our next goal is to prove the analog of Corollary 1 for Hep,
TeMMA 3. For 0 <% < m-+1 we have
I Illc hzz& (t)l < O',nwh»l-l/i qml(t,tﬂ)

for some 0> 0 and ¢,0 < q <1,
Proof. Tt us start with the following claim:

f Df ()HR (1) dt =

(1.14) H iy orthogonal to 8™~ ¥(V7,).

Lot us fakoe p e §~%(VL). There exists ¢ e8™(V;) such that Dip =
p— Tf ¢ Wo have

[z @yp f 1 ) (o (1) —
7

f(p) dt+ fqa-_!ﬂ"’h’,{‘

(—1)* f;

.afll’%m (1) DFD (1) dt = o(t)at = 0.

7~ Studia Mathematicn 1.8
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Sinee by (1.14) H*a? is orthogonal to all basic splines in §™~*(V3), (1.5)
implies that H*A” has a zero in the union of every m k-1 consecutive
intervals from V.. Let @, be such a zero for H*h;* “almost opposite” to
t,. Then

oy
HERP() = [ HF'h(s)ds.
¢

Using this particular representation we can show by induction the desired
estimate. .
Using functions A (4) we define the system of even splines on T by

(W1s)  gr) = ([ wrm - c—nea) " i - i —1).
If 0 < |k] < m+1 we define ¢"*(t) as follows:

Drgp(t) ifn>0and 0<k<m+1,

(Lie) gpte) = i .
" (=L H™ gm(t) if n >0 and —~m~1<k <0,

1
grE(t) = — if & iy even.
0 '/2
8o gi*(¢) is indexed by # = 0,1,2,...if hisevenand byn = 1,2, 3, ...
it % is odd. Clearly, for every m > —1 and 0 < |k| < m-+1, (g™F, g™ F)
is a biorthogonal system.

Let us put 8(t,1,) = min (d(t, t,), d(t, —t,)). The following ommibus
theorem summarises properties of (g7+*) for future reference.

TarorEM 1. Let m > —1,0 << [k < m-+1. Then

(a) The system (g2, is an orthonormal system of even functions and
it is complete in even functions in Ly (T).
. (b) If & is even then (g™")_, is a system of even functions comgplete
in even functions in Ly(T). If & is odd then (gi**)2_, is a system of odd func-
tions complete in odd functions in Ly (T). ‘

(e) gi"® is orthogonal to S™*(WL).

@) ) = MR (=LA 1) awhere BE(D) € S™E(VY), HPE
is orthogonal to 8™ (VL) and for some constants 0 and g, 0 < g < 1 we have
lh‘;‘n,k (t)f < Gnlferlcqnd(t,t“) .

(e) For some constants 0 and g, 0 < g <1,

g (1)| < Omt/r+Egnitta),

0 el g e
T n

n

o
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and
( f IZ 'ﬂgﬂ’”k(t)lz dt)llz ~ ( ‘“nl’ 275)1/2.
T n 2 ( W

Proof. Everything except (f) follows immediately from previous
considerations. The very important condition (f) is a theorem of Ropela
[27]. Actually Ropela proved his theorem for systems on the interval,
but his proof works in our case, too. The alternative proof can be found
in [10].

Remark 2. Clearly, weo can analogously construet a complete ortho-
normal gystem of splines (Gn)a., on the cirele T. We can also define fune-
tions G by GIF = 12, @™ = DEGP it k>0 and @rF = H*Gr if
k<0. For n =2°+1,0<i<2, let w, = —1--21/2". (Remember we
identify 7' with [—1,1).) Then for G™* we have the following analog
of Theorem 1: -

TamomeM 17, (a) The system (GPH)2., m= ~1, 0 < k| < m+1, is
a_complete systom in Ly(T) ond :

el 0
(” Z("“G%Jcmm ~ (2 l%lmzk)xlz.
7 ne=0 N0
(b) For some constanis 0 >0 and 4,0 < g<ly
[G’,’,’:’k(t)] < 07’1,1/2+k gnd(t,wn) s

Remark 8. Ag far as I know the above material was hever presented
exactly as above. Nevertheless it is clearly known to the specialists in
gpline theory. Our construction is a minor variation of the one indicated
in [9]. ‘

2. Preliminaries, various II, spaces, p <1 and their relations. In
this section we give precise definitions of various H, spaces we will be
interestod in and we summarise their bagie properties. There are various
closely related H, spaces on the circle ' or on theo interval [0, 1], They all
fall in the general franiework disoussed in [12].

For given p < 1 by s we will always mean the integer [1/p —1].

We start with the definition of p-atom (more precisely, (», 2)-atom
in the terminology of [31]). .

DEFINTIION. A p-afom, p <1, on T ig either the constant function
1 or a function a(t) such that suppae is contained in some interval I Z T
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and
(2:1) ([ lapear)™ < izpe-,
r
(2.2) [awtat =0 for k=0,1,2,..,s.
r

In order to make the precise sense of (2.2) we identify the circle 7' with
the interval [ —1, 1) in such a way that —1 ¢ I, so I becomes a subinterval
of [—1,1).

A p-atom on [0,1] iz either a polynomial p» of degree<s and

1
J |p (2@ < 1 or a real function a(t) satisfying (2.1) and (2.2).
] .

Now we define H,(T) (or H,[0,1]) as the space of distributions f on
T (or on [0,1]) such that f = 3 a;a; with a; p-atoms and 3'[e? < oo,

We set
Wl = it {( 3 1) £ = 3 asal).

The following proposition shows the relation between H,(T) and
H,[0,1].
PrOPOSITION 1. Let f € H,[0,1], 1 = p > 1/2, and let

) ‘f(t) for 1e[0,1),

f(—t) for te[-1,0).
Then F(t) € Hy(T). Conversely if I (1) is an even function in H,(T) then
F|[0,1]1eH,[0,1].

The standard proof is left to the reader.

This proposition in particular allows us to apply the results for H, [0, 1]
to H,(T) or H,(D) as was done in [32], Remark 1. However, it is false
for p < 1/2. This fact forced us to develop the system of even splines
on I, (97)perr

A p-molecule on T' centered at 0 (remember 7' = [ —1, 1)) is a function
M (1) such that

1

(2.3) flM(t)t"dt=0, k=0,1,2,...,8
and ‘
o) can = (fuare ™ () <1

where a =1 —1/p+s,b = 1/2+¢ for some fixed ¢ > 1/p-1.

icm®
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A molecule centered at #, & T ig a suitable translation of a molecule
centered at 0. The fundamental fact is that each p-molecule is in H,(T)
and its norm || 3]}, is uniformly bounded. All this is well known, cf. [31].

Remark 4. Usually the above-mentioned facts are stated for the
real line (or even for R™) instead of 7. The periodic case (the circle) is
fully analogous to R, so all the proofs can be repeated with obvious modi-
fications., The other way to obtain these facts for the circlo is to uge
transference. This says simply that if a: B—T is given by ¢(i) = ¢*

then the induced map T,: Hy(R)—>H,(T),T,(f) ) :1 > [@kn+i)

maps Hy(R) onto H,(T).

The definition of a moleculo stated above is not very convenient
for our purposes, since the orthogonality relations (2.8) involve functions
which are not continunous on the civcle. The following proposition remedies
this situation.

ProposITION 2. Let M (%) be a function on T. Let us fiw p <1 and
let m+1 > s. Assume that

(2.8) M is orthogonal to 8™(V}) for some n > 8 (m-+1)
and
(2.6)  for sometyeT we have

(f !M(t)ialﬂ)alw(f|ﬂ[(t)]2d(t,to)%dt)llﬁ-a/zb<1’
z i

where a and b are as in (2.4).

Then |Ml, <. 0 for some absolute constant .

Proof. By rotation we may assume that {, = 0 and we may identify
T with [ —1, 1) in this way. Our goal is to find b € L, () with (B[, < const
guch that M —b will be a molecule. From our assumptions on n, m and
s we see that there exist gplines gy, @y ..., @, € §™(V,) such thatb

(2.7 el(—1/2,1/2) =t', ¢=0,1,2,...,8.
From (2.5) we infer that
fl M)A = fl M (1) (g () -+ 7°) 8.
A -1
This implies that there exists a function b(f) such that
BEN(—1/2,1/2) =0,  [blly, < OUM|(—1,~1/2)V(1/2, Dz, <O
@) and ﬁ(M(t)—kb(t))tfdt =0 for §=0,1,...,s

-1
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This gives (2.3). In order to check (2.4) we estimatbe

1 12 ~1j2 1 '
[ursop = [ e+ [+ [arop<o [
-1 ~1/2 ] 12 A
and
1 1/2 12 ¥
f (2 +b) ()2t < f |3 (1) {222 g - (f + f) (1) () 1 1520 de
-1 i 2y 1
12 ~1/2 1
< f IM(t)IZ'LZ”—I-«C(f + f) B () ]2t
—ip2 § T

1
<0 [|u@peva.

-1
This gives the proof of the proposition.

The most classical H,, space is the space H,(D). It is the space of all
analytic functions on the unit dise in the complex plane such that

__ 10 ovioan)
1fllp —f‘i{)(—z‘; flf('rc )["do) < 00,

k13

The good general reference about those slaaces is [16]. There is a close

connection between H, (D) and I, (1), ef. [11], [13]. Tt is given as follows:

It is well known that each feH,(D) has & radial limit in the sense of

distributions: f(e®) = limf(r¢). Since f is analytic, its real part deter-
71 .

mines the whole function up to a purely imaginary constant. We have

2.9) IR (6“Nlaymy ~ Iflzymy for all f() € Hy(D) such that
f(0) is real.
We will also consider martingale H, spaces. We will limit our attention

to dyadic martingales only. The exposition of the theory of those spaces
can be found in [3], [19], [21].

By a dyadic interval on [0,1] wo mean an inferval of the form [k/2",
(% +1)/2"]. Fox function f defined on [0,1] we define ity dyadic mamimal
Sfunetion by : . .

1 .
f*(w) = sup {Tﬁ U f(: Iis a dyadic interval and @ € I}.
I

We say that f e H,(9), the dyedic H, spaceit |fl, = ([ IF* ()P diHe < oo.

icm®
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1t is known (cf. [3], [19]) that a funetion f e H,(8) can be represented
as @ series of Haar functions =2 o, and

(2.10) Wl ~ ([ (3 1l )7

The symbol (xn)awo will always denote the orthonormal Haar system.
Actually the above facts are true for 0 << p < co. Dyadic p-atom,; 0 < p
< 1, is a function a(t) such, that suppe < I, I dyadic interval, f a(¢)dt=:0
and |a(f) < 17,

An easy and natural modification of an argument given in [13],
p. 611, for p = 1 gives

ProposIIION 8. Hvery function feH,(8),0 < p <1, has a decompo-
sition f = 3 o,y a; are dyadic p-atoms and 3la,|? < co. Oonversely every
dyadic p-atom 4s in I, (6). Moreover,

Iflly ~ int {(2 |a¢|”)m’ 1 f= 2 a4y 0 —dyadic p-atoms}.

The above proposition provides the “atomic definition” of H,(J).

If we congider tho dyadic partition of T' identified with [—1,1) we
get the space of dyadie martingales on T, denoted by H,(T, é). All prop-
ertics of this space are clearly identical with properties of H,(d).

To conclude the preliminaries let us make one comment on notation.
Ifll, will always mean the norm in the H,-space which ghould be clear
from the context. The norm in L,(T), 0 < p < oo, will be denoted by
lI*llz,,(ry With one exception; ||f]l, will always mean (f | Flape.

3. Unconditional bases in H,~spaces, 0 <p < 1. This gection contains
our main results, We show that the spline systems on T congtructed in
Section 1 are unconditional in suitable H,(T). This allows us to construch
unconditional bases in I, (D) and to show that H,(D) and H,(8) are
naturally isomorphic as linear topological spaces.

Our basic result is

THRORDM 2. For m = 0 and |b| < m--1 the systen (g™") i3 an uncondi-
tional basis in its span in Hy(T) for 1= p>1/(m~+k+2). If & is evon
this span is the subspace of all even funciions and if k is odd the spam consists
of all odd functions.

‘We start the proof with two levamas.

LmyvA 4. Let o be a proper p-atom, suppa < I. Let m, k, p be as in
Theorem 2. Then

(3.1) l [ att g;{"“"(t)dttg O L jr+r-ogaiateagnilin
P ‘
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and

(3.2) sup[ [amgr*mas| < ontlr0,
a L

Proof. Let us identify 7 with [ —1,1) in such a way that I wil
become a subinterval in [—1,1) (ef. the definition of p-atom). From
(2.2) we infer that there exists .4 (¢) such that supp A (1) « Tand D*HA = g,
An eagy estimate yields |4, < C1T1P1 lally.

Using this we have )

| [atgp—rma] =| [P amgr o] =
i o

[Awgpe=rwa
7

PSS 112 o b
< HA”a‘(f |1 7(t)|“) < O|T|#+2-1p ok gnodty)
i

This gives (3.1).
In order to prove (3.2) we consider two cases:
(a) |I] <1/n. Since s+2 —1/p > 0,(3.1) gives

(8.3) | [ atygrmar] < o wto-in,
T

(b) |I} = 1/n. In this case the Xolder inequality gives
(3.4) | [ aemr)at] < lale g1 < OULM-Hrn—F < Ontip-it,
T
If we put (3.3) and (3.4) together we get (3.2).

Levma 5. Let m>0 and k< m+1l and 12p>1]/(m+E+2).
There exist constants 0y and C, depending only on m, k, p such that )

(35) Gznllﬂ‘|'k“1/}7 < ”qzl,ﬂ”z) < 01%1/24%»-1/19‘

Moreover, the right-hand side inequality holds also for p = 1](m+k--2).
Proof. To show the right-hand side inequality it is enough to show

it for h™*, Using Theorem 1(d) wo easily find |[A™F|, < On*and
-]
[ mpE@ e, ) 2a < Ont2e [ gt ar
0

ok
< o ] ﬂb'

These estimates and Proposition 2 give the desired inequality.
The left-hand side inequality follows from (3.2) by duality. We have

1 = f gzb,h (t) gx.—-k (t) i < “g';l:,h”p . O,nllp—-lc—dﬂ R
T

This proves Lemma 5.

'ca,“@
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Proof of Theorem 2. Let a(f) be an arbitrary p-atom. Let us consider
the series

(3.6) >k [agrt Mgt

We have to show that this series represents the function whose H, norm
is bounded independently of the atom a(t) and of the choice of signs
4+ or —. Let I be an interval such that suppe = I and (2.1) hold_s. Let
us fix an integer # such that 9-1=1 < |I| < 27", Let us write (3.6) in the

form

o S+ 3 o+ Y x[endrTioag

r ne
n<d ty ¢l ond —~ip bl
4
=S 2+ 2

0> 2
typelor —tyel

Using (3.1) and (3.5) wo obtain.

(3.8) 130 < S stvgz mar]™ g 1s
nea’
<0 Z‘ | Il(SH—«l/ﬁ)pﬂ(s-M~llz7)17q1w(1,t”)
h m:z""

»
<0 § 2—r(a»l-z-1/27)1721(s-1-2»-1/1:)17 < const
==

j=0

gince §+2—1/p > 0. )
Using the Idlder incquality, Theorem 1(c), and (3.5) we have

(39) [DRE)

el
Ly g2 and b, &1

< 2

nywal
by L ond—tpd

<0 Y

22l
Lyl a;\rl ~ty ¢

| [ e a] iow 1

falg ([ g orad”™ g5
£

| I i(llzmllp)p n e qmad(l i) %(la+-1/2-1lp)p

<0 Sz—r(llﬁ—llﬂ)m o—nkp 2n(lr+1/2—llp)ﬂ

nwa

L
— Q2-"w=D 2 gnvi2—1) < const.

N
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In order to estimate ||X,], it is enough to show that

2n= 2 E[awmgtmanyt

n>27
tpelor —tpel

has uniformly bounded norm in H, (I'). By Theorem 1 (f) we have
(310) | 25 [l Olal, < 0 2-ro-sim:

Let a, denote the center of I and let W = 21. We write

(811) || 3% wat, «l| <w® [| Lo a+ [ |3 wae, eyl
4 ™N\w

The first summand does not exceed, by (3.10),

(3.12) w3
r

TUsing Theorem 1(d), (f) and the Holder inequalit i
[61de: nality we can f
the second summand of (3.11) ag follows: ‘ Y estimate

zdt < I} 2—-7‘(1—]—21)—-2[1J).

h'p;’z,la(t) 2
—-»’Wc»—— a(t, a,)| dt

(3.13) f 2 'fa(s)gﬂ’*"‘(s)ds n”

N n>2"
iyelor —iyel

2 Z
n>27
ipelor ~t el

< Olal}: f 2 A(t, ay)Png a6 ) gt
INW ~ a>a”
tpelor—tyel

<Olalt [ D), a)Pemar-r gate
INW nm=r

o0 o
< Oua“g Ezzn—r f gz”'ltzb dat
Ny bt
o )
< Olalf 3y om=ro=tn=n [ guay,

Ny gl

< Olafj 27210~ < @ grltip—1-20)

If we put together (3.12) and (3.13) we get

(3.14) “ 2: tyace, ao)b“: < () gridio=1-2b)

icm®

Hy-spaces, p < 1 and spline systems 303

Tstimates (3.10) and (3.14) together with Proposition 2 show that

(3.15) || 32, < const.

The proof of the theorem follows from (3.8), (3.9) and (3.15).

Remark 5. The situation for p <1/(m--k--2) is as follows. If
p < 1j(m-T-+2) then g™" is not a basic sequence since the biorthogonal
functionals ¢"»~* are not continuous on IL,(T). This follows from the result
of Duren—Romberg-Shields [17] (ef. our Propogition 7).

If p = 1/(m-k--2) the system g"™" i a basic sequence. The case
m= —1, k=0, p =1 was considered by Billard [2]. The proof in the
general case will be given clsewhere.

Tt is known that (g%, is not an unconditional basis in H,(T)
(ef. [23]) and (g%, is not uneonditional in Iy, (T). This fact follows
by duality from example of Ciesielski’s [6], p. 816, It seems likely that
(g'>¥) is never unconditional in H, for p = 1/(;n--5-+2).

For g eL,(T) let § denote the trigonometric conjugate of g. Since
the trigonometric conjugation operator " extends to an isomorphism
of H,(T) (mod constants) and " maps even distributions into odd and
vice versa, wo obtain

COROLIARY 2. For m = 0, [k < m-+1 the system

(O ) (G Npes 4 To 15 evER

and the system

LU (g mal @Y & T s 0dd

is an uneonditional basis in H, (T) for p > L{(m--k --2).

Remark 6. A much more natural hasis for I, (T) is given by the
systems (G7+%)2., (¢f. Remark 2). Tho same proof as the proof of Theorem 2
gives

TmonmM 2. The system (G152, 18 an unconditional basis in H,(T)
for p>1/m+T--2).

Now we are in a position to produce an unconditional bagis in H, (D).
For every real function fely(T) we define an analytie function on D
(its Cauchy integral) Cf(z) by

0f(e) = Of(rs") = J(r")-1-if (re")

where f and f are extended to D via the Poisson formula. If we apply this
to the system ¢™* we obtain a complex system (Cg™)2., (Cgi* always
means a constant).

From Corollary 2 and (2.9) we infer
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THBOREM 3. For m >0, |b] < m-+1, the system (CG™2_ is an, up.

W

conditional basis in a complen space H,(D) for 1=p > 1[(m+T%+2).

The standard application of the Khintchine inequality and Theorem 3
yields the following square funection type characterisation of H, (D).

THEOREM 4. Let 1>p> (m+%-+2), m>0, k< mA1. The
Junction f(z) = Z: 4,0 (2) delongs 10 H,(D) if and only if
N=

¢ b

(S5 tmdricgns @) o < o

—% f=0

The next theorem establishes a linear topological isomorphism between
H, (D) and H,(5).

THEOREM 5. Let T™F; H,,(D)—+H, () be defined by
Tm,k(ctg;n:,k) - nlnxn_
The operator T™* establishes am isomorphism between H,(D) and H,(8)

Jor 12 p > 1/m+%+2).

Proof. We start with the proof that T™% iy bounded. It ig enough to

check that ||T™%( Ca)ll, is uniformly bounded for all atoms a. This reduces
to the estimate

”Zf a) g @) dtn’y, || < conét.
n »

As in (3.7) we split it into three sumsg 21 Xpand 3. Sinee

(3'16) ”gn Jc”p ~ 'n'k ”Zn”p)

estimate (3.8) shows that |r121|]1,< const and estimate (8.9) shows that
1 Dl < const.
The properties of dyadic intervaly give that

(3.17) |supp 3, [ <02~

(We mean suppa = I with 2-7-1 « I <2-n,

°=“1©
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Using (2.10), the Holder inequality, estimate (3.17) and Theorem
1 (£) together with (3.16) we obtain

1

[ Zup<ef( 3 [fewer—na

0 n>2
tpelor~iyel

< 01 suppZﬁ (z—zz)/wHZf alt) g™ W) dinty,,

" (g ))2)" s

»
2

< O 9~C-PIP|g)? < congt,

So T™" ig continuous. B
Tn order to show that (T"F)~! is continnous wo use Proposition 3.

Let us take a real dyadic atom a(f), supported on a dyadie interval I,

We have
a(s) = [ a(tat) @i (s)-

n:Bupp gy L

So

(@™ @) = ([ a(xatt) @t)n—rcgmt.

nsupp 4y =l

By (2.9)

W™ @y ~ || Y ([ atizatar) a~hgwr|] .

NIBUPD A <]

This last norm is estimated exactly as || ||, is estimated in the proof
of Theorem 2. This completes the proof.

The fact that H,(6) and H,(D) are isomorphic was discm_rered by
Maurey in [24] but his proof was not constructive. The constructive proof
was given by Carleson [4] and the author in [32]. The case & =0 of
Theorem B with H,[0,1] instead of H,(D) follows from [30] (cf. also
our Theorem. 12). ‘

We also havo

TrmoREM 8, Let 8™*: H, (T)~H, (3) be defined by
S™HE) = 1
The operator S™F establishes an isomorphism between H,(T) and H,(d)

for Lzp>1/(m~+k+2).
The proof is the same as the proof of Theorem 5.
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4. Bergman spaces and complemented subspaces of H,, 0 <p<1.
This section is more functional analytic in spirit than the rest of the paper.
We show how the existence of unconditional bases in H,(D) formally
gives unconditional bases in sgome Bergman spaces. Those bases provide
natural isomorphisms of Bergman spaces and I,-spaces. Later we apply
this to the proof that every complemented subspace of H,, 0 < p < 1,
contains 7, complemented.

Let us start with some definitions. A p-norm on a linear space X is
o funetion |-||: X—R* such that

lell >0 for @ #0,

llall = [al- lls]l,

I+ 917 < Jfoll” + )P
A p-Banach space is a linear space X equipped with the p-norm ||| and
complete with respect to the metric [z —y|?. A p-Banach space X has

the property that for every bounded sequence #, e X, ||z, <1 and for
every sequence of scalars (a,) with 3 |a,[P<1, Za @, € X and ||Z @, %] <

If X is a p-Banach space and Y is a q—Ba,n‘teh space zmd T: XY
ig linear then |T| = sup{|Tx): |z <1} T is continuous if and only
if [T < co. Let now X be a p-Banach space, p <1 and let p<g<1
be given. The g-envelope of X, denoted ¢—X, is the completion of X
with respect to the g-quasinorm

lell, = int {( 3] 1o, 1) where o = 3 a,3,, 2, € X, |, | < 1}.

The proof of the following standard proposition is omitted:

ProOPOSITION 4. Let X be a p-Banach space and Y be o g-Banach spdce, ’

p < g, and let T: X—Y be a continuous linear operator. Then there ewists
a unique extension T: ¢~X—-Y and [T < |T.
| Now we introduce the weighted Bergman spaces on the unit dise D.

The space 42, 0 < p < o, —1 < a < oo consists of all functions analytic’
in D such that

Wlpa = ( [ 17122~ el ae)” < oo.
D

The following Theorem 6 is estentially known. The case ¢ = 1 was
proved in [29] and [17]. We give the sketch of the proof for the sake of
completeness.

TeEROREM 6. Lei 0 <p <g<1. Then ¢—H,(D) =
norms are equivalent.

AL, o and the

o
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We start with the classical lemma due to Hardy-Littlewood [20]
(cf. [16], 5.11).
LEMMA 6. If0 < p < ¢ << 00, A= p and o = 1[p —1/q then for f e H (D)
we have
1 7T 0
[ = { [ 1ftdya0] ar <oy
a1

0

In particular, (A = q) the identily is a continwous map from H,(D)
into ALy o for 0 <p < g<1.
Proof of Theorem 6. In view of Lemma 6 it is enough to repre-
ent every f(2) € ALy sy Iflpgp—e =1 88 & sum f(z) = 3 a,f,(s) with
,]? < const and |f,l, < const. This is done by approximating the
egral representation formula. It can be done by hand (ef. [29], Th. 2)
we can use Theorem 2 of [12], which in our special case gives

1 g

where £, € D and 212, < const. The H,(D) norms of functions appearing
in (4.1) are uniformly bounded (cf. [16], p. 65).

This completes the proof.

Now let (f,) be an arbitrary unconditional basis for H,(D) and leb
p < g<1. Using Proposition 4, Theorem 6 and Lemma 6 we see thatb
there exists a constant ¢ such that for every sequence of scalars (a,)
and every sequence of signs (e,) we have

stnan‘fnuaq/p P HZ nfn

In other words f, is an unconditional basis in A%,.,. So using Theorem
3 we obtain

THEOREM 7. The system (Cgi¥)L .y, m = 0, |k < m-++1 is an uncondi-
tional basis in A%, ¢ <1 for

a.alp—2"

g>1/m--%-12) and —L<a<gqm+k+2)-2.
Our goal now is to characterise A2 in terms of cocfficients with respect
to the system (Cg!™*)2.,. We start with

PropositioNn 5. Let f = Z‘ a, 0% e Hyy p > 1)(m+E--2), and let
ne=0

q > p. Then for some constant 0 = 0(m, &, p, q),
(3 layrntmi=sme < £,

ne=0
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Proof. As usual, it is enough to show that for every p-atom on T we
have

(fj | [ a0 ai|! 400 < congts
n=0 1'

We proceed analogously as in the proof of Theorvem 2. Let suppa < I
lalls < I~ and 27" < 1| < 27" We writo ’

S| awgmr@a| ptevi-ie

B I D | I eI

n=0 n>2" n>2
tyelor~tpel  ipeloand ~iy ¢l

=21+Zz —]‘Zs'

Estipmtes (3.8) and (3.9) give that >, and 3, are finite if ¢ is replaced by
p. Since we have p < ¢, we have the dogired inequality for 3, and 3.

N To estimate >, we use Theorem 1 (f) and the Hélder inequality to
obtain

DS ewmroa 3 o
Ine qu E.r tpeX
< Ol (f gn—ron (.% - 'jol_) ?2:“71‘)%9—

n=1

(=) P2, 8-
= (lalg2™" (54 (2 g (+ ?ZLQE‘%JE)J‘T?‘ < const.
TRy
The last inequality uses (2.1) and the fact that ¢ > ».
Lemma 5 and (2.9) give | Cgekyl,, ~ mM+E-1D, Thiy observation and
Pofopomtlon 0 imply that g —H,(D) for 12 ¢> p consists of all sums
> a,Cg™* guch that

nwsl

o0
: Z @ | TR EE o0,

Nl

w_here p, m and k are related ag in Theorem 2. This fact and Theorem 6
yield the following characterisation of A2, '
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TumoreEM 8. Let 1/(m-+k-+2)<q¢<1, —1 < a<"qm+k+2)—2.
The fumction f(&) 4s in A% if and only if

Fe) = D a0 (2)

M=)

and

0
2, |anIq'n(llz-]"kw(mw)/q)a < 00,

=)

This theorem can be comparcd (in the speeial ease of the unit dise)
with Theorem 2 of [12]. Our decomposition has the advantage over de-
composition from [12] in being unique. On the other hand the functions
Cg™* wo use are much less natural than the functions agsociated with the
Bergman kernel as used in [12] (ef. (4.1)).

Tn the language of funetional analysis Theorem 8 means that the
basis nlrda-k-l2ggnk )y in A%, with o, ¢, m, k as in Theorem 8, is
equivalent to the unit vector basis in1,. In particular we get

COROLIARY 3. The space A, 0 < ¢<1, —1 < o< oo, 4§ isomorphic
to1,.

This corvollary is known. (ef. [22], Th. 2.4 and 3.3) but as far as we
know Theorem 8 gives the first explicit construction of a basis in 4Z.

Remark 7. Since the dual of I,(D), p < 1, is clearly the same ag the
dual of A3}, , (cf. [29]) Theorem 8 allows us to give the formal description
of thig dual.

PROPOSITION 6. The dual of H,(D),p <1, can be identified with all

0
infinite series 3, a,0g™ %, p > 1/{(m-F%--2) such thai sup |a, | g~ W2+ E-1p)
n

n=0

< 0.

On the other hand, the dual of H,(D), p <1, has been described
in [L17] (cf. also [29] and [12]).

A function f € O(T) belongs to d,, 0 < a1, if

[f (8} =S (22)] {:_;Gd(tu ta)'y Hatael
and is said to belong to A, it
|f (1) —2f @) -+f(t—=h)] < Oh|

for all b and teT.
The result of Duren—Romberg-Shields [17] is as follows
PROPOSITION 7. The dual of H,(D), p <1, can be tdentified with the
space of all functions f continuous in D and analytia: in D such that &f

8 — Studia Mathematica 77.3
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1/m+1) <p<l/n (n=1,2,8,...) then
D" f(6) € Ayppon
if p=1/n41) (n = 1,2,3,...) then
D™f(e") € Ay

If we put together Propositions 6 and 7 and take into account that-
the pairing is the same in both Propositions we got a congtructive char
acterisation of smooth analytic functions in terms of cocfficients of
expangions with respect to systems Cyg™*, We also see that the dual of
H,(D), p <1, i.e, the space of smooth analytic functions iy isoraorphic
to 1,,. The non-analytic version of those results has been obtained by Cie-
sielgki (ef. [7]). '

Now we intend to apply our results to the investigation of complemen-
ted subspaces of H, (D). Our main result in this direction is the following.

TarorEM 9. Let X be an infinite dimensional complemented subspace
of Hy(D), 0 < p < 1. Then X contains a complemented subspace isomorphic
to 1.

This theorem answers the question asked in [22]. Let us remark
that for oo > p > 1 the analogous statement is not true.

ImvvA 7. If a p-Banach space X = X+ X, i8 a direct sum of ils
subspaces Xy and X, and if p < ¢ <1 then

g—X = (—X,)+ (¢ —&,).

The standard proof of this lomma is omitted.

Proof of Theorem 9. Let X be an infinite dimensional complemented
subspace of H, (D), ie., H,(D) = X+ Y. By Lemma 7 and Theorem 6
1—H, (D) = A}, = (L—X)-+(L—¥). Bince X is infinite dimensional,
we infer that 1—X is an infinite dimensional Banach space, Moreover,
by the definition of l-envelope of X {z € X: ||, <1} is 2 non-compact
subset of 1 —X. Let us take m such that p > 1/(m--2) and let us consider
(Cg™=..,, the unconditional basis in H,(D) and simultancously in A, _,.
By a standard perturbation argument we may assume that there are
functions ¢, ¢ X such that

Koy

(4.2) o= D aCg,
FETINESE

where every k, = 23(f) and s(r) is a strictly increasing sequence of integers
(4.3) el =1,
(4.4) Pdipaa>C>0 for r=1,2,...
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The proof of Theorem 9 reduces to the following two px:opositions:

ProPORITION 8. Let () satisfies (4.2), (4.3) and (4.4). Then a certain
subsequence of (p,) 18 equivalent in H, (D) o a wnit veclor basis in 1,.
Lpyy
ProrosITION 9. Let y, = 3 B,Cgf" be such that
J

o ol
(4.5) [o.Wpma =1 for r=1,2,..
P,
and
(4.6) Il < @ for  r=1,2,...

Then for every p-atom a(l)

4.7 2{ fa(t)w,.(t)d';! I” < congt.
r T

Assuming those propositions hold we conclude the proof of Theorem
9 as follows. Let ¢, denote the subsequence given by Proposition 8. From
(4.4) we infer that there exist ¢’s as required by Proposition 9. We de-
fine the projection P: H,~»span{p,} a8

P(f) = D [ 1)y, ()dt g,
A

In order to show that P is continuous it is enough to show that for every
feHy(D)

| Re [ fv. 0] < 0l
P
But for f such. that f(0) == 0 we have
Re [ft)p.()dt =2 [ Ref(l) Rey,(t)ds
A A

#0 P ig continuous by (2.9) and (4.7), :
Proof of DProposition 8. We will use some facts about uniform inte-
grability of funetions. The facts we neod are summarised in the following
LmmwiA 8. Let 1< a < 2, O 1 and let u be a probability measure. Lot
Fusfay oo in Lo(n) be such that [|f,1"du =1,n =1,2,..., and for every
sequence of soalars ¢y, 0g, ... we have '

(4.8) 0(f| 3 ental )" = ( 3 10al?)"
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Then there ewists o constant y and o Sequence of disjoint sets Ay, Ay, ...
such that for some subsequence ( ) we have

(4.9) ( [ \fwldu)" = .
Ap

The proof of this lemma can be found in [18]; the proof of condition
(d) in the proof of Theorem 3.1.

Let now ¢ denote any of the g,’s. Liet us factor @(2) == g(#)-h(z) in such
a way that ge H (D), 1<a<2 and he Hy(D), 0 < <2, L]a-1f ==
1/p and on the unit circle 7' we have [g] = o[/ and [B] = |p[PP,

We have by the Holder inequality

1w
1 .
(£10)  O<lplpms =5 | [ lolre) (L =r)r=tdras

0 -
1
<_1__f
“\on

0

. 1/2
ig(voi")lz(l—r)”“”ﬁdww) X

a3

.
1

7 12
% (-.1“ [ |h(9’0”)|2(1—-—r)””“‘%]rd()) .

2m
1

Lemma 6 applied for ¢ =2, p = f, 1 = 2 gives

1 @ 12
(4.11) (-21; f f I (r6”) 21 —r)””*ﬂdwdo) < Olhlly = Olgpllf” =0

From (4.10) and (4.11) we get

1 T
‘ __L ant04 12 e\ 2la2 Ve
(4.12) (% of_l g (1) P (L — )22 drdd) > 0.

If we write g(2) = 2 b,2" tho direct evaluation of the integral in (4.12)
Nl
gives

(413) (i‘ 11),,12n‘—2/t‘)‘/z >0.

ne=l
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Application of Tolder's inoquality and the Hausdor{f-Young theorem
in (413) gives (1/a--1/a" == 1)

w0 (3w S

Ttmsl) aiesl)

< IR 12 o 10

al - 1124 M N —a\1/2a
< (3t ]| Xn#][F e () atenet)

qpua( Ferenl) [

Tt ug now consider the operator I': I, (D)=l given by
o
T (2 %zn) = (an,'n’(‘hﬂ)lu)rmfmo'

Ao l)
By [16], Theorem 6.2, it s o continuous linear oporator. It ¢, = g, by,
we have by (4.14) [T'g,l = 0. Since ¢,(2) converges pointwise to zero
in D, the same is true about g,(z). This implicg that T'(g,) converges to
zero coordinatewise in T,. Using the standard gliding hump argument
(cf. [26]) we infer that some subsequence of T'(g,) is equivalent to the
unit veetor basis in I,. This means that the subsequence of ¢, satisfies
the assumptions of Lemma 8, So for further subsequence wo have o se-
quence of disjoint sots A4, < T’ such that

(418) . [l = [ lpn = 9"
Ar g
We have
(4.16) Jf \); apny" < D) [ o7 S 3 o
2 7] b T

To prove the other inequality we use the fact that ¢, is an unconditional
Dbasic sequence, 8o by the Khintchine inequality and (4.15) we have

1
win | S g0 a2 0 [ [ 3 arlo)p, 0 dids
'k [ A ]

=0 [ ey 7 (1) 02
a

203 [ el oy @ > 09 Y lad
oAy 3
Tnequalitios (4.10) and (4.17) eomplete the proof of Proposition 8.
Proof of Proposition 9, It Iy enough to show (4.7) with v, () replaced
by Rew,(1). Let us denote
Ky

Rop,(t) =1, (1) = D, P+
Fepet


GUEST


314 P. Wojtaszezyk

Let us take a p-atom a(t), suppa(t) = I, al, < [I]**~2, Let us fix R yuch
that kz' > I > kzk,.
For r < R we have by Proposition 6 and (3.1)

Fpgy

|[ atm@at| <o 3 ntm=m| [ o) gmal
Ep1 '

&{(r-1)

< O[Ila.;-z»-x/p Z‘ or(U/2=1[p)yn(8/2-45)
#(r)

< 0 Lpe-Hilrpita-ile

S0
(4.18) }j‘ Jatime @y < Clge=2+i 31a=Up < const.
r<R <R

To consider the case # > R let us observe that Theorem 1 (¢) implies

ake+1

(4.19) PRUACIEB LN

ne=gk

Trom (4.19) and Proposition 6 we infer

Fpg1
|[ atm@at] < el ([| ) pugi ) ar)”
I kptl

8(r+1)
< Olall( f] 3 gron-imgn gy
I 8(r)
. a(r-1)
< 0““”2 11\1/2 2 gn{1~1ip) <0 !Ill-—][nzs(r)(l-—l/p)
a(r)
80
(4.20) ZR ‘ Jalm @) < 0 k& D22 000 < congt.
>N
We have
(4.21) | [ ana®)at]|< jall: o < const.

If we put together (4.18), (4.20) and (4.21) we geb (4.7).
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5. Unconditionality in L,,1 < p < co. In this gection we will con-
centrate our attention on 7' and [0, 1] and p = 1. Gur main fool will be
dyadic H, and interpolation theorems. On I' we will work with systems
(@2, and on [0, 1] we will work with Clesielski’s gystems ( ’:’,"’“)n;,k,mm.
Tor tho definition and detailed investigation of those systems we refer
to [7]. Lot us only remark that (') = (fi) is a system of orthonormal
gplines on [0, 1], i.0, for —m <n <0 (f™ is the orthomormalisation of
the monomials 1, 4,..., %" and next we have an orthonormal system of
splines of order m corresponding to o natural dyadic partition of [0, 1].
fmk denotes the kth derivative of fi' if k2= 0 and (k) th antiderivative
if 20,

The difference between (@) congidered on [ —1,1) and Ciesiclski’s
systems lies in different behaviour at the endpoints. This brings in cert:in
asymmetry.

The interpolation theorem we will be using is tho following speciul
cage of Theorem D of [13].

PrOPOSITION 10. Let T be a continuous lincar operator from H, inlo
L, (in particular, from Hy into Hy; any H-space we arc considering works)
and from Ly into Ly, Then T' is a continuous Uincar operator from Ly, inio
Ly, for L<p<2.

A look at Theorem 2’ gives that (G™%)= . is ap unconditional basgis
in H,(T)for m >0 and k # —m—L1. Since (42 is also an uncondi-
tional basis in L,(T'), Proposition 10 gives that the system ()X, m > 0]
k] < m-+1, m # —m—1, is an unconditional basis in L,(T), 1 < p < 2.
In this range of m and % we can interpolate operators ™" (cf. Theorem
5’ and Theorem L1'(a)). The results are summarised in

PRoPOSITION 11, The system (G52 ,, m = 0, [k < m+1, b % —m—1
is an unconditional basts in L, 1 < p < 2, equivalent to 1.

By duality we get

PROPOSIITON 12. The system (GIPH)2 o, m 2 0, [kl < mA-1, T # m -1 is
an unconditional basis in L,, 2 < p < oo, squivalent to oo,

The next theorem allows us to consider also the exceptional cases
b= —m—1andk = m-1.

THROREM 10. For every sequence & = (&,)nup &, = =1 we define an
operator T™%: H, (T, 8)-»L, (T by

o ©0
i, ke m.k) ___ M le
Ta' (Z anG‘n’ ) = Za%&nan .
=0 N==0

For mz» —1 and |k| < m--1 we have sup|T™*| < oo,
&
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Proof. Once more the proof is patterned after the proof of Theorem 2.
Let o denote the dyadic L-atom and let I be a dyadic interval such that
suppa = I, llal, < |I]7"2. Let us denote |I| = 27V, Clearly, we have to
shaow

supsup [T  all gy < const.
a [
Let us write

TP = D) 4+ 3 4 Y [a@erTr e met

To estimate D) we observo that because I is dyadie G2»~*|T is a poly-
nomial, so if 4 is such that supp A < I and A’ = a we have

|[aemr@a | = | [ A@amre @l

< [I.A”2“(f[GZ'L"_"'i'l(t)lzdt)llz <0 2~—~N/:!%—-k»l-1g11,11(1.t71)_
I

Using this and the estimatoe & iz, < 00"~ wo gob that || 3|7 m
< const. ‘

The sum 2, is estimated exactly like (3.9). To estimato H wemay
observe that dyadic 1-atom is 1-atom, go like in the proof of Theorem 2
we can show that >, is a 1- molucul(,, 80 its norm in L (1) is uniformly
bounded. We can also give a direet estimate as follows:

W
()G (1) G (s) l ds
INaT n2 v
tpedl
172 (mh a 12
&[5, eouesmft( 3 B0
2 W
NI 7157;;” ineu
. N7 anage 12
<Olaly [ (D) nged) " as
™al N
e
< Ollal, f (\1 2" 22"th81>)"‘d
N4 =N

icm

H,-spaces, p< 1, and epline systems 317
o0
<Olal, 32" [ ¢"eDas
ne N ANy §
0l 2 g f ¢ s
ne N 9
o0 o
< ook 22“‘”‘” f g du < const.
NN gh=N

Algo

[| 3 [ amen-rmaess)|ds < a2 |1 < 2.

4L pmalN
tpeal

This completes the proof of the theorem.
* 'Wae can summarise our consideration as follows:

Tenormy 11. The system G°, m = —1, k| = m -1 is an uncondmonal
basis in Ly (T), L < p < oo, If |k| < m then thw basis 18 equivalent to n'y,.

The above theorem i & periodic analog of results of Ciesielski [8].
Unfortunately our method does not give the case |k|==m -1 in the equiv-
alence result.

Remark 8. Despite Theorem 10 the system (G"*)2_, need not bo a basis
for Hy(T, ¢). The trouble is that the norm of GI* in H,(T, 6) can be
substantially bigger than #*~2,

Now we will briefly describe the situation for Ciesielski’s systems.
The argument fully analogous to the proofs of Themem 2 and Theorem
b gives

TunoreM 12. The system (f2)uspems M= —1, ~m—1<Ek<0,
is an unconditional basis in H,[0,1] for p > 1/(m+k+2) Moreover, the
basis (f1o") s pe—m 0 H,[0, 1] 48 equivalent to the basis n" o i1 H,(8) for
p > 1j(m-4-T4-2). B

For & = 0 this theorem was establivhed in & different way in [30].

The trouble with the derivative (i.e., the case % > 0) is that its norm
in H,[0,1] may be bigger than it should be. To indicate this we will
prove

ProposSITIoN 13. Let f, denote f2°. The norm of fan in H,[0,1] is
greater than or equal to O -n-2™2,

Proof. The system f, is the classical Franklin system investigated
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in detail in [5] and [6]. Let us define

n i 0gLtg2?
p() = ]

—log,t if 27"t 1.
Tt is an easy and well known exercise that [jplye < const (cf. [25], Bx.
2.4). On the other hand,

1 1
[T e(dt = fnWp, O~ [Fun (e (1) a1,
0 0

Using Lemma 3 of [5] and exponential incqualitics for Feanklin functions
we infer that the first summand is of the order of magnitnde n-9%2,
The second summand is estimated ag

[ T O a@t] < [1fw(0)dssup e o))
< 0271/2.

Bince H, [0, 1]* = BMO, those inequalities prove the proposition.
Nevertheless we can repeat the proof of Theorern 10 tio get
Turorm 18, The operator T, & = (s,), &, = w1, |k < m-
—[—1, defiq%ed by 8 7 /Y vn - ’ = -1 l [ = +-

TR0 = oy,

18 a continuous map from H,( d) into Ly, and sup |T™"|| < oo,

This theorem and interpolation give

COROTLARY 4. The systom (fi"),o iy, M3 —1, (k| < m--1, is an
unconditional basis in 1,[0,1], 1 < p < oo,

R ‘emqu 9..Thcoroms 10 and 13 can be extended to p < 1 also. The
exte:gsmn i§ obvious. It was not given because we do not seo intercsting
applications.

Remfwrk 10. Like in Remark 7 and Propositions 6 and 7 there is
a connection between gmooth functions on [0,1] and H,[0, 1]* We can
algo got the characterisations of smooth functions in terms of coefficients
Wlt[lfnrespect to the systems (f7*). Those results have been obtained
mn . .
The g-envelopes of H,[0,1], p < ¢<1, have been describ
Aleksandrov [1]. N = hed by

N
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Addendum (Octobor 1982). After this paper has boen eompleted in November 1981
some additional results connected with splines in Hj-spaces were obtained. P. 8jolin
and J.-0. Stromberg (Spline systems as bases in Hardy spaces, Dept. of Math, Stocklholms
Univ. Report No. 1, 1082) have shown that the Ciesiclski system (f7%%) ig not an
unconditional basis in I, [0, 1] for p = (m4-2)-1 (¢f. Remark 5). J.-0O. Stromberg
has constructed a very nice systems of splines on % for which the results of [30] hold
(A modified T'ranklin system and higher order spline systems on K™ as uncondiltional
basis of Havdy spaces, Dept. of Math, Stockholmg Univ. Report No. 21, 1081). This
construetion of J.-0. Stromberg havoe been modified by the author in order to show
that Ilardy spacos of analytie functions on the complex ball are isomorphic for 1< p
< oo to Hardy spaces on the dise (Annals of Mathomatics 118(1983), 21-34). Almost
everywhere convergence of spline expansions of I, functions was investigated by
P. 8j6lin (Depb. of Math. Stovkholms Univ. Report No. 26, 1082),
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