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On the canonical extensions for
distributions in the space B, ,
by

MITSUYUKI ITANO (Hiroshima)

Abstract. We consider the problem of extension of u € 2/ (R,,), Bl = {(, ?)

€ Byy13 1> 0}, over B,y 80 as to vanish fort < 0. The canonical extension (u | B}, 1)~

exists for every u & By u(Byy) with 1 < p < oo if and only if (L42%)~12x-1(0, 7)
e LY for p > 1 and inf(1+1%)124(0, 7) > 0 for p = 1, where 1/p+1/p* = 1. Another
equivalent conditions are given in connection with the notion of multiplication of
distributions.

Let By be an N-dimengional Euclidean space and let &y be its dual.
A positive-valued continuous function u(&) defined on Fy is called a tem-
porate weight function if there exist positive constants ¢ and & such that
p(E+m) < O(L+1EM)p(n) for every £,1c8y. BY Byu(By), 1S5 < o,
wo shall understand the space of u € &' (Ry) such that its Fourier transform
& is a locally summable function and

lul2, = @)™~ [v (&) uP(£)dé < oo

and when p = oo we shall interpret |||, , 28 esssup |d(£)p(&)].

We shall agsume that N = n--1 and a point of B, ., will be denoted
by (2z,1), % = (2, ..., 2,). Let o(t) be any real-valued C* function of
t & Ry equal to 1 for ¢ 2> 2 and 0 for ¢ < 1 and putb g (f) = e(¢/e) for & > 0.

ag a distribution oxtended over R, ., 50 as to vanish for ¢ <e If ggu
converges in @'(B,,,) to «. for any ¢ as e}0, u. will be called a canonical
ewtension of w over ¢ == 0. Lot w e @' (R, ;). If the restriction u|R},, has
the canonical extension (w|R},,). we shall denote it by ., and call it
also the canonical extension of w in this papor.

The present paper is a continuation of the previous paper [3]. The
purpose of this paper is to investigate the canonical extensions for distri-
butions in the space B, ,(R,.,) in connextion with multiplication of
distributions.
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Given a distribution % e 2'(R;},,) we understand the distributional
boundary value lim,,u = a € 2'(R,) as follows: put

%e(1) = (1/e) x(t/e)
and consider y,(f)u as a distribution in 2'(R,.,). If the distributional
limit ‘lim,ox,% exists in 2'(R,.;) and equals a®J with a € & (J'Bn) ..’mfl
Dirac measure ¢ € 2'(R;) for any choice of ¢ with the properties just
indicated, we define a = lim,,u. We can also write

lim, ot (cy 8), %:(1)> = a in  P'(R,),

g = Q' and for e>0

namely,
RZ-I—I H

where Y ig the Heaviside function. In view of a theorem of S. Lojasiewiez
[51, p. 21, lim, ;% = o means that for any bounded open non-empty subset
@G X (—¢&g, &) < R,., there exist a non-negative integer %, a multi-index
8 = (81, -+.y §,) of non-negative integers and a continuous function F(w,?y
on G x(—oo, &) such that = a @Y +DSDEF (2, 1) on @ x(0, &) and
F = o(t*) uniformly on G as $—0.

By a restricted 8-sequence in 2(R;") we understand every sequence
of non-negative functions g, € 2(R;") with the following properties [7],
p. 91: ’

(1) supp g; converges to {0} as j—oo;

lim,, % (%, &) = a®Y in

(2) f 0;(t) @ converges to 1 as j—oo;
[}

(8) [ 11D g;ldt < M (M, being independent of j).
] ,

PRrOPOSITION 1. Let 4 € 2/ (R}, ). u has the boundary value o if and
only if Hmdu(-,t), ;> = a for every restricted d-sequence {o;} in D(R}).

J>ro0
Proof. Suppose lim,,u = o and takea bounded open subget @ x (0, &)
of R;}.;. Then we can write

4 =a®Y +DiDiF(5,t) in Gx(0,e)

with a continuous function F(z, t) on G X (—oo, g;) such that F = o(t")
uniformly as {—0. We have for any ¢ € 2(@)

Sy p(@) gy (1)) = <@, @) [+ (—1)1**(F, D3pD} o>
and ‘
[KF, DDk 05| < Mks? \F(2, )17 [ |Dsplde,

which shows that lim (u(:, {), ¢;> exists and is equal to a.
Foo
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Conversely, suppose that l_im <u(+y 1), 0> = a exists for every restrie-

o0
ted d-sequence {o;} in 2 (R;"). Let v be any non-negative funetion € D(R})
such that [y(t)dt = 1. Put %j(t) = (L/4)p(¢/4;) for a sequence {i} of
pogifive numbers such that 1,40 as j—co. Then {v..} is a restricted
d-sequence and therefore ’ :

;im<u(')2'jt)? ¥y = Hmdu(:, 1), 9, (1) =a,
—+c0 oo .

which means lim % = q.
140

COOROLLARY 1. Let w € ' (R},,). u has the boundary value lim v = o
. 3 .. . LLO
if and only if lim g;u = a®4 for every restricted S-sequence {o;} in D (Rf).
J->00

Let w € 2(R},,;). If (u, 0;> hasg the distributional limit ¢ in 2'(R,)
for every d-sequence {o;} in 2(R;), we call it the boundary value of u in
the strict sense and denote it by s-lim u.

o
COROLLARY 2. Lei u € @' (R;E,,). u has the boundary value s-lim 4 = a

if and only if lim o;u = a @4 for every 8-sequence {o;} in 2(R}).
F~ro0
Let w e 2'(R,,,). If lim (u| R, ,) exists, we shall also call it in this
m

paper the boundary value of u and denote it by lim %. The notationg lim Uy
t4o tto
s-lim % and s-lim % will have obvious meaning.
0 40

Let u,ve 2'(R,,,). If the distributional limit lim (u*g)v exists

for every J-sequence g; € 2(R,,), the limit is called %he product in the

strict sense and denoted by u-v. The partial product w-u in the strict sense

between w e 2'(R;) and u e 9'(R, +1) Mmeans (1®ew) v if it exists. The

above two definitions with {o;} replaced by the restricted d-sequence in

D(R, 1) [T], p. 91, yield the product %v and the partial product wu.
In accordance with 8. Lojasiewicz [5], p. 15, w e 9’ (B, ;) bas a gection

ae9'(R,) for t =0 if Hmd{u,p,) =a for any ¢ € Z(R,) with ¢(¢) >0

. 0

e
and [p(t)dt = 1. We can also write limu(x, sf) = a®1,. If the distri-
240
butional limit lim(u, ¢;> exists for every &-sequence 0; € D(R,;), then
G0

the limit is called the section of u in the sirict sense.

In our previous papers [4], [5], we have investigated the trace map-
ping for the space B, ,(R,.,) with 1< p < co. If the mapping 2(R, )
3 %->u(z, 0) € 2’'(R,) can be continuously extended from B,y (Bpypa)
into 2’(R,), then the extended mapping is called a trace mapping. The

image of u € B, ,(R,, ;) by this mapping is called the trace of w on t = 0
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'

and denoted by u(x, 0). The trace mapping is defined if and only if w0, 7)
& I? with p~*+p'~* = 1. In this cage, the trace u(w, 0) of u € B, ,(E,.1)
belongs to the space Bp,,,p, (R,), where »,(£) = { f WP (&, 7)ds} P for
p > 1inf (&, 7) for p = 1 with notation in [5], P. 662. We hawve

TumorEM 1. For the space By, ,(B,.;) with 1< p < oo, the following
statements are equivalent:
(1) The trace mapping B, ,(R,..) 3 u—>u(®,0) e 2’ (R,) is defined.
(2) The section of u for t = 0 ewists for every w € By, (
(2)" Condition (2) holds in the strict sense.

(3) The partial product du ewists for every u € By, (R,.), where 8 is
the Dirac measure in Ry,

(8) The partial product 6-u ewists for every w e By (B, 1)
(4) The distributional Timit L (1 ® 8)(u* g;) ewists for a fived resiricted

Boir)-

j—roc
3-sequence {o;}, o5 € D(R,,), for every 4 € B, , (R, 11).

(4)" The distributional Uimdt lLm . (1 ®0)(uxg;) ewists for a fiwed

oo ‘
S-sequence {o;}, 0; € D (B 1), for every we By (B, .,).

(8) The distributional limit limg;u ewists for a fiwed restricted

J—rc0
S-sequence {g;}, ¢; € D(Ry), for every w e B, ,(R,.,).
()" The distributional limit hmg,u emsts for a fived 8-sequence {o;},

0; € D(Ry), for every u EBp,y(-Rn—l-l)

(6) The boundary value limu ewists for every v & By, (R, 4.
o

(6)" The boundary velue s-Yimwu ewists for every ue B, , (B, ;1)
tho
(7) The distributional limit Lime;u  ewists for a fived

9 oo
d-sequence {o;}, 0; € D{(R;) with supp o; < (0, co).
(7Y The distributional limst lim o;u ewisis for o fived o-sequence {o;},
j—>o0

0; € D (Ry;) with suppe; < (0, o).

Proof. We have shown in [4], p. 178, that the statements (1), (2),
(2, (3), (8)’y (4) and (B) are equivalent. The implications (3)'=(4)" and
(8)"=(B)’ are trivial from the definition of the product in the strict senge
between distributions. The proofs of the implications (4)' = (1) and (5)
=(1) are carried out with any &-sequences instead of the restricted dJ-gse-
quences in the proofs of (4)=-(1) and (5)=(1) and the implications (3)
=(6)==(7) and (3)'=(6) =(7)" are trivial. The implications (7)=-(1) and
(7)"=(1) can be proved the same line ag in the proof of (5)=-(1).

Remark. We can replace hmu and s-hmu in (6) and (6)’ by hmu

and g-limu, respectively, and we have hmu limy = g-limu = g- hm'u.
o o 0 o o

restricted
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PROPOSITION 2. If hmu exists for every w € By ,(R,..,) with 1 <p < oo,

then limg;u = a®4 in BI,,‘
jroe
where o = limu and » = (1-+72)""y,
£40
Proof. We see from Proposition 4 in [4], p. 180, that « can be identi-
fied as a B,,, ,(R,)-valued continuous function of {. We have for any

v € D(B,41)

1) Jor every d-sequence {g;}, o; € D (By),
(&) with kp > 1.

<oy WY1 < [ oy (D05 D)l 190 5 Dl B8
< max [l (-, D,y 8% (-

where [lu(-, t)up,,p, <0, [lully,, and
90y Dl = {22 @07 [ (8

< [ [P e (a0 ey Rad)
= Oz 9l
The set {p; Qps; 01 € Z(Ry), g2 € Z(R,)} is total in B, ,(R,,,) and

”91 (91 ®Op2) — @2 (0) gy ( 6Hp x = 109 —,(0) 5]!p,(1+72)-—kl2”‘7’1ﬂp, 7
where g;¢, tends to ¢,(0)6 In B, 1.2~k a8 j—o0. By vu-tue of the Ba-
nach-Steinhans theorem, we see that g converges in B, ,(E,.;) to
a®d.
PROPOSITION 3. If hmu ewists for every w € By, (R,.,) with 1 < p < oo,

then (1 ®5)(’u*g]) tends m B, (Bpy) to u(z,0) as j—>oco for every &-se-
quence {o;} in D(Ry,,), wheve = (L+1%)~ "’va (&) with kp > 1.

Proof. The trace mapping B, ,(B,..) 2 v—>u(z, 0) € D'(R,) is defined
and %(z, 0) belongs to the space B,, ,(E,). Furthermore, we have

Py
(2% 05) (o, 0) —u(, O
for any u € By (Ryp1) [4], p. 169, and u*g; converges in B, (F,.1)
to w ([4), p- 179). Thus (1 @8)(u*g;) = (4xg;)(x, 0)8 tends in B, ,(F,11)
t0 (2, 0)6 as j—>oo, where # = (13-72) My, (&) with kp > 1.
Let P be a non-trivial polynomial of (&, 'r) and P (D) be the differential
operator.
PRrOPOSITION 4. If the boundary value limP (D)u exists for every

t)"p' 11”1)

’ ‘r)ei“’”dr\p’v;p' (f)df}llp'

)”;p,vp: S (2717)-”1) [l % %] —'M’"p,y

% € By, ,(Ry1y) with 1 < p <oo, then the tmce mappmg B, (Bpp) 24 —
[P(.D)u](w 0) € 2'(R,,) is defined.
Proof. The dlstnbu‘monal limit hm o;P(D)u exists for every re-

stricted d-sequence {o;} in D(R)) wmh support = (0, o) and hm gj.P(D)u
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=a®d with ae'(R,). Since the map 2'(E,,,)s w—gu € D' (R, ;)
is continuous, the map B, ,(R,.,,) 2 u—g.P(D)u e 2'(R,,,) is continuous.
By the Banach-Steinhaus theorem the map B, u(By i) 2 u—limg, P (D)u
j-r00
€9'(B,y,) is continuous. From the fact that lim g, P (D) = a®35 for
B -+00

any % € 2(R,,,) we can conclude that the trace mapping B, ,(B,..) 2%
—~[P(D)u](x,0) € D'(R,) is defined.

In our previous papers [4], p. 168; [B], p. 563, we have given

PROPOSITION 5. A wmecessary and sufficient condition that the irace
mapping By ,(B,.,) o u—~[P(D)ul(x, 0) € 2'(R,) may be defined is that
one of the following conditions is satisfied: In the case p>1
@ ppy (&) ={ [BEE0p™ (&, >0 forsome € 5,

En

@) [1P&, P w? (g, vy <o for every Ees,;
En

and in the case p =1

) sup P, (£, 7)p7' (£, 7) <oo  for some L€,
{2) sup |[P(§, T)[ﬂi(& 7) <oo  for every £e5,,

where Py(£,7) = 3 [PO(E, 7)") " and B (&, ) = max (P&, 7).
. ' . [a]| 320 a0

PROPOSITION 6. If the trace mapping B, ,(R,.,) o u—> [P (D)ul(=, 0)
€ 9'(R,) is defined, then the partial product 6-P(D)u emists for every u
'€B, ,(B,,), where § is Dirac measure in R, and 1 < p <oo.

Proof. Let ¢ ¢ 2(R,). Since P(D)(y®3) € By y/u(R,,,) for every
Y € D(R,) we have for every d-sequence {e} in (R,

(@) (P(D)urg), o) = Cuxeyy PD)p(@, ) @), 5., .
From the fact that %*g; converges in' B, (R,.;) to %, we can conclude
that the product (1 ®;§)-(P(D)u) in the strict sense exists, that is, the

partial prodict §-P(D)u exists. Namely, P(D)u has the section in the
strict sense.

The above considerations yield the following

TEEOREM 2. For the space B, ”(Rn;r;)‘wiih;l <P <oo, the following
statemenits are equivalent: o ’

p d(l) The trace mapping B, ,(R,.,) > u—>[P(D)ul(z, 0) € D'(R,) is de-
ined. : '

(2) l}ﬁﬂp (D)w ewists for every u e B, (R, .).
(2) s-]:'ﬁ;P(D)u exists for every u €B, ((By1)-
(3) The partial product 6P (D)u ewists for every ue B, (Byi1)-
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(3)" The partial product 6-P(D)u ewists for every u € B, ,(B,.1).

(4) The section of P(D)u ewists for every u € B, ,(R,,,).

(4)’ The section of P (D)u ewisis in the strict sense for every u € By, , (B, 1).

Proof. The implications (3)'=(2)'=(2) and (3)'=(3) =(2) are trivial.
The implications (2)=(1) and (1) =(3)’ are followed by Proposition 4 and
Proposition 6 respectively. The equivalence of (3)' and (4)’ (resp. (3)
and (4)) is shown in Theorem 1.

CoroLLARY. Let P, @ be polynomials such that the degree of P in < is

" larger than the degree of @ in . If im P(D)u exisis for every u € By, ,(Ry.1),
£o

then Um@Q(D)u ewists for every w € B, (R, )
£4o

Proof. B,(0, 7)u~(0, 7) € L* by Proposition 5 and so (0, v) ™
(0, v) € L. Thus the trace mapping By, (By11)2 %—[Q (D)u](z, 0) € 9'(R,)
exists and therefore limQ (D)u exists for every u e B, (B, ;).
0

COROLLARY. Let P be a polynomial in (&, 7) and m be ithe degree of
z. Then the following statements are equivalent:
(1) imP(D)u ewists for every u e B, , (K, ,)-
£40

(2) ™u(0, ) e L7,
w

(3) limw, ..., lim Du ewist for every u € B ,(Byq1)-
40 o .

Proof. It is sufficient only to show the implication (1)=-(2). Suppose
(1) holds. Owing to Proposition 4 the trace mapping

By, u(Bpy) 2 u—[P(D)u](z, 0) € 2'(E,)
is defined and therefore [|P(&,7){P u™® (&, 7)dr < oo for every &ef,.

From the expression P(£, 7) = 3 +/y;(&) with y, %0, we see that
" u~10, v) e L7, J
Letw € 2'(R,, ;). If limu exists, then the canonical extension (| R, ;).
i

=0

0

= u, exists. If the part;al product Yu exists, then . exists. In fact,
let ¢(?) be any real-valued 0% function of ¢ € R, equal to 1 for ¢>>2 and
0 for 1< 1 and put y = ¢'. Then g P'(R,), fydt =1 and g, = ¥y,
for e > 0.

PROPOSITION 7. The camomical ewtemsion w, ewists for every
% eB, (B of and only of (L-4+12)"2u"20,2)el? for p>1 and
inf (122" 4(0, 7) > 0 for p = 1.

Proof. Let p > 1. For any given v € B, ,(R, ;) We can take v such
that % = D;v — v and therefore the map v—(D,—4)v is an isomorphism
from B, (R,.,) with » = (14-2)"* 4 onto B, ,(R, ). Inthis case, u, exists

if and only if the distributional limit limo exists. In fact, if ljﬁw exists,
o
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we can consider v|R;7,, as a solution to the equation Do —iv = v with

initial value limv. By Theorem 1 in [2], p. 18, we see the existence of u., .
140
Conversely, suppose %, exists. Since v|R;,; has an extension over ¢ = 0,
we see from Proposition 7 in [2], p. 21, that Hm« exigts. Thus u, exists for
: C e

every u € B, ,(R,.,) if and only if the trace mapping B,,(R,.,)2v
~0(x, 0) € 2'(R,) i defined, namely, (14 &) 5~1(0, 7) € I*". Similarly
for the cage p = 1.

ProrogirioN 8. Let P be a polynomial in (£, v) and m be the degree
of P in ©. Then the following statements are equivalent:

(1) (P(D)u), ewists for every u & B, ,(R,,.,)-

(@) P L+ (0, %) e I¥ for p > 1 and infle|~™ (L + 3" u(0, 7)
>0 for p = 1.

(3) gy (Dyti)yy ..oy (DY), ewist for every ue B, (R,.,).

Proof. For any given u € B, ,(R,,) we can find v € B, ,(R,,) Wwith
% = (1+7%)" 4 such that Dv —iv = u. From the equation (D, —i)P (D)
= P(D)u we see that (P(D)u} + exists for every ueB,,(R,.) if
and only if lim P (D)v exists for every v € B, (R,,,), which is equivalent to

30
(422 470, ) € I for p > 1 and inf|v|~™ (1422 u(0, 7) >0
for » =1, namely, limo,...,limDPv exist for every veB,,(R,.).
10 1241]

‘We can show along a similar line as in the proof of Proposition 7 that the
last statement is equivalent to statement (3). .

Let us consider the map u—wu, of 2(R,,,) into 2'(B,,,). D(R,..)
is dense in' B, ,(R,,.;) with 1 < p < co. If the map is continuously extended
from B, ,(R,.,) into 2'(R,,,), we shall denote by ¥ the extended map.
The map ¥ is defined if and only if ¢, € B/, (R,,) for every ¢ e D(Ry 1)
In fact, if ¥ is defined, then the map Z(R,,,) s p—Cy,, ¢> = (y, ¢ R
pe2(R,,,), can be continuously extended on B, (B, .,) and thergfore
94 €(Byu(Bpin)) = By yju(Buy). Conversely, if ¢, € By yu(Ryy,) for
every ¢ € 2(R,,,), then the map B, ,(B,,) 2 u—(u, ¢, > is continuous.
From the fact that the injection of @(B,,,) into B, .(R,.1) 18 continuous
and the map B, ,(R,.1) 2 u->pu € B, ,(R, ;) is continnons with ¢ € &# (R,..1)
[1], p. 39, we see that the map P, 3 p->o¢ € B, ,(R,y,) I8 continuous
for any compact subset K of R, ;. (% tends in B, (B, ;) to @, as &)0.
Owing to the Banach-Steinhaus theorem the map 2D(R,.,) 20—,
€ B, ,(Ry.) is continuous and therefore we can write by @10 = Wyy Qoo
with w, € 2'(R, ;). If we take % = ac Z(R,.,), then w, = a,. Thus
Y ig defined. .

Let Y Dbe the Heaviside function on R,. Then we have

TerROREM 3. The following statements are equivalent:

() The map Y of B, (R, .,) into &' (Bp11) 18 defined.

On the canonical exlensions for distributions 329

(2) The partial product Yu exists for every u B, (Bypa)

(2)" The partial product Y -u emists for every u € B, .(Ry1y).

(3) The distributional limit Yim(uxg,) Y emists for a fived restricted

P
d-sequence {o;}, 0; € D(R,,,), for every B, (B,.1)
(8)" The distributional limit Lim(u*p;) Y emists for a fized 8-sequence
J—o0
{e}; 05 € D(By ), for every u € By . (Byiy)-
(4) The distributional limit Lim( Yxg))u exists for a fiwed restricted
F=ro0
o-sequence {g;}, o; € D(R,), for every u By u(Bppa).
(4)" The distributional limit Bm (Y « o)u ewists for a fived G&-sequence
J—ro0
{o} ¢ € D(R,) for overy u € B, (R,,.).

(5) The canonical ewtension u + owists for every u € B, ,(B,.,).

(6) The distribulional limit Hm (Y xo)u exists for a fiwed restricted
5-sequence {o;}, ¢; € Z(R,;) with supp 0 < (0, o), for every ueB, (R, )

(6)" The distributional limdt lim (Y * 0;)u ewists for a fiwed S-sequence

J=rc0
{o}s 05 € D(R,) with suppe; < (0, o), for every u € B, (B,..)

Proof. Since the implications (2)=(3), (4), (5), (6); 2) =(2),
(3), (4, (6); (3)" =(8); (4) =(4) and (6)'=-(6) are trivial, it suffices to
show the implications (1) =(2)’, (3)=(1), (4)=(1) ((6)=(1)) and (5)=(2).

(1)=(2)': Suppose the map ¥ is defined. Then Yy € Byypu(Bpyy)
for every y e 9(R,,,). Let u eB,,(R,,,) and {e;} be any d-sequence
in 2(R,,,). Then we have

{X(uxgg), 9> =t 0 ’l"+>Bp,p,Bﬁl,1/,n
where u+g; tends in B, (R, ,;) to u as j->oo.

(3)=(1): Suppose (3) holds. Since the map u->u+ g is continuous
of 2'(R, ,,) into &(R,,,), the map % —>(u+g;) ¥ is continnous of By o (Byin)
into 2'(R,.,). By the Banach-Steinhaus theorem the map

By (B )3 u +jli1£(u ) Y e 9'(R, )
is continuous and therefore there exists Wy € By (Rpya) such that
'(}B::(’“ %)Y, 99,0 = {u, WD By, Bt 2l
for every ¢ € 2(R,,,,). If we take v = a ¢ 2(R, 1)y then
oy wy) = <jlifor:(a* o) Y, 9> = {a¥, ¢) =<a, 9,0,

From the fact that 2(R,,,) is dense in By u(Bpya)y, We have ¢. = w,
€ 'Bp',llu (-Rn-}-l)'
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(4)=(1): In the same way as in the proof of (3)=-(1) the map
By u(By1) 2u—>Hm (¥ xg)u € D' (R, ;) ‘
j—>c0

is continuous. If we take 4 = a € 2(R,,,), then lim(¥ % g;)e = a, and

Jro0
therefore the map ¥ is defined. Similarly for (6) = (1).

(8) = (2): Suppose .. exists for every € B, ,(R,.,). By Proposition
7 we have (1+72)""24"1(0,v) e L and by Theorem 1 we see that the
partial produet dv exists for every v e B, ,(R,.,) With x = (L-12)V24,
Forany given « € B, ,(R,,.,) we take v € B, , (R, ) such that « = D,v —iv.
By the existence of the partial product 62 = X' we see that ¥Yvand ¥ (D,v)
-exist. Thus Yu exists.

PROPOSITION 9. Assume that the canonical exiension u+ ewists for every
%eB,,(B,.,) with 1 <p < oo. If (¥xg)u belongs to a space B,,(R,.;)
Jor a 8-sequence {o;}, 0; € D(Ry), then (X = o) tends in some space B (By.1)
a8 j—o0.

Proof. If we take v such that D,v —iv = w for any given u e By (B 1),
then v e By, (By) With gy = (147224 and

(Ywg)u = (Dy—i)((Txg)0) +igyv,
where g;v tends to limv®4 in By (Bpyy) with » = (1 —Frﬂ)"”/“vl(é),
o .
(8 = {Ju1? (&, 7)dz} %" with kp>1. For any given &> 0 there
exishs j, such that ¥ (g; —g;) = 0 for |f| > e and any §, j’ >j,. Thus we
have for any y € 2(R,,,) and for any j, ' = j,

KY xg)v—(Txgp)v, 9> < f LT % (g5 — @) 1003 )l 10 (-3 8l 8

< Wl Wolray [ 17 (0 — o) it

and therefore {(¥ *g;)v—(¥*gy)v} is a Cauchy sequence in By (B i)
with kp > 1. From the fact that (¥xp,)u €B, ,(RB,,;) and (X xg))u—
—(¥*e,)u is a Cauchy sequence in B, (R,.;) With s, = (1+2)~"2y,
if we take % = min(x, x,), then (¥ ¢)u tends in B, (R,,,) to Yy B
j—>oo.

PrOPOSITION 10. If the partial product Yu exists in By u(Ry.1) for
every u € B, ,(R,.,), then the map Bp,F(Rn+1)$@a+Yu € By, (By.) i
continuous, where p > 1. ’

Proof. Let u; € B, ,(R,,,) and suppose u, tends in By (Bpi1) to %

and Yw; tends in B, , (R, ) t0 v a8 j— co. Then we have for anyp e D (R,,,)

O P28, Byt 1 = ;]i]f.} Ty P8 By = jl_iﬂ(Yuj, Pr9.8
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and for every d-sequence {g;}, 0; € F(R))

{Xujy 99,9 = Tim Cuy, (T ALIPRES ]un ity (X % 0y) qp)Bp./va‘,I/u

= < PP 0By
and therefore

<v, ¢>BP,A,BI,',]/“ = <“;‘P+>B,,),,,Bﬁ,'llﬂ-

Moreover, we can write

<ty ‘P+>Bpm,1?p«,1/” = E{:(% (Xx 94)¢>B,,_,,,Bpl,1/,,

= Wm{(X %), Pdg,e = (Xu, 9,9
= <{¥u, P2 B, Byt 1
Thus we obtain v = Yu, which completes the proof.
Assume that the map B, ,(R,.,) s u—Yu €B,,(R,.;), 1<p <oo,
is continuous. Then, if we consider the adjoint map, then we see that the

partial product ¥v exists for every € By u(Ryyq) and Yo e By (Boyyy)-
In this case

SO+ PP (£ ) dr < oo JA+a)2 42 (¢, 7)dr < co.

We denote by By, the closed subspace of B, ,(R,,,) consisting of
the elements of B,,(R,,,) with support in R, where 1< P < oo.
D(Rf,,) is dense in B}, . Similarly we can consider the space B ,.

PROPORITION 11. Assume that the partial product Yu ewisis for every
% €B, (R,.1), »>1. Then the Jollowing statements are equivalent:

(1} Yu € B, (R, ,,) for every u €B, (R, .1).

2) YueB,,,, (B, 11) for every w € By 1Ry pq).

(3) Yp.e By, 1, (R,..) for every pe D (R,,,) and
~+ B, (topological sum).

(4) Y()J E-B_'p,,u(RnaH) fOT every o € @(Rn-f-l) and Bp‘,l‘/y (-Rn-M) = B;’.l//l -+
-+ By 1 (topological sum).

Proof. It suffices to prove the equivalence between (1) and (3).

(1) =(3): Suppose (1) holds. If we pub . = Tu, u_ = (1—¥)u,
then w, € B}, u_eB;, and u = Uytu_. If we assume B;, NB;,
]15.LS & non-zero element, then u(0,7) eL? and every u € B, 1,',‘(Rn_k;)
will be identified with By, (B,)-valued continuous function of # +with,
v(€) = {[ 4P (& 7)dz} Y7, which contradicts with that P4 € By 1 (B i)
fm" every ¢ € 9(R,.,). Thus By .aB;, = {0}. By the preceding prop-
osition the maps By (Bypy) 2 =, e B, and By (Byy) @ 4—>u_ € By,
are continuous. ’

and

Bz:.n (Bpya) = sz,n
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(3)=(1): Suppose (3) holds. 2(R},,) and 2(R,,,) are denge in :B;,*’,,
and B, ,, regpectively. The map 1: @+ @@, Of -@(R;‘}-l)j‘"g(ﬁn}-l) .II}tO
D(R},,) is continuous, that i8, il < Olprt@sly, With a positive
constant C. Since D(R;}.,)+ 2(R,.;) is dense in By ,(Ryi1), if; suff}ces
to U(p) = ¢, for any pe2(Rf)+2(Ry,,), which is an immediate
consequence of the definition of the map I.
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on the occasion of his 70th birthday

Abstract. Itis shown that for each compact set B = & (R") there exist 4 € & (R")
and a compact set B’ < & (R") such that B’ = B holds (essential part of the
“compact strong factorization property’’). The same property is shown for s (rapidly de-
creaging sequences) and #(£).

Introduction. The starting point of this paper was the question of
Kamiriski whether lin(#*%) = &, or equivalently, lin($ %) = & holds
([11], Problems 4 and b, p. 282). We give an affirmative answer by showing
that &+ & = & holds. More precisely, we show that & has the compact
strong factorization property, i.e., roughly speaking, that a compact
B < & can be written as #B’, with 4 e & and compact B’ = &. (Let us
mention that lin(2 «2) = 2 is known from [157, [7].)

Factorization properties are known for Fréchet algebras having
a uniformly bounded approximate wunit. From the known factorization
theorems for Fréchet and Banach algebras we bhave extracted a rather
strong concept of factorization property (cf. Definition 1.1), which is sat-
isfied in Fréchet algebras having a uniformly bounded left approximate
unit. We show that this factorization property is also satisfied in a certain.
clags of Fréchet algebrag of differentinble functions, which do not lLave
a hounded approximate unit. & (R™) and #(2) belong to this clags, for
quasi-bounded £ = O < R™

"In Section 1 we define the concepts of Fréchet algebra, strong fac-
torization property, (uniformly bounded) left approximate wunit. We stato
the factorization theorem, and we mnote that reflexive Fréchet algebras
having no unit cannot have a bounded approximate unit. We mtroduce
4(9) and show that #(R"™ has a uniformly bounded approximate unit.

In Section 2 wo define a clags of Fréchet algebras 47 (R2) of m-times
differentiable functions on 2 = £ < R* (0 m< ). If the weight
function y e 0(R) is such that there exists a certain kind. of partition
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