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Abstract. The main results, in the terminology of Aliprantis and Burkinshaw
[A&B], and Fremlin [F'] (this terminology has been changed for the reasons “intrinsic’
to this paper), are as follows. Let (I, v) be a Hausdorff locally solid Riesz space. It
embeds order densely into a Nakano space (I, +3) if (and only if) v is Fatou;
this embedding is unique. A Dedekind complete (L, r) embeds order densely intio
a Hausdorff locally solid Dedekind complete Riesz space (L¥, i) having the Monotone
Completeness Property if (and only if) v is pseudo-Lebesgue.

Let Q be an extremally disconnected topological space, 0°(Q) the
Riesz space of continmous functions, from 2 into the extended real line,
which take finite values on dense subsets of Q.

In the first part of this paper a theory which parallels the one of
Banach. function spaces by Luxemburg and Zaanen [4], is initiated on
0*(8). Function filters and their topological vector cores replace function
norms and their Banach function spaces. This permits to treat the general
locally solid case. In § 1 the (topological) completness properties of vector
cores are investigated.

In the second part, to an order dense Riesz subspace of ¢ with a
locally solid vector topology appropriate function filters are associated.

In the third part the previous results are applied, via the Maeda—
Ogasawara representation theorem, to general locally solid Riesz spaces.
The main results are as follows.

Let (L, ) be a Haunsdorff topological Riesz space.

(L, 7) embeds order densely into a Hausdorff locally solid- bomzdedly
order- complete (L*, v%) if (and only if) © is locally solid-order-closed; this
embedding is unique up to an isomorphism.

4 Dedelkind complete (L, ) embeds order densely inio o Hamdorff
locally solid Dedekind complete Riesz space (L™, t%) having the Monotone
Completeness Property if (and only if) = is locally solid-pseudo-order-closed.
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A metrizable locally solid (L, v) embeds order densely into an F-lattice
(L%, 1) iff the following condition is satisfied

() 0<2,t <y in I, (w,) v-Couchy =wm,~>a in (L°, %),
where ©° 43 the ‘solid hull of v in the Dedekind completion L° of L.

§ 0. Vector cores of function filters. Let RB™ denote the real line
compactified by -+ co and —oo. The rules for addition and multiplication
are extended to oo in the usnal way, in particular

(£00):0 =0+ (koo) =0,  (:00)+(F o0) = (£ 00) —(00) = 0

In what follows 2 iy an extremally disconnected topological space,
0°= (% (Q) = 0*(2, R*) the Riesz space of continuous functions from.
L into B*™ which take finite values on dense subsets of 2 (see [L&Z],
p. 322), 0% = ((Q, R°°) the collection of all contmuouls functlons from .Q
into B®.: .

0% ig a universally eomplete Rlesz space, i.e., it is laterally complete
(any disjoint family of positive elements hag the supremum) and Dedekind.
complete. Clearly, 0% is order isomorphic to 0(Q, [ —1,1]), an order inter-
valin 0%, and therefore i order-complete (in the sense that for any = o (@)
hag the supremum # i.e., #,%2). There are no difficulties with multiplying
the elements of €= by real or even extended real, numbers. The situation
ig, however, a bit precarious wn;h the addition so that % is nof a vector
space. Throughout this paper the Riesz space terminology and notation, if
not explicitly changed, follows [A&B] L will be the generic notation for
@ Riesz space.

Leét X be 8 vector space, Approprlate filter bases around 0 define
uniquely group or vector topologles on X. For instance, if # is a filter
base in X such that it is

(i) symmetric: YV e, V = —V,
“(il) summative: VV e 3T eﬂll s0 that U4 U = 'V

then # defines a unique group (i.e., compatible with the additive struc-
ture of .X) topology om X for which # is a (filter) bage of neighbourhoods
of the origin. Conversely, any group topology = on X has a symme’crm
summative base of neighbourhoods of 0.

It turns out that for purposes of the present research it will be very
convenient to speak and to think in terms .of filters. Aecordingly some
terminology will be introduced.

Filters will be considered in (% (hence, in particular, in C%, 0%,
a Riesz subspace of 0, ete.). A filter bage is central if any of ity member&
containg 0. In what follows only such filter bases (filters) are considered.

Completeness lype properties 35k

Let # be a filter base, and &F a filter in C%. Suppose the elements.
V e % have a property P. Then % is called a P-filter base. # iy a P-filter
if it is generated by a P-filter base. For instance, & is sohd in C= if it.
has a base % so that each ¥V e % is solid in 0%,

For obvious reasons, a balanced summative absorbent (resp. symmetric
suminative) filter base'is called shortly a vector (resp. group) filter base.
If a vector (group) filter base is moreover P on L, then the topology = that
it defines is locally P vector (group) topology and (I, ) is a locally P tvs
(topological vector space) or tg (topological group) or even tRs (topologicalk
Riesz space). For instance, if % is solid vector, then v it defines is a locally
solid vector topology, (L, 7) is a locally solid tRe, and the filter of neigh-
bourhoods of 0 for r is solid and vector.

A net. (z,) is converging to 0 in % if for each V e % there exists a 8o
that {w: = a} <= V.

. A seb B is %-bounded if it iy absorbed by any T/‘ EU U is Hmasdorff
it N {V: Vea} ={0}. .

Recall that a Riesz F-semi-norm (F-norm) e on L ig a monotone F-semi~
norm. (F-norm), i.e., such that (| < |[y|=o(2) < ¢(y). In particular o(x)
= p(|#]) for all x € L. Tf o is homogeneous, then it is 2 semi-norm (norm).

On C= (similarly as in [4], where it is done on M) function semi-norms

" and norms can be defined. Tt happens so, however, that function F-semi-

norms (F-norms) do not really exist. When the assumption of homogeneity
is dropped, the resulting object turns out to beé a function group semi-norm
(norm). Furthermore, a ‘non-metric’ generalization of a function group
norm can be given in terms of a filter in 0%.

0.1. DeFINITIONS. A filter base 4% on 0¥ = 0(R, RY) is said to be
a pre-function filter base if it is solid and summative.
A functional g: CF->RY is said to be a pre-function group semi-rorm if

(i) e(0) =0,

(i) e(@+y) < e(a)+eo),

(i) 2 <y =e(®) < e(y);
it is & _'pmfmut%on group norm if

(iv) g(oo) = Qg == 0,

One extends %% and ¢ on the Whole (% by defining

U = (T = (00 n| e V): VE e aF),
o(®) = o(je]) for wel™,

Then % is said to be a function f ilter Dase, and @ a function group (semi)

norm. The filter # generated by % is a function filter.
Note that one has indeed UF = UPNOF and that #= is ho]l(]
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For any (central) filter base # in 0% set
o(0%, %) = {p € (F: lim(1/n)x =0 in %},
v(0®, %) = {w € 0”: lim(1/n)w = 0 in %}.

0.2. ProPoSITION. Let % be a Hausdorff solid base of a filter & on
0%, Then v(0%, F) = v(0%, &) = v(0°, %).

Proof. Take » e 9(0%, ). If » € (° there is nothing to prove and
80 suppose x € 0¥\0=. Replacing & by |#|, it can be agsumed that » is
positive. Then {f € 2: (1) = oo} is closed and not nowhere dense, hence
contains an open-closed set B s @ since Q is extremally disconnected
(closure of any open set iy open). For each ne XN, (1/n)w= (1/n)oyy
= oig = yg¢ V for some V in %, as % is Hausdorff, This means that
o ¢ v(0%, %) and implies the result.

0.3. Remark. o(0%, %) is symmetrie (resp. balanced, solid, ‘sum-
mative’) subset of 0 provided % is such. In particular, it is visibly a vector
subspace of C® if it iy generated by a balanced summative filter base.

Let # be a function filter and let 4 be a bagse generating #. Then
% defines uniquely a locally solid group topology x* on C* for which

U® 1= URNO™

is a base of neighbourhoods of 0.
Indeed, taking the pre-function filter base %%,

AU 1= UZNO®
is summative since %EE is such. It follows that
U* = {wel: || eVY): VY ¥}

is summative. It is clear that 2 is also solid. As ‘solid + summative’
== ‘golid +group’, #> defines u>.
Consequently, it is natural to write

2(0%°, p*) = {w e (®:=lm(1/n)z = 0(p)} = v(0*, Z™)

and it is clear that v(0%, x*) is the largest vector subspace of 0* on which
u® defines the structure of a topological vector space.

The pair (0(0%°, u®), u*Nv(0°, u*)) is called the topological wector

core (TVOQ) of # or u™. Denoting it by (M, p), M = v(0®, &) is the .

vector core (VO) of & (or p*) and u = u=n M.

As u® is locally solid, uis so0, too. Moreover, M is regular in C®and is a
solid vector subspace = an order ideal of 0%, i.e., M is a Dedekind com-
plete Riesz space on its own right. Taking into account 0.2, a remarkable

characterization of the vector core M in terms of (% holds in the Hausdorff
situation.

v
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0.4. PROPOSITION. Let & be a Hausdorff function filter with a base w
@=. Then

M = o(0%, F) (= o(0(%, UF))

i.e., any €0 (0%, F), a priori a member of (%, is in M. M is an order ideal
of 0% with a Hausdorff locally solid vector topology defined by ihe base %
= YBNM of neighbourhoods of 0.

Liet L be an arbitrary Riesz space. A topology = on L is (locally solid)
Order-continwous (oc) if @ N =, >0 (7).

A Riesz F-gemi-norm ¢ on L is semi-order-continuous (soc) if x,ta
= o(w,)} 0 (®). Let & = {g} be a family of such Riesz F-semi-norms. Then
the canonical filter base of closed neighbourhoods of 0 that £ defines,
iy golid order-cloged. The corresponding topology is locally solid-order-
closed (Iocally 8-0-¢()). By a result of Fremlin ([F'], 23 B) any locally s-0-¢
topology arises in that way (i.e., may be defined by a family of soc Riesz
F-semi-norms).

A property P having the form of a condition on the behaviour of
7 or ¢ with respect to a monotone net () may often be reformulated by
imposing the additionial requirement that (z.) be Cauchy. Then the result-
ing property is qualified as pseudo-P. In particular, v on L is (locally
solid) pseudé-order-oohﬁnuous (pseudo-oc) if @, }w, (,) Cauchy = 2,~»(7).
Similarly, v on L is locally Solid-pseudo-order-closed (locally pseudo-s-0-¢(*))
if it admits a (solid vector) filber base ¥ of neighbourhoods of 0 so
that 42, (¢,)7-Cauchy, (#,) = V=>zeV, ie., Ve¥ are pseudo-order<
closed. . ‘

§ 1. Completeness properties of topological vector cores. Assume that
o function filter # on (% is given and let (M, u) be its TVC,ie, M
= 9(C%, ) and u = M Np™, where u* is a locally solid group topology
defined by & on 0.

1.1. DEFINTTIONS. A solid subset V of (= is said to be
(i) Fatou it 0< wtw in 0%, (2,) c MOV =z eV.

() The double possible meaning of the abbreviation ‘g-0-¢’ will not cause any.
confusion as ‘locally semi-order-continuous’ has no sense. On the other hand, it is
nice to have locally s-0-c topologies genérated by soc F-semi-norms!

(% At first glance, the ‘locally solid pseudo-order-continuous’ could also ab-
breviate —by the same transposition —as locally pseudo-s-0-¢’. Even this, miraculously
enough, would not cause any real danger asin 1.4 below it is shown that both notions
coincide. In reality the adjective *locally’ does not apply to ‘pseudo-oc’ which is not
 property of any filter base of neighbourhoods of the origin (a closer look revels the
lack of a hyphen between ‘solid’ and ‘pseudo’) thus ‘locally solid pseudo-o¢’ is the
correct version, . o

3 — Studia Math, 7.4
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(i) boundedly Fatow if 0 < w, fzin (%, (r,) = AV and is p-bounded
=5eV.

(iii) pseudo-Falow if 0< o in €%, (2,) « MV and is u-Cauchy
>peV.

According to the grammar adopted in §1, the notions of a Fatou,
boundedly Fatou or pseudo-Fatou filter and filter base are clear. In par-
tieular & itself may be such.

1.2, DeriNiTIoNs. Let (L, 7) be an arbitrary locally golid tRs. A solid,
subset V of I is said to be

(1) order-complete if 0 < x4 o V=p = supa, eV,
(ii) boundedly order-complete if 0<a,t < V,(w,) r-bounded =z
= gupw, € V.

(iti) pseudo-order-complete it 0 < w,} = V, (a,) v-Cavchy =-a = supa,
eV.

Again, the notions of order-complete, boundedly-order-complete
and pseudo-order-complete filter or filter base are clear. Furthermore,
by analogy with the ‘locally s-0<c’ terminology the following abbreviations
are adopted for a topology: it is locally S-0-0 = locally solid-ordex-
complete; or locally boundedly S-0-C = locally solid-boundedly-order-
complete; or locally pseudo-8-0-C- = locally solid-pseudo-order complete.

1.3. Remarks. (1) To avoid any confusion in 1.2, it would be perhaps
better to write in these conditions openly that # € ¥ means that o = SUP X,
exigts in I and moreover belongs to V.

(2) It is immediate that if (L, ¢) is a regular Riesz subspace in the
TVO M = 0% v = punL and V < I, then ¥ is Fatou (resp. boundedly
Fatou, resp. psendo-Faton) iff it is order-complete (resp. boundedly order-
complete, resp. pseudo-order-complete), i.e., ‘Fatou sets bocome order-com-
plete sets’.

(3) It is also clear that a boundedly Fatou (thus, a Fatou) filter
induces an order-closed filter #n L in L. Similarly, a psoudo-Faton &
induces a pseudo-order-closed filter in I.

(4) It may happen that I itself is boundedly-order-complete. Then,
(L, v) will also be qualified as having the bounded order-completeness prop-
erty (BOO property). Note that this is the weak Fatou property of Luxem-
burg and Zaanen [4] and the Levi property of [A&B].

(5) One can thus also call (L, +) as having the psewdo-order-completeness
property (POC-property) when L is pseudo-order-complete: 0 < »,4 Cavi-
chy in L= = supax, e L.

(6) I*‘inall}ﬁ note that ¥ < 0% js order-closed (0 < o tw, (@)= V
=z eV) in 0= iff it iy order-complete therein O<vtcsV=eV).
This is due to the fact that (= itself is order-complete.

icm®
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1.4. PROPOSITION. Let v be @ vedtor topology on o Riesz space L. The
Jollowing are equivalent:

(i) = s locally solid-pseudo-order-closed.

(i) = is locally solid pseundo-order-continuous.

Proof. (i)=(ii): Let ¥ be a solid pseudo-order-closed filter base of
neighbourhoods of 0 in 7. As 7 is locally solid, N = the closure of 0 in
7, i8 & closed order-ideal in L. Consider the (Riesz) quotient X == L/N.
Let x be the quotient topology on K and let ¢ be the quotient map. (K, »)
i8 a Hausdorff locally solid tRs and let (K, %) denote the Riesz topologieal
completion of (K, ») (see [A&B], p. 43). Suppose (i) holds and let z, 1@,
(#,) -Cauchy in L be given. Then 4(2.)1, q(@,) is x-Cauchy and g(a,)
< ¢(2). Let & = % —limg(a,) = supqg(a,) in K. Clearly, & < ¢(») and sup-
pose & # g(x). Set

Yo = Q(-’")*Q(%); By = Zg....g(ma);

Yo a0d 2,40 in K. Then y = 2—limy, > 0 and in fact y > 0 since other-
wise g(@) = &. Find V e ¥ so that ¢(V), a neighbourhood of 0 for #, is
such that ¢(V)(:= the closure of ¢(V) in (K, «)) does not contain y({m:
V e?7} is a base of neighbourhoods of 0 for #). As E(—VS is solid and ¥, )y,
for all a,y, ¢ (V). On the other hand, (z,) being Cauchy, it is possible
to find an a so that (43—2,)p. = V. Note that (g —a,)}2 —2, (In B)
and is 7-Cauchy. As V is pseudo-order-closed, # —a, € ¥ ; hence Yo = q(x) —
—q(x,) €q(V) < ¢(V); a contradiction. This gshows that ¢(#) = & which
means that (ii) holds.

(i) =(i): A Riesz F-semi-norm o is pseudo-soc if (of course) =z, te,
(w,) =-Oauchy = go(x,)te(»). Note that (ii) implies that any continuous
Riesz F-semi-norm ¢ on (L, 7) is pseudo-soc. Thus the family 2 of all such 0
defines 7, and the canonical base ¥ of closed neighbourhoods of 0 de-~
fined by £ is obviously solid pseudo-order-closed.

Remark. The notion of a locally psendo-s-o0-¢ topology seems to be
new. Even though it coincides with the “docally solid pseudo-o¢’ (= pseundo-
Lebesgue of [A&B]) I will use both names to stress certain analogies.
For instance, it is the use of a locally pseudo-s-o-¢ topology which leads
to the pseudo-Fatou property and I do not see how the pseudo-order
continuity in this context could be relevant.

1.5. PROPOSITION. The following are equivalent:

(i) (L, =) has BOC property and = is locally 5-0-c, i.e., (L, 7) i8 a Nakano
space [A&B].

(i) (L, 7} ds locally boundedly S-O-C.

Proof. Only (i) = (ii) needs the proof. Let V e¥ = a solid order-
closed base of neighbourhoods of 0 for 7. If 0 <z} V and (x,) is
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z-bounded, then » = supz, € L by BOU, honece x e V uping the order-
closedness of V. This means that V is boundedly order-complete..

Note that Nakano spaces are necessarily Hausdorff and z-complete
[F), [A&B].

1.6. ProrosrrioN. The following are equwalem

(i) (L, ) has POC property and is locally p.sewdo -8-0-C,,

V(i) (L, 7) ds Tocally pseudo-S-0-0.

(111) (L, -c has the Monotone Completeness I’wperi Y (M(JL’ [A&BT:

<o, < L, (%) v-Oauchy =a,~0(7)).

Proof. (iii)=(i) is clear. (i)=(il): Analogously as in 1.15 above.
(ii) = (iii) : I 0 < @,} v-Cauchy is given in L, theh ,}e = supa, by (ii).
Now, applying 1.4, 6,~x{7).

1.7. TuporEM. Let & be a Hausdorff boundedly Fatow (resp. pseudo-
Faiow) function filter in O%. Then dts TVC (M, u) is locally boundedly
8-0-0C (resp. locally pseudo-S-0-C).

Proof. Let %% be a Hausdorff boundedly (resp. pseudo-) Fatou filter
base generating #. Then % = #®NM is an order-closed (1.3 (3) above)
(resp. pseudo-order-closed) base of neighbourhoods of 0 for x. Take
0 <ot = M, () pbounded (resp. Cauchy). Then z,fx in (% (as it is
order-complete). By boundedhess, for any U e % there exists n e N so
large that ((L/n)a,) = U. Since (1/n)w,t(l/n)z, (Lim)w e U= as U™ is
boundedly Fatou. In the pseudo-Fatou case, given U e %, choose V e %
80 that V4V < U. As (@,) is p-Cauchy, there exists o, so that for any
Byaz= oy, 25—u, € V. Find n € N so large that o, g enV. Then wﬂ—w - @,
eV+nV cal ie, ((Lm)gpme, = U= U, Bub ((1/n) @g)ga, I8 - sz~
chy and increases to (1/n), Whenee (1/n)o e US ag the latter get is pseudo-
Fatou. Thus in both cases » e v(C%, #%) = M by 0.4. This shows that
(M, ) has BOC (resp. POO). As it is locally s-0-¢ (resp. pseudo-s-o-c),
the result follows by 1.5 and 1.6, respectively.

1.8. CoROLLARY. Let & be o Hausdorff pseudo-Fatow funclion filter in
0% and (M, u) ¢s TVC. Suppose (M,u) is intervally complete. Then
(M, u) is complete,

Indeed, the interval completeriess --MOD implies completeness ([A&B],
7.7). v ~
1.9. CoROLLARY. Let & be a Hausdorff o-pseudo-Fatou function filter
in 0% which admits a countable base. Then its TVC (M, u) is (memzabla
and) complete.

Arguing ag in 1.7, (M, u) is locally, o-psendo-order-complete, Thus
(ef. 1.6) has o-MCP. This implies completeness in metrizable spaces (ef.
5.3 below).

1.10. CoroLLARY. Let & be a Hausdorff boundedly Fatou function
filter in C* and suppose moreover that its TVC (M, u) is locally bounded
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(i.e., kas a base of bounded neighbourhoods of 0).
8-0-C.

Indeed, & bounded boundedly-order-complete filter base is order-
complete. )

Then (M, u) is locally

§ 2. Generating function filters. In the preceding section to a given
function filter & its vector core, i.e., the largest solid vector subspace M of
0® 50 that Mn& iz a (solid) veector filter was associated. A converse
question is studied now. Given a solid vector subspace L of C” equipped
with a solid vector filter of neighbourhoods for a topology 7, a function
filter 7 inducing the original one on L is produced so that its vector
core is the largest golid vector subspace in C* containing I. The results
are also given without assuming that L is solid.

Let L be a solid subspace of 0° = (°(2, B®). Consider a subset
Q' of Q defined as follows

Q" = closure (\J ({t: #()> 0}: z e L,)).

Then £’ is an open-closed subset of 2, in particular, it is an extremally
disconnected topological space on its own right, and L < 0°(2') = {zy0-2
@ € (*}. Furthermore, observing that the disjoint complement of L in
€= (2" is {0}, L is an order dense subspace of °(2’). Thus, more generally,
from now on the assumptions are made as follows.

L is an order dense Riesz subspace of (*(2) and ¥" = {V}is a solid
base of neighbourhoods of 0 for a (locally solid) vector topology = on L.

The process of enlarging ¥° will be done in two steps. The first step
is nearly obvious. As the search is for a solid in €™ filter base and ¥ is
not so unless L is solid in €%, define

501 = {so0lV: Vev},

i.e., sol 7" is the filter base consisting of solid hulls in 0* of members of ¥".

As easily checked, 80l V801V < g01(V 4+ V). Thus sol?” is a solid
summative filter base in (€ and in fact in) sol.L. Since for any » e solL
there exists y € L, with |¢] <y, it is clear that sol¥ is absorbent in sol.L.
Thus, finally we have

2.1. PROPORITION, sol¥ is a solid vector filter base im solL which
induces ¥ on L (i.e., sol¥" NL =) and defines a (locally solid vector)
topology solv on sol L. If ¥ is Hausdorff then sol¥” (hence solv) is so, too.

The latter statement is an easy consequence of the order denseness
of I in 0* and follows also from 2.3 in view of 2.4.

Let now o be a ‘Riesz F-semi-norm (resp. F-norm) on L. Then, if

={V = {o: o) < a}: acR,},
sol o (@)

=inf{o(y): || <y}, » esoll
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is the F-semi-norm (F-norm) so that
golV = {x: solo(x) < a}.

If ¢ is homogeneous, sol ¢ is such. If ¥ defines the topology = and # = {o}
is a family of Riesz F-semi-norms defining v, then sol# = {solg} defines
solz.

In the enlargement (sol.L, sol7) the new elements are added to the
members V of ¥ ‘from below’ since solV = {{y e 0%: [y| < a}: we 143
As we bave seen, all and only the elements of sol.L are added. Another,
in a sense complementary, procedure in which the new elements are added
‘from above’ can be defined as follows. )

Let H be an arbitrary subset in (% (in partioular, L, 0%, 0% itgelf,
etie.). By definition, for & € 0%,

H, =Hy ={yel: y <z}
With this notation, for a set W < (% define
2.2. Wg ={pecl=: H,c W},
Wag={#ecl®: Hyc W} =WsnC>,
In what follows when H = L is understood, the notation W% and W™
is used.

2.3. ¥® = ({V=: Vev} is a solid filter base in O=. In partioular,
5ol ¥ is finer than ¥,

Indeed, suppose » € V= and y € 0%, |y| < |#|. Then I, < L, implies
L, =V, hence y € V™.

2.4. ¥ is Hausdorff provided ¥ is such.

Indeed, let # € 0% and @ € (" {V=: V e¥}. Then L, = (\{V: V e¥}
= {0}. Hence for each y € 0%, |y| < |2}, L, = L, = {0}. This means that
{C%), = {0}. It is obvious that if # € (% is non-zero, then one can find
a non-zero ¥ € 0™ with [y| < |#|. Thus (0%); = {0} implies z = 0.

The following characterization of »(0%®,¥'=) in the Hausdorff situ-
ation will be very useful.

2.5. Suppose ¥~ is Hausdorff. Then we have v(0®, ¥S) = o((F, ¥'S)
= {# € (®: L, is ¥ -bounded).

Indeed, the 7"-boundedness of I, implics that for any V e¥ there
is m e N so large that (1/n)L, = Ly, = V. It follows that (1/n)a e V&
i.e, & € v(C%, ¥%). But v(0%, ¥%) = V(0°, ¥F) by 0.4.

When one looks ‘55’ and ‘oo’ as procedures by means of which the
original set V is extended, on the first extension of V again such pro-
cedure may be applied and different iterations can be considered. The next

result tells, roughly speaking, that all the new clements has been added
already in the first step.
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2.6. Assume thai the first exlension VE = VS has been performed and
set
L¥# = (0, 7<), V# = V3nL*,
Then
(i) (V¥)2y = VS (hence L#* = I#),
(it) (V)2 = V= (hence (To)geo = V™),

(iii) (Va)gv'o_a = V=,

A moment’s reflection shows that (iii) implies (ii) and (i). Now, observe
that for any 2 e(0%),, L, = L,, hence L, = | J{L,: 2 €(0%),}. Take x
€ (V&')Giu, i.e., ¢ 80 that (C%),= V=, Then for any z e (0%),, z € V% which
means precisely that IL,eV. Hence V o | J{L,: ze(0®),} =L, i.e.,
ze Ve,

Let 7= be the (locally solid group) topology defined by ¥ in the case
¥ is summative. Then '

2.7. The vector core L¥ = (0™, v™) is a closed subset of (0%, ).

Indeed, take z,— 2 (7). Choose W, V*™ ¢ %™ 5o that W LW = V=,
Furthermore, take o so that #, —z, € W™ for all 3> ¢, and then n e N
80 large that (1/n)w e W™. Note that (1/n)s = (1/n) (—,)+ (1L/n) 2,
e W=+W> < V=, Hence z e v((>, 7).

Remark. One can check that in fact TV = 7>, i.e., ¥ is a closed
filter base.

A question arises what are conditions characterizing those I for
which (starting from a solid vector filter base on L), one obtains ¥'® gen-
erating a function filter or, equivalently, those L for which ¥ % is sum-
mative. A sufficient condition is that I be solid in 0.

2.8. Remark. As T is assumed automatically to be order dense,
L is solid in €% if and only if L is Dedekind complete.

2.9. Assume that L is solid (Riesz subspace of C*), Then ¥ 48 sum-
mative.

The proof will be done in two steps. First note that

(i) Given @, y € % and ze L, there exist o', y'eL, such that
R = (b"-!—y', mlgwiy, <Y.

To see this, recall that any Riesz space M has the so-called decompo-
sition property: if &, %,y e M, < #+y implies the existence of positive
@',y such that o' <@,y <y and 2 = 2'+y'. Define B = Q\closure
{t: w(t) < oo}, F = Q\closure {t: y(f) < oo}, £’ = Q\FUF. These are
open-closed sets. Set

& = 2oy Dy = BYgy, Y1 = Yar

These are functions in O®(Q’) thus by the decomposition property of
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C*(Q') there exist 21, y; such that

@A) <Oy, H<Yxo and g = op-hyy

In particular, as I is solid in ¢, L(Q') = {#yg: @ € L} is golid in ¢*(0Q");
hence .

(2) @y, ¥y are in L{Q')

ag they are majorized by 2, which belongs to L (£'). Consider 2, = 2xu p,
Wy = WXpur) Yo = YXgur; and define

(1/2)%(1) on BAF  (1/2)a(t)
@y (1) = { 24() on INF 0 = Y (1),
0 con  FNE 2 (t)

By the same argument ag above, these are continuous functions in L (EUTF),
By K Byy Yo < Ys DA 2y = @y+y,. It is visible that o' = o1-+a;, and
Y’ = y;+ ¥, are ag required in (i). ‘

Now, take w € V§+ Vg. Then w = a-+y with ,y e V%. Take 0 <z
€L,. Then z< a4y and by (i) 2 =a'+y e VRNL+VNL = V4 V.
Hence w & (V+ V)=,

Recapitulating 2.2-2.9 we obtain

2.10. PROPOSITION. Let L be a solid (order dense) Riesz subspace of
C% and ¥ a solid base of neighbourhoods of 0 for a (locally solid) vector top-
ology v on L. Then the base ¥ generates a funciton filter, denoted by 7,
on 0%; its vector core (L¥, %) is Hausdorff promded 7 48 80 on L and
¥NL =1,

* Assume now that (I, ¢) = (™ is a Riesz space with a Riesz F-semi-
norm (F-norm)e. Then if ¥ = {V = {w: o(w)< a}: ac R},

e=(@) = sup{e(¥): WI<lol}, @el=,
is-an extended real valued functiomal defining ¥'= = {V%: ¥V e¥} by
putting
V® = {w e (®: g%(w)< a}.
If L is solid in 0%, then ¢% is a function group semi-norm (norm), If g iy

homogeneous, ¢ is such.
As a corollary one infers

2.11. The function filter T 1, can be generated by

() a fundtion group semi-norm (vesp. morm) if and only if it admits
a countadle base (resp, Hausdorff base);

(ii) @ family of fumetion group semi-norms of the form %, where g is

a Riesz T-semi-norm in the corresponding family (of Riesz F-semi-norms)

defining the topology v in L.
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Assume 7" is moreover (pseudo) order-closed. Then it is natural to
ask for (pseudo) order-closed enlargements of ¥ . Clearly, sol ¥ is no more
appropriate a procedure of enlarging ¥". An idea would be to replace solid:
hulls by something like their (pseudo) order-closures, as follows

801V = {w e ¢=: w1z, (w.) < s0lV},
pseudo-sol V = {z € 0%: I}, (z,) Cauchy, (z,) < solV}.

The underlining bar is here an ad hoc notation for the ‘one step order
closure in 0%’ and ‘(#,) Cauchy’ is with respect to solz on solZL.

Let us examine what these definitions really give.

The ‘order-closed case’. T& 0z e s0lV and 0 <y < &,y €L then
z,Ayty. But each z,Ay €501V, 50 by definition of the solid hull for each
@AY there exists u, > @Ay, u, V. Taking finite suprema of u,’s an
increasing net (w;) is defined in . Then (wsay) = V and weAyiy. Hence
y €V by order-closedness of V. This implies that L, < V ie., @& V®.

Furthermore, defining ¥ in an analogous way to solV one infers

212, ¥V c s0lV = Vo< V or, in other words, the estension prooedwe&
¢ % ‘sol’ and ‘0 coincide.

This coincidence has a remarkable consequenee

2.18. Suppose V., W ¥ are such that V+V = W. Then Vo4 Vs = We.

Indeed, VE+ VS = Vi+ Vi « Wi = W,

2.14. PROPOSITION. Let L be a Riesz subspace of C° with a locally
solid-order-closed wector topolog y . Then T, is an order- complete Sfunction.
filter in O, In particular, Ty, is Fatou.

Proof. Noting that (V®), = Ve, 7% is summative by 2.13 ie., T3
is a function filter. To gee that it is order-complete in (%, take 0 < #,1 < Vo
and let » = supa, in C%. For any 0 <y € L, m,Ayly and (w,A9) = sol L.
Henece by the argument used before 2.12, y € V. It follows that & ¢ V.

The ‘pseudo-order-closed case’. Assumlng maore about L, an analogue

J" 2.14 holds true:

2.15. PROPOSITION. Let L be a solid Riesz subspace of C% with a Tocal-
ly solid-psendo-order-closed wector topology . Then Iy, zs @ pseudo- l’mfou
Junction filter.

Proof. ¥ is summative by 2.9. Thus it has to be shown that pseundo- V#*
= V%, To this end, take 0 <,4 = V¥, (n,) +*-Cauchy. Let & = supa,
in (% and 0<<yeL,. Then 2Ayty, (@AY) < VFAL =V and (z,A9)
is 7™¥NL = 7-Cauchy. As V is pseudo-order- closed 9 € V. It follows that
2z € V®; hence pseudo-VH# < V3,

I haJve asserted at the beginning of this section that. I* is the lax gest
vector space associated with (L, 7). This needs. some discussion which
will he postponed to the following section.
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§ 3. Enlargements.of Riesz subspaces in (. Let I be a Riesz subspace
of C* equipped with a solid vector filter base ¥". According to the conven-
tion adopted in §2, L is automatically assumed to be order dense in ™.

3.1. DeriNITIONS. (i) A solid subset M of 0% with a solid absorbent
filter base % is said to quasi-enlarge (L, ¥) or to be a gquasi-enlargement
of (L,¥)if L « M and #nL ~ ¥ (i.e., these filter bages are equivalent).

(ii) A Riesz subspace M with a solidl vector filter base % is said to
enlarge, or to be an enlargement of (L, ¥") if

) L <M,

(2) M is an order ideal (= solid vector subspace) of 0%,

(3) UNL ~%.

Remark. Thus an enlargement is a ‘summative’ quasi-enlargement.
When vector filter bases ¥°, % on Riesz subspaces I, M are concerned,
the more familiar language of topologies can and will also be used. For
ingtance, if ¥ defines v and % defines y, then, clearly, (M, u) enlarges
{L,v) iff (M, %) enlarges (L, ¥"), etc.

Generalizing this definition in another direction yet, instead of one
space (L, =) (where 7 is the topology corresponding to ¥') and its enlarge-
ments in 0%, one can consider compatible families of subspaces.

A family {L,} of order dense solid subspaces of 0%, each L, equipped
with a locally solid vector topology =, is compatible if v, coincides with =,
on L, = L,nL;. Denoting by 7,, the common topology on L., it i3
clear that

(i) L is solid order dense in 0%,

(i) (La, 7.) and (Lg, 75) are enlargements of (Lyg, 7o) .

One can consider compatible families assuming, e.g. that Log 18 7,
and 7, dense in L, and Ly, respectively. The latter happens automatically in
the order-continuous case. One can also assume that z, are locally s-o-e,
then in view of 2.13 there is no need to assume I, to be solid, ete.

There is a natural ordering 3 between the elements of a compatible
family and also between quasi-enlargements of (L, ). Notably, if
(M, %), ¢ =1,2, are in the family or are quasi-enlargements, then

(My, %) -3 (M, %,)
it M, = M, and %, is finer than %,.

The adjectives smaller and larger may be used with respeet to -3 in
a natural way. It will be shown now that given an (L, 7), (solL, solv)
ig its smallest or minimal enlargement and (L, 7) is the largest or mawimal
quasi-enlargement of (L, ). With this terminology, the onlargement

((soLLy*, (sol7)*). is the min-max enlargement.

Remark. An interesting result about the min-max enlargement
is 4.10 below. A study of a compatible family is done in [2]. Tt is casy to
see that for each a, (L¥, +¥) is truly a maximal element of the compatible
family {(Z,, 7,)} mentioned above.
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In what follows L, M are Riesz (order dense) subspaces in 0® with
locally solid vector topologies z and u, respectively ; 7" and % are respective
bases of solid neighbourhoods of 0 for = and u. o

3.2. PROPOSITION. Suppose (M, %) enlarges (L, ). Then we have
(sol.L, s017") 3 (1L, %).

Proof. (solL,sol¥") enlarges (L,¥’). Clearly, as M is solid in ¢
and contains L, solL = M. Since #NL ~ ¥, there is V< UNL. As U
may be taken solid, U = solV; whence sol¥” is finer than %.

3.3. PROPOSITION. Suppose (M, %) quasi-enlarges (L, 7). Then (M, %)
=3 (L*, ¥¥). In particular, if ¥ is summative, then (I*, %) is the largest
enlargement of (L, ).

Proof. Given #e U, I, = M, nL = UNnL which means that = e
(UnL)7. Hence U < (UNL)E, ie., # is finer than {UnL)3: U enl.
The latter filter base is, however, equivalent to {V%: ¥V e¥} which
implies the result. :

3.4. PROPOSITION. Suppose (L, v) < (M, u) with the continuous in-
clusion and, moreover, either

(i) @ 4s locally solid-order-closed, or

(ii) L is solid in M and L is u-dense in M.

Then (L#*,7%) 3 (M*, &%), In particular, if both (L¥, %) and
(M¥*, u*) are the respective enlargements of (L, 7) and (M, u) (i.e., ¥*,
U¥ are swummative or equivalently ¥, 4% are function filter bases), then
(L#*, 7%) < (M*, u¥) with the continuous inclusion.

Proof. For each U e % there exists V ¥ with V = U. Take z € Ve
and consider 0 <y e M,,.

The (i) case: # may be assumed to be order-closed; and by order
denseness y = supZL,. Clearly, Lycl,cVe<U But U is order-cloged,
hence y € U. It follows that @ e Usy; this means that ¥ % is finer than 3,
and implies the result.

The (ii) case: By w-denseness it is possible to find (y,) = L, 4.~y (u).
Replacing (y.) by (y,Ay) if needed, it may be assumed that (y,) « V. It
follows that 4 € ¥ = u-closure of V in M. But ¥ < U, a8 U may be as-
sumed to be u-closed. Hence M, = U,xe U, cte.

Remark. Note that if Dedekind completeness is agsumed, then the
assumption that L be solid in M iy automatically satisfied. Compare 2.8.

3.5. CoROLLARY. Suppose (L, 7) is o solid subspace in (M, p) (i.e.,
L is an order ideal in M and unl = ). Oonsider the following conditions :

(i) (Z¥*, ¥*) is a quasi-enlargement of (I , U).

(i) (L¥*, 7%) = (M*, %) (i, L% = M¥* and VS Gy,

(i) L 4s p-demse in 1.

Then (1)< (ii)<= (iii).
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Proof. (a) Observe that (M*, %) is a quasi-enlargement of ( L,"lf),
whenee (M*, 02/1*) -3 (I#, 7¥) is always true by 3.3,

(b) (i)=(ii): By (a) only (L*,#™*) -3 (I¥*, #*) has to be shown.
But if (i) holds, this follows by 3.3 again. (ii) =(i) is trivial.

(¢) (ifi) =(ii): By (a) only (L*,¥#) -3 (M*, %*) has to bo shown.
This is a consequence of 3.4 (ii).

3.6. COROLLARY. Suppoée (L, 7) 48 @ locally solid-order-closed subspace
of (M, ) (4.6, L = M and L = v is locally g-0-¢ on L.} The following
are equivalent:

(1) (Z*, v¥) is an mlamamam of (M, u).

(©) (L*, %) = (M*, u).

(i) (M, p)-4s locally solid-order-cloged.
Proof. The argument in 3.5 gives (L*,¥™#) = (M*, #¥), But now,
by 2.13, 7# is vector, hence #* is such. This gives (i)« (ii).

(ii) = (iii): (L*, -ﬁ*) is locally §-0-¢ by 2.14 and 1.3 (3). Tence (M¥, u*)
is such by (ii). It follows that (M, u) is locally s-0-¢ (order denseness
implies regularity). ’

(iii) = (ii) can be shown as in 3.5 using 3.4 (i) instead of 3.4 (ii).

3.7. ProposrrioN. Suppose (L, ) is. a solid Hausdorff tvs con-
tained in 0. The following are equivalent:

(1) (L, ) 4s locally solid-pseudo-order-closed.

(i) (L, 7) i a subspace of the TVC of a Hausdorff psaudmﬁ’atou

function filter F in 0%,

(iii) (L, 7) is o subspace of the TVC of the Hausdorff pseudo-Fatow
function filter T, in %, )

Indeed, (iii) = (ii) and (ii)= (i) ave clear, (i)=-(iii) is the contents
of 2.1042.15.

. By a similar argament, one also has

3.8. ProrosITioN. Suppose (L,7) is a Hausdorff tRs. contained
in C®. The following are equivalent:

(i) (L, ) is locally solid-order-closed.

(ii) (L, 7} i8 a subspace of the TVC of o Hausdorff baundedl y Fatow
function filter F in C=.

(i) (L, v) is @ subspace of the TVC of the Hausdorff order-complete
Sfunction filter Ty, on 0%,

3.9. DermvIrIoN. Let #, ¢ be funetion fﬂters on. 0%, They are said
to be core-equivalent if they have the common TVOC.

In 3.7, in view of 8.3, (M, u)  (I*, 7%} continuously (where (M, u)
is the TVC of #). I do not know how to characterize the situation in-which
(M, p) becomes a subspace of (L¥#, 7#) (i.e., when (M#, u¥) = (L¥, r¥)).
A sufficient condition is in 3.3.
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3.10. PROPOSITION. Given a Hausdorff (order dense) (L, ) in C%°, all
boundedly Fatou function filters whose TVC’s enlarge. (L, ©) are equivalent.

Proof. By 8.6 (M*, u*) = (L%, 7*). Purthermore, as (M, u) has
the BOC property (cf. 1.3 (4)), it is clear that (M*, u¥) = (M, u) (sce
2.5). Thus, finally (M, z) = (I*, *), i.e., the TVC of &, and the one of 7,
coineide.

§ 4. Completeness properties of locally solid Riesz spaces. Given
an Archimedean Riesz space I, let %, be its Boolean algebra of projections.
Ay, is Dedekind complete ([L&Z]), 22.7 and 22.8), and therefore by a the-
orem of Stone ([L&Z], 47.5) can be represented as the algebra of open-cloged
subsets of an extremally disconnected compact Hausdorff space £2.
By a theorem of Maeda and Ogasawara ([L&Z], 50.8) L can be embedded
01der densely into 0*°(£2;), i.e., there exists a Riesz isomorphism

8: L C®(2;)

so that S(I) is order dense in (*(2;) (which means also that S is order
continuous). Therefore, C°(2;) is a realization of what is called a uni-
versal completion L* of I ([A&B], 23.19). Any two universal completions
of I are Riesz isomorphic. Thus, identifying Riesz isomorphic spaces,
it will be convenient to think of I as an order dense Riesz subspace of
the universal completion L* = €*(Q;). With this convention, the solid
hull solL of I in 0% (&) is precisely the Dedekind completion L’ of L
([L&Z], 50. 8). Furthermore, if I is’an order dense subspace of some Archi-
medean Riesz space M, then M is Riesz isomorphic to an order dense
Riesz subspace of LY. Hence if L may be embedded order densely into
I, then still M* = L* provided L is identified with its image in I/ ([A&B],
23.21). This establishes a one-one correspondence of the notion of the
enlargement of I « 0% (2,) as in 3.1 and the following
4.1. DurINITION. Let L, M be Archimedean Riesz spaces with locally
solid vector topologies = and p, respectively. (M, u) is an enlargement
or enlarges (L, 7) if
(i) there exists a Riesz isomorphism §: L~M so that S (L) is order
dense in M,
(i) 8: (L, v)~(M, p) is & homeomorphism ono its image,
(iii) M is Dedekind complete.
Note that (iii) comes from the fact that an order dense I = 0% is
DC iff it is solid.
Agreeing that an isomorphism iz a map which preserves all structuros
and an embedding is an isomorphism into(’), 4.1 may be expressed by

() That is, for instance, in (i) an embedding == linear injection preserving
sup and inf = Riesz isomorphism into; however, in (ii) it preserves moreover tho topo-
logical structures involved.
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saying that (M, u) is an enlargement of (L, 7) if it is a DO locally solid
tRs so that (L, 7) can be embedded order densely into.

Similarly, (L#, v#) is just a locally solid tRs isomorphic with (L#, %)
constructed in § 2. Since solL = L%, a symbol usually connected with the
Dedekind completion, (L’, +°) replaces (s0lL, solv); the min-max enlarge-
ment is (Z°%*, +*%), ete.

1.7 and 2.14 imply directly

4.2. TugoreM. A Hausdorff locally solid tRs (L, z) can be embedded
order densely into & Tocally boundedly 8-O-C space (L*, v%) if and only if
48 locally solid-order-closed. This embedding is unigque up to an ssomorphism.

The uniqueness statement follows by 3.10 and means that if (L, 7)
embeds order densely into another locally houndedly S-O-C (M, u),
then (L¥*, o) o~ (M, u). ’

4.3. THEOREM. A Hausdorff Dedelind complete locally solid tRs (L, v)
can be embedded order densely into (L¥*, v*) hawing additionally MOP if and
only if v s locally solid-pseudo-order-closed.

While 4.2 seems to be an optimal result, some further digscussion
connected with 4.3 can be done. As mentionned in § 1, locally boundedly
3-0-0 spaces are topologically complete. However, I do not know whether
L¥ is v¥#-complete in 4.3 above, nor do I know whether a stronger adsump-
tion that (L, 7) is intervally complete implies 7¥#-completeness of L*. The
next two results show that these are really questions concerning the
interval completeness.

4.4. PROPOSITION. ' The following are equivalent:

(1) Any DC Hausdorff locally pseudo-s-0-¢ (L, ) has v¥-complete L*.

(i) Any DC Hausdorff locally pseudo-s-o-c¢ (L, 7) has intervally v-
complete L+,

(iii) Any DC Hausdorff locally solid (L, t) having MCP 4s intervally
T-complete (and hence t-complete [A&B], 7.7). ® )

Proof. (i) = (ili): MOP =locally - pseudo-s-o-e=IL%* is r#-complete
=L is intervally z-complete (as L may be identified with a golid sub-
space of I¥).

(iii) = (i) : Given (L, v) as in (ii), it has (L*, +*) having MCP by 4.3
above. Hence by (iii) applied to (L*, v#), the latter is intervally z%-com-
plete.

(ii) = (i) follows by 1.8.

4.5. PROPOSITION. The following are equivalent for Hausdorff (L, 7):

(i) Any DO dntervally z-complete (L, v) has v¥*-complete L.

(it) Any DO intervally v-complete (L, 7) has intervally v*-complete L*.

(iif) Any DO z-complete (L, t) has intervally v¥-complete L.

Proof. (iif) = (ii): Let a DO intervally complete (L, 7) be given. Then
the topological Riesz completion (I, 7) is an enlargement of (I, 7) ([A&B],
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7.3+417.8). Hence (L #, " *) enlarges (L, 7) as well. It follows by a maxi-
mality argument (cf. 3.3) that (L°*, v"*)c (L*, +%) continuously. On:
the other hand, by 3.4 (ii) (I*, +*)c, (L"¥*, ©"#) continuously. Conse-
quently (L¥, +#) o~ (L"#, 7" *) and the latter space is intervally complete
by (ifi). Thus (L¥, +#) is intervally complete, which shows (ii).

(i) = (i): (L*",7%") enlarges (L*, +*) ([A&B], loc. cit.) and so, by
a maximality argument, L#" ¢, I*. The inverge inclusion being obvious,
L#" = I* je., I# is v%-complete.

(i) = (iii) is trivial. :

4.6. DEFINIIIoN. A locally solid tRs (I, z) is said to be enlarged if
L=L¥ (i.e., they are isomorphic).

Note that it follows from this definition that L#* is a veetor wpaco.
As it is solid in 0*(2;) (see 0.3), I* and L are DC. Furthermore, 77
= 1°NL¥ = +*NIL = 7. Consequently,

4.7. (L, 7) 18 enlarged iff L is DO and (L, v) o= (L#, +¥),

Any (L, 7) having the BOC property is Hausdorff and by 2.5 is
enlarged. Bxamples of enlarged spaces without BOC are not difficult
to produce and can be found in [1].

4.8. THEOREM. Let (L, ©) be o Hausdorff enlarged space.

(i) (L, v) is w-complele if (and only if) it is intervally =-completo.

(i) (L, =) has MCP if (and only if) it is locally pseudo-s-o-c.

(iti) Suppose (L, T) is metricable. Then (L, %) is z-complete if (and
only if) it is locally o-psewdo-g-0-c.

(iv) (L, =) is locally boundedly S-O-C if (and only if) it is locally s-o-c,

Proot. (i) follows by 1.8; (ii) by 4.3; (iii) by 1.9 and (iv) by 4.2.

Let Z be again an arbitrary order denge Riesz subspace of 0° and
let ¥ be a base of neighbourhoods of 0 for some topology = on L. Without
the Dedekind completeness " ig perhaps not summative. On the ofher
hand, the filter base (sol7")* agsociated with the min-max enlargement
is summative. But (solL)¥* < Z#(3.3), hence in order to assure that (at
least) increasing Cauchy sequences do not oscape from (solL)¥, it ig
re agonable to expect that something more than the pseudo-s-0-¢ condition
should be imposed on 7. Olearly, (solL)¥ iy (solz)*-complate implies that

- solL is intervally solv-complote. Assume the latter, and morcover, that

v is metrizable. Take 0 < @,4 = I, (#,) Canchy and (m,) in somoe order
m'ferval ‘in s0lL. Then fivstly, there oxisty y el majorizing (w,) (since
L is full in sol.L), and secondly there exists @ e sol.Z such that O =>0 (80l7).
1t turns out that this condition is also sufficient,

4.9. TxmornM. Let I be a Riese subspace of 0™ and let ¢ be a Riesw

F-norm on L. (s0lL, solg) is indervally complete if and only if the foltowing
condition is satisfied:

(%) 0o t<y in L, (m,) o-Oanchy = x> (s0lg).
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Note that this condition may be viewed as a ‘o-psendo-Fatou pwpmty
awith respeet to (solL, solr)’. :

4.10 ComrorrAwy. Let (L, 7) be a metrizable locally solid tRs in (™,
Then the min-max enlargement (solL)* is (solv)*-complete iff the condition
(%) 48 sutisfied.

Proof. By 1.8 and the above, it iy clear that 4.9 implies 4.10 and
-that (%) is necessary. In order to show the sufficiency it will Le first shown
that (%) implies that (solL,solg) satisfies:

k) 0 < w,) < yinsoll, (s,) solg-Cauchy = a,~>a(s0lp).

Indeed, as L is full in golL it can be assumed that y € L. Moreover, it
«can also be assumed that

Z‘solg By, — By1) < o, 2y = 0.

na=l

In view of the definition of solg, it s oleam that v, = m,; — 81y ¥y €1,
v, < ¥ (replacing v, by v,A Y if needed) may be found such that

o0

N o(v,) < oo

n=1
00
‘Consider u, := 2@1, (%) satlsfles assumptions of (x); hence solg— > o
PE)

<xists and is equal to (0) — Z v; in soll. Furthermore, @ == supm, € solL

{s0lL is Dedekind complete ag an order ideal in 0*) and

o0 0 n
>y

o=@ 3 aais 3 o=(o-(3u- S
{==n-+1 i=n-|-1 el g=al

N 0 n
Hence sole(s—,) < solg( 3 v;— 3 v)—0 with n—>oo. This shows (w«).
=1 g

Now (##) implies interval completeness of (solL, solg) by a result of
“Veksler ([6], see 5.4 below). -

After this excenrsion into the framework of §2, let us come back to
“the general (isomorphie) point of view. According to the well established
terminology F-laltice i3 a complete metrizable locally solid tRs, and
if it is not complete then it is termed F-normed lattice (recall Banach
lattice, normed lattice, ete.).

4.11. THEOREM. An F-normed lattice (L, o) can be embedded order
densely into am F-laitice (L°¥, o™*) if and only if the following condition

e © ‘
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is satisfied:
(%) 0Lz, t <y in L, (n,) o-Cauchy = z,~>x(d").

Recall that ¢’ replaces sol g, as I does for 5ol L.

4.12. COROLLARY. L° is intervally o’-complete iff (*) holds.
Indeed, L is solid in T* whence in I°¥#.

The next corollary is also a direct consequence of 1.9,

4.13. COROLLARY. An F-normed DC lattice (L, o) can be embedded
order densely into am F-lattice (L*, o¥) if and only if ¢ is o-pseudo-order-
continuous (<> o-pseudo-s-0-c): 0 < bz in L, (v,) o-Cauchy = x,~x(0).

Indeed, in this case I’ = T, ¢’ = o, and hence () becomes:

0< @, <y in L, (»,) ¢-Cauchy = &,—~x(0).

But by the Dedekind completeness, 0 < #,} <y iff x, 1%, thus (*) becomes
the o-pseudo-order-continuity.

It is visible that ¢ =1I,. This shows that the order-continuity of
the topology = is not preserved under =, in general.

4.14. THBOREM. Suppose (L, t) is a Hausdorff locally solid tRs with
an order-continuous topology. Then v is order-continuous on L¥* if and only
if (L#! ) = (j;i %)

Proof. The ‘if’ part is trivial since 7 is order-continuous on I ([A&B],
10.6). Suppose =¥ is order-continuous on L¥. Then (I, ) is isomorphie
to a dense subspace in (L#, v¥) which is complete. Hence (L, 7) o (L*, 7¥).

§ 5. Concluding remarks. (1) The three main theorems mentioned
in the introduction of this paper seem to be new even in the setting of nor-
med Riesz spaces.

(2) The extension procedure ‘i’ associating (L*,+*) with a DO
(L, 7) has been first considered, in mormed spaces, by Abramovié¢ [1].
He has shown that an intervally complete normed DC Riesz space (L, 7)
has a complete (i.e., Banach) maximal enlargement (Z¥#, t#). Independen-
tly this procedure has been discovered about ten years later by Szeptycki
[5], who deals with F-norms but places himself in the framework of solid
subspaees of I°. Then L' plays the role of the universal completion L*.
The existence of the topology of convergence in measure in L° simplifies
the situation considerably. In particular, it permits the identification of
the sup » without introducing M as in [4], or €% in this paper. Szeptycki
shows that a solid F-space (L, o) injected continuously in I° has the com-
plete enlargement (L¥, o%). When locally s-o-¢ topologieés are concerned,

4 — Studia Math, 774
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see Wnuk [7] and compare [A&B, 11. 10. Wnuk has shown, in particular,
that (L#*, «¥) is complete provided (L, ) iy loeally s-0-¢, and 4.14.

(3) Recall .

5.1. TurorsM. Let (L, o) be an F-normed lattice. The following are
equivalend:

(1) I is g-complele.

(if) o-MOP.

(iii) o~POC property. .

(iv) Riese=Tischer property: 0 <, and 21 olw,) < oo then (o) mg‘l @,

Yhwu Tes

exists in L.
o0 o0 o0
(V) 0 < @, and 3 o(w,) < oo then (0)— 3 @, exists in L and o( 3 u,}

o et mal Hwsl
<2 elwy).

n=1

The equivalence of the first three conditions is referred to, at least
in the Russian literature, as Amemiya’s theorem. It is formulated there
for normed Riesz spaces —according to the general setting in which these
authors work. But the proof as given e.g. in [3], is valid without any change
for the F-normed cage. The Riesz—Tischer property iy intensively used
by Luxemburg and Zaanen and their school (see, e.g. [4]). The equivalence
of (i), (iv) and (v) is usually eredited to Halperin, Luxemburg and Zaanen,
although the main trick of using multipliers ‘%’ and a subgeries converging
with ‘%~ iy the same in both proofs. Again, Luxemburg and Zaanen deal
with norms only —by the general setting of their work. Iowever, this
is not the case of the monograph [A&B], yet the result ([A&B], 16.2)
is recorded in’ its original form, which may be somewhat misleading.
Anyway, the proof as given there works for F-norms after onc trivial
change.

(4) When the interval completeness is concerned, only tho condition
(ii) above may have a meaningful analogue. This is precisely the condi-
tion (#x) as used in 4.10. Here is the result of Veksler [6], which is recorded
for the sake of completeness (again he originally deals with homogeneous
norms, but the proof applies to F-norms):

5.2. PROPOSITION. An I-normed latlice (L, o) ¢s intervally eomplele
iff (x*) is satisfied:

0<w,t <y, (@) o-Oouchy = z,—x(e).

‘Proof. Let (,) be Cauchy. It may be assumed that 0 < @, <y, and
that 3 ¢(@ 41 —®,) < oco. Define

nel n—1
Wy, = @yt 2 (Tp— )y Dy = (@per — )+
=t k==l

iom°
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- .
Then o (U, 4p—U,) <k,§,,g(w’°"“_mk); henee (w,) is Cauchy. Similarly, (v,)

is Cauchy. For each n, I, @ (ty, ~0,)A y — (10, —0,)Ay) < 2 (W —2,) —
— (U, ~—,)) = 0 (U4, — ), hence the sequence o

(<uk“‘”n)/\y)7 b=1,2,..,

is order-bounded, increasing and Cauchy. By assumption, there exigts

Wy, == WM (g, —w,)A 8 (f—>o00).

< Time (4 = Vpyp) = (e —0,)) = @ (004 —~9,). Hence (w,) is Cauchy. By
assumption, there exists @ = limw,. But # = limw,. Indeed, Ly, == Uy, —,

_ " . . n F
= (U, — V)N Y5 ZVhG]lGO (@, ”‘"f:z) = h,}n 4 ((“n = Vp)AY — (U, — v, ) ?/)

< lillch(un _u'k) ‘ﬁnzn Q(“’m»lwl ",u’m) &= 2 Q(mm—u —'mm)~> 0 with 5. Thus (wn)
. = Mr=n
and (a,) are equivalent Cauchy sequences and a,—> 2.

(8) In conneection with 4.10 and 4.11 it may be interestin v
that the following result holds. | g to note
5.8. PROPOSLITON. Let (L, ) be an F-lattice; then (L?, o) is such.

Proof. It may be assumed that (L%, ¢®) = (30lL, s0lg) in I* Tt
is sufficient to check the Riesz—Fischer property. Given (#,) = (301L).. 50
that 3sole(w,) < oo, iti is possible to find (u,) such that @, K %, eL;nd
2 o(uy,) < co. Thus (0) — 3w, exists in T and majorizes 2”':’ @, for allm e N.
Ag solL is DG, (0) — 3, exists therein. "

This permits :to embed order densely any locally pseudo-s-o-¢
F-normed lattice (L, ¢) into a Dedekind complete F-lattice.

Indeed, by ([A.&rBj, 17 4) and 1.3, (L, ¢) contains (L, ¢) order densely,
whence by ([A&B], 23.21) L « L% and (L"°, §%) is a complete enlarge-
ment of (L, p). Another one is (L%, p" %),
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Abstract. Let E be an F.gpaco (a complete metrizable topological vector space).
Two closed subspaces X and ¥ in B are called quasi-complements (to each other) if
XAY = {0} and X4 ¥ is dense in H; if, in addition, X4 ¥ # H, then they are
proper quasi-complements. The paper presents some extensions to F-spaces of the results
about quasi-complements in Banach spaces obtained by various authors since
the introduction of this notion by F. J. Murray in 1945. In particular, the following
results are established : '

(1) Every non-minimal infinite-codimensional closed. subspace in a separable
F-space has a proper quasi-complement (an analogue of the Murray—Mackey theorem).

(2) If X and ¥ arc proper guasi-complements in a separable F-space B, then
thero exist quasi-complements ¥y = ¥ to X such that dim (¥/¥)) = oo (an extension
of a theorem of R.C. James).

(8) If X and ¥ are proper quasi-complements in a locally convex F.space B,
then there exist quasi-complements ¥» » ¥ to X such that dim(¥y/¥) = co (a geu-
eralization of o result of A. N. Plitko in case of Banach spaces; more restrictive ver-
sions were cstablished by R. C. James and W. B. Johnson). Some extensions of resualts
of V. &. Vinokurov and of V. I. Gurarii and M. I. Kadee are also included.

1. Introduction. We ghall only consider Hausdorif topological vector
spaces (TVS's), in particular, locally convex spaces (LOS’s). By an F-space
we mean a complete metrizable TVS, and a Fréchet space is a locally convex
F-gpace. ‘

Let H bea TVS and X, ¥ two closed subspaces of I that are trans-
versal, i.0., XY = 0 (= {0}), X X-- ¥ == E, then X, ¥ are called com~
plements (to cach other) in 2, while if X+ Y is known only to be dense in
B, then they are called guasi-complements. (The last notion appeared
for the first time in [23] in the case of normed spaces.) Quasi-complements
which are not complements ave said to bo proper gquasi-complements.

We shall be mainly interested in the existence and properties of pro-
per quasi-complements. In view of this, the following remarks are in place.
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