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Abstract. Let E be an F.gpaco (a complete metrizable topological vector space).
Two closed subspaces X and ¥ in B are called quasi-complements (to each other) if
XAY = {0} and X4 ¥ is dense in H; if, in addition, X4 ¥ # H, then they are
proper quasi-complements. The paper presents some extensions to F-spaces of the results
about quasi-complements in Banach spaces obtained by various authors since
the introduction of this notion by F. J. Murray in 1945. In particular, the following
results are established : '

(1) Every non-minimal infinite-codimensional closed. subspace in a separable
F-space has a proper quasi-complement (an analogue of the Murray—Mackey theorem).

(2) If X and ¥ arc proper guasi-complements in a separable F-space B, then
thero exist quasi-complements ¥y = ¥ to X such that dim (¥/¥)) = oo (an extension
of a theorem of R.C. James).

(8) If X and ¥ are proper quasi-complements in a locally convex F.space B,
then there exist quasi-complements ¥» » ¥ to X such that dim(¥y/¥) = co (a geu-
eralization of o result of A. N. Plitko in case of Banach spaces; more restrictive ver-
sions were cstablished by R. C. James and W. B. Johnson). Some extensions of resualts
of V. &. Vinokurov and of V. I. Gurarii and M. I. Kadee are also included.

1. Introduction. We ghall only consider Hausdorif topological vector
spaces (TVS's), in particular, locally convex spaces (LOS’s). By an F-space
we mean a complete metrizable TVS, and a Fréchet space is a locally convex
F-gpace. ‘

Let H bea TVS and X, ¥ two closed subspaces of I that are trans-
versal, i.0., XY = 0 (= {0}), X X-- ¥ == E, then X, ¥ are called com~
plements (to cach other) in 2, while if X+ Y is known only to be dense in
B, then they are called guasi-complements. (The last notion appeared
for the first time in [23] in the case of normed spaces.) Quasi-complements
which are not complements ave said to bo proper gquasi-complements.

We shall be mainly interested in the existence and properties of pro-
per quasi-complements. In view of this, the following remarks are in place.
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Recall (see, e.g., [2], [3]) that a TVS is said to be minimal if it admits no
‘gtrictly weaker Hausdorff vector topology, and non-minimal otherwise.
In particular, we may speak of minimal and non-minimal subspaces of
a given TVS. For X, ¥ as above, if one of ther is minimal, then X-- ¥
is closed; in fact, it is even the topological direct sum of X and ¥ ([3],
Proposition 2.3). Hence: If one of quasi-complements is minimal, then they
are complements. This explains why we have to impose such conditions
on a given subspace X which imply its non-minimality, when we wish
to prove it has a proper quasi-complement.

Tt is not known whether any minimal non-locally convex space
exigts, but an LOS is minimal if and only if it is isomorphie to a product
of one-dimensional spaces ([2], Postscript). From this it follows easily
that: Bvery minimal subspace of B has a complement (or quasi-complement)
if and only if B has a separating dual space B". 3

Some characteristic properties of non-minimal F-spaces will be re-
called in the next section.

The paper presents some extensions to F-spaces of the results about
quasi-complements obtained by various authors in the case of Banach
spaces (or, sometimes, even normed spaces). We give first a brief review
of those results. If not stated otherwise, let B denote below a separable
Banach space.

(M~M) The history of quasi-complements began with the work [23]
of Murray, where it 'wag proved that if ¥ is reflexive, then every closed
subspace of B is quasi-complemented. The reflexivity agsumption was
soon removed by Mackey [22].

(V) The Murray-Mackey result wag improved by Vinokurov ([31],
[32]) as follows: If X, W are closed transversal subspaces of E, then there
exist quasi-complements ¥, and ¥, to X in F such that W < ¥, and
WY, = 0. (For the existence of ¥, sce also Lohman [20].)

(6-K) Next improvement, with interesting consequences, was due
to Gurarii and Kadec [7]: If Xy, X, arc closed subspaces of I such that
X, < X, and dim X, = codim X, = oo, then X, has a quasi-complement
isomorphic to X,, and X, has a quasi-complement isomorphic to Xy.
{Very short, and elegant proof of this has been recently provided by
‘Weis [34], with separability of I replaced by separabiliby of X, and
E(X,)

(J-J-P) Another direction of research also goes back to Murray and Ma-
ckey and was resumed by James [8] who showed that it Y is & proper quasi-
complement to X, then X has also quasi-complements ¥, and Y, such
that ¥; ¢ ¥ « Y,and dim(Y|Y;) = dim(Y,/Y) = co. Actually James’ proof
of the existence of Y, required ¥ to be reflexive, a condition which wag

icm
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disposed of by Johnsen [11] and Plitko [24]. Finally, Plidko [25] has
extended the Y,-part of this result to ‘arbitrary Banach spaces F.

For the sake of completeness, let us mention also some of other re-
sults for nongeparable Banach spaces: Every closed WOG subspace of
2 WCG Banach space has a quasi-complement [17]; in particular, closed
subspaces in all reflexive Banach spaces have quasi-complements. If
I is uncountable, then ¢,(I") has no quasi-complement in I, (") [18]. Tow-
ever, every closed subspace of I, in particular ¢, is quagi-complemented
27} ,

It seems we do not know ag much about quasi-complements in ¥réchet
spaces. The (M-M) type theorem in [10], Corollary 10, and [33], and the
(V) type theorem in [10], Theorem 12, and [20], Remark, for separable
Fréchet spaces are the only results the present author has come across
in the literature.

The contents and the main ideas of our paper are as follows. Section
2 contains some preliminaries, especially concerning the so-called m-inde-
pendent sequences in TVS’s. Such sequences (v,) are particularly useful
in the non-locally convex setting because they exist in abundance, are
a8y to handle with, and in many cases can replace minimal sequences
usually employed when investigating quasi-complements in Banach
spaces (as in [7] for instance). We use them in Section 3 to produce injec-
tive compact operators of the form K ()= }'h,(x)v,, acting in F-spaces.

n
In turn, such operators give rise, under some circumstances, to isomor-
phisms of the form J--K, where J is an inclusion embedding. These
isomorphisms are the main tool used in Section 3 in proving existence
theorems of the (M-M) type (Theorem 3.3) and of the combined (G-K)
and (V) types (Theorems 3.8 and 3.11). In particular we have the following
analogue of the Murray-Mackey theorem: Every non-minimal closed
subspace of a separable F-space has a quasi-complement (Corollary 3.5).

The rest of the paper is devoted to establishing some analogues of
(J-J-P); our approach may be interesting also for those believing only
in Banach spaces. Liet X, ¥ be proper quasi-complements in an F-space
EB. First, in Nection 4, wo seck for Y,. Let @: H—T[X be the quotient
map; note that @ (¥) is dense in B/X and that @Y is not an isomorphism
onto Q(Y). The probleny of finding a required ¥, is of course identical
with the problem of finding a closed subspace ¥y of infinite codimension
in ¥ such that @ (Y,) is dense in ¢ (X).

Equivalently, transporting the topology of @(¥Y) back to Y and
denoting it by o, our problem is this: We are given an F-gpace ¥ and
a strictly weaker metrizable vector topology ¢ on ¥, and we wish to find
2 closed infinite-codimensional subspace ¥, of ¥ which is dense in
(Y, o)
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Tt turns out that if Y is separable, then a result asserting that this
is indeed possible was already essentially established by Kalton [12],
Theorem 1, because the Mackey topology appearing there can be obviously
replaced by any strictly weaker metrizable vector topology. Not satistied
with this, we prove in fact a stronger result (Theorem 4.1) providing us
with uncountably many desirable Y,'s (Corollary 4.3) when E/X is
geparable.

Next we look for ¥, but restrict ourselves to F a Fréchet space (the
reason for doing so is given in Remark 5.10(c)). This time let B denote
the quotient map E—B[Y. Our departing observation is that it suffices
to construct a closed infinite-dimensgional subspace @, of H[Y transversal
to R(X), for then ¥, = R™Y(%,) will be as required. Motivated by this
and inspired by the works of Pligko ([24], [25]), we prove in Theorem 5.6
of Section 5 that if B is a Fréchet space and X is its non-cloged subspace
that is a continuous linear iméage of another Fréchet space, then it is
possible to find a closed infinite-dimensional subspace Z in B transversal
to X. From this the required analogue of the “ Y,-part” of (J—J—P) follows.

2. m~-independent and other sequences. Let (v,) be a sequence in
2 TVS E. Following [15] and [B], we say it is topologically linearly in-
dependent if, for any sequence of scalars (1),
o0
t,0, = 0 = (t,) == 0.
1

n=

Tf this holds when (i,) € m = I, then (v,) is said to be (topologically line-
arly) m-independent. The latter notion is strictly broader than the former,
see [157, Theorem 1. In our work we could equally well use either of them,
but we prefer to use m-independent sequences, for two reasons. One is
that the sequences of coefficients (¢,) of the type (hn(z)) appearing below
are bounded, and the other is the following extremely simple existence
vesult from [5], Proposition:

For every linearly independent sequence (x,) in B there ewigt v, > 0
such that the sequence (y,%,) is m-independent.

Assume (v,) is m-independent. It is obvious that this property is
preserved when the topology of ¥ is replaced by a stronger one. Also,
for any bounded sequence (¢,) of nonzero scalars, the sequence (¢,v,) 8
m-independent. It follows that if B is an F-space with F-norm. ||, wo
may always replace any given m-independent sequence, without changing
its linear span, by a new one, (v,) say, 80 as to have vl < oo. These

n

simple facts will be used below without further reference.
We denote by <(v,)> (or by <(v,: n e M) if the index set McXNis
different from N) the subspace in E consisting of those @ € I which have

& e®
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anexpansion of the form & = St v, with (4,) € m. Evidently, m-independence

"
implies that the coefficients £, of the expansion are uniquely determined
by @. Also, lin(v,) = v, < [(9,)], where lin(v,) and [(v,)] are the linear
span and the closed linear span in B of (v,), respectively. An m-independent
sequence (v,) with [(v,)] = B is called an m-quasi-basis for B. Thus, by
the above result, every separable TVS has an m-quasi-basis,

Now, let X be a closed subspace of B and @: B-»H/X the quotient
map. We shall say that a sequence (v,) = B iz m-independent of X if the
sequence (@v,) is m-independent in ¥/X. (learly, then (v,) is m-independent
in the usual sense, Before formulating, in the proposition below, some
obvious properties of such sequences, wo introduce two further defi-
nitions.

We say that a sequence (2,) is a union of two given sequences (@,
and (y,) if (2,) can be partitioned into two disjeint subsequences one of
which coincidles with (z,), and the other with (7,). We shall also use (impli-
citly, in Section 3) some clear extensions of this definition when we are
given more than two sequences, ox when some of them are finite.

We say that a subspace W of the TVS B = (F,7) is dominated (resp.,
strictly dominated) by an F-space if there exists a vector topology » on
W such that (W, ») is an F-space and 7AW < v (zesp. vNW < »); TNW is
the topology on W induced by v. Evidently, by the closed graph theorem,
such a topology » if exists, is unique. These properties of W may be equiv-
alently expressed by saying that W is a continuous linear image of an
F-space (resp. by a map that is not relatively open). Domination or striet
domination by other classes of TVS’s, or by single TVS’s, are defined
similarly. -

9.1. PropostroN. Let X be a closed subspace of a TVS B. If a se-
quence (v,) < B is m-independent of X, then:

() XO,)) = 0;

w,, M) (e,2,) is m-indopendent of X for every (c,) € m with all ¢, % 0;

(¢) If (u,) is an m-independent sequence in X, then any sequence (w,,)
that is @ wnion of () and (v,) is m-independent and X d(w,)y == (1))
Let W be a subspace of 1 transversal to X ; then:

(d) Every countable-dimensional subspace of W has a Hamel basis
(1)) which is m-independent of X. Moreover, if W is dominated by an F-gpace,
then (w,) can be chosen so that {(w,)> = W3 ‘

(e) If BX is separable and melrizable and XpW == B, then W contains
a sequence (w,) which is m-independent of X and such that X iivﬁ“(ibﬁ,:) = [,

In the remaining part of this section, let I, F be I-spaces, with
F-normg denoted by |-
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If (h,) is an equicontinuous sequence of linear functionals defined
o1 & closed subspace Z of H, and (v,) i8 a sequence in F' such that gl

<< oo, then we may define a continuous (linear) operator K: Z—»F byn

Kz == Z h“(Z)'?}n,

N

and K is easily seen to be compact, i.e., it maps a neighbourhood of 0
in Z into a compact set. (See, e.g., proof of Proposition 3.3 in [3]) We
shall call K the compact operator determined by the sequences (h,) and (v,,).
We note the following obvious facts: (a) K (Z) < {(v,)>. (b) It (h,) is total
-over Z and (v,) is m-independent, then I is injective. (¢) If (h,) is biortho-
.gonal to a sequence (2,) = Z, then [(v,)] = Km. (d) It B = I and (v,)
is m-independent of Z, then ZNn K (Z) = 0.

2.2. Remark. Metrizable LOS’s dominated by separable Frécheb
Spaces are investigated in [28]. Subspaces of Banach spaces dominated
by Banach spaces have found some applications in operator theory [14].

It Xy, ..., X, are subspaces of the F-space B dominated by F-spaces,
then so is X+ ... +X,; in particular this holds when these subspaces
.:[mz?) closed in . This is obvious. The following fact is less evident (cf.

If L is a countable-dimensional subspace of I, then for every Banach
Space B whose dual B* is weak*-separable, there ewists a subspace Wiy in
B strictly dominated by B and such that I « Wy < L.

In fact, let (v,) be & Hamel m-quasi-basis for L such that 3 |jn,] < oo,
7

and let (h,) be an equicontinuous sequence in B”* which. is tgml on B.
":l‘hen the compact operator K: B—F determined by (k,) and (v,) is in-
Jective and so Wy = K(B) is as required. In particular, {(v,)> is strictly
dominated by m = I,,. Also, it ¥ is separable and dim ¥ = oo, then I hag
2 dense subspace dominated by any given infinite-dimengional geparable
Banach space.
The reader will note that we have thus provided examples of non-
trivial subspaces W in 3.8, 3.9 and 3.11, and X in 5.6 and 5.7.
' A sequence (z,) = E is called strongly regular M-basic [13] if there
e_x:sts a sequence (h,) = [(#,)]* which is biorthogonal to (#,)y equicon-
tinuous and total on [(e,)]. If (hy,) is not necessarily equicontinuons bub

z = 3 h,(2)2, forall ze [(2,)], then (z,) i called basic. For a basic sequence

==l
(2,), equicontinuity of (h,) and regularity of (z,) (i.e., inflle,| > 0) are
equivalent conditions. "

- ©
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9.3, PROPOSITION. If K is an F-space, then the following are equiv-
alent: (2) B is non-minimal. (b) W contains a sirongly regular M-basic
sequence. (¢) I contains a regular basic sequence.

2.4, ProPoSITION. Let I) be an I'-space. Then every regular sequence
in B which converges to 0 in a weaker metrizable vector topology on I has
a strongly vegular M-basic subsequence.

These two results are due to Kalton and Shapivo [13], Theorems
3.2 and 2.1 (ii); as concernus 2.4, cf. also [3], Qorollary 2.7.

3. The existence of quasi-complements., Throughout this section,
F is an infinite-dimengional F-space and ||+| is an F-norm defining its
topology. We also assume that X, Z ave closed subspaces of H, and
J: Z—+F is the identity embedding.

3.1, Lmvma ([12], Lemma 2). If K: Z-H is a compact operator,
then the operator T = J -- K : Z->1 hos closed range.

3.2. Lmmma. Assume Z = X, and let K: Z—>T be an injective compact
operator whose range K (7) 18 contained in a subspace V such that XNV = 0.
Then T = J -+ K is an isomorphism from % onto the closed subspace ¥ = T'(Z)
and XnY = VY = 0. Moreover, if iimZ = oo, then X+X 1is not
closed, and if K(Z)is dense in V,then X4 ¥ = X+ V.

Proof. The subspace ¥ is closed by Lemma 3.1. Suppose Tz = z-- Kz
& X for some 2 € Z. Then % = X implies K2 € X; on the other hand Kz e V,
whence Kz == 0. Since K i¢ one-bo-ome, z = 0. This shows XNY =0
and, simultaneously, injectivity of 7. Thus T’ is an isomorphism. rL“he»
equality V'NY == 0 iy chocked similarly.

If dimZ = oo, then K is not an isomorphism; so we may find a se-
quence (2,) in Z such that #,--0 while Kz,—0. Then the sequence 2, — Tz,
= — Kz, ig in X+ ¥ and converges to 0, while its projection into X, 2,,
does not. Hence X -+ ¥ is not closed.

Tinally, assumo K (Z) o V. If w € X, v € V, then there is a sequence
{2,) in Z such that Kz,—v, and therefore XY = ( —2,)+ T, =5+ Ke,
~>@+v. Thus X+ ¥ o X+ V. We also check casily that X+ ¥ = X+ v,
and this finishes the proof, .

The simplest existence result for gquasi-complements is contained
in the following

3.3, TunoreM. If X is non-minimal and dim (H/X) = oo, then there
exists a closed mon-minimal subspace Y of I such that XY = 0 and
X+ is not closed. Moreover, if J1/X is separable, then ¥ may be chosen
10 be a proper quasi-complement to X in L. ‘ ‘

Proof. Using Proposition 2.1 we find a sequence (v,) = B which

is m-independent of X, with 3o, <oco (and X +lin (v,) = B when /X
"
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is separable). By Proposition 2.3, X containg a regular basic sequence
(2,). (We may use a strongly regular M-basic sequence as well.) Let 2
= [(z,)] and let (h,) < Z* be the sequence biorthogonal to (2,). The asser-
tions of the theorem follow by applying Lemma 3.2 with K = the com-

3.4. Remark. The first part of the above theorem is an extension
to F-spaces of a similar fact proved in [35], p. 12, for Banach. spaces.
(It is algo remarked there that Xalton had generalized this to the case
of Fréchet spaces.) The existence, in e¢very infinite-dimensional Banach
space, of closed subspaces X and ¥ with XNY == 0 and X - ¥ non-closed,
was established in [21], p. 174.

3.5. COROLLARY. Huery non-minimal infinite-codimensional closed sub-
space of a separable F-space has a proper quasi-complement (which can be
chosen so as to have a basis).

3.6. COROLLARY. Huvery separable non-minimal F-space has a paiy
of proper quasi-complements (which can be chosen so -as 1o be isomorphic
and have bases).

Proofs. Thege two corollaries follow easily from Theorem 3.3 and
its proof. For instance, to get 3.6 we take a regular basic sequence ()
and apply the proof of 3.3 with X = Z == [(m,,)].

Our next theorem is an extension of the “Y; part” of (V).

3.7. THEOREM. Let dimX = oo, and let W be a closed subspace of
E tramsversal to X. If BjW is separable and has no infinite-dimensional
minimal subspace, then X has a quasi-complement ¥ in B such that W < Y.

Proof (cf. [20]). Let Q: E—E/W be the quotient map. By Corollary

3.5, the subspace @ (X) has & quasi-complement & in B/[W, (This is obvious
when codim @ (X) < o0.) Then ¥ = Q~* (#) is as required.

We now proceed to somewhat more claborated results which -will
constitute joint extensions of (G—K) and (V). We shall need the following
definition.

A pair (U, V) of closed subspaces of a TVS ¥ such that U < V will
be said to have property () if there exists an equicontinuous sequence
(fp) = V" which is total over U. Tf U = V, then wo simply say that U
has property (). )

Note that (U, V) has property () if and only if there exists a continu-
ous seminorm p on V that is a norm on U such that the normed space
(T, p) admits a total sequence (h,) = (U, p)*.

In fact, if (f,) is as in the definition, then p(v) = sup|f,(v)| is the

i

required seminorm, For the converse we may assume |h,] < p on U, and

use the Hahn-Banach theorem to get a seguence (f,) as required in the
definition.

icm®
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Using this observation and a standard construction (see, e.g., [297,
p. 154) we easily see that if (U,V) has property (), then there exists
a biorthogonal system (u,), (g,) with (u,) = U, (g.) = V¥, (g,) equicon-
tinuous on V and total over U,

3.8. THEOREM. Suppose Z < X, both Z and H|X ave infinite-dimen-
sional, Z has property (x) and B[X is separable. In addition, let W be a sub-
space of H transversal to X and dominated by an F-space.

Then X has a proper quasi-complement X which is isomorphic to Z and
transversal to W.

Proof. Applying Proposition 2.1(d), (e) to the subspace X of X+wW
(the latter playing the role of ¥ in 2,1) and next to the subspace X W
of B, and then using 2.1 (¢}, we find an m-independent sequence (v,) in
E such that for V = {(v,)> and for some decomposition N,, N, of N and
V,=<,: neNp,i=1,2, we have

XNV =0; VicW, X+V,=X4+W;
X+WAV, =0, X+WHV, =10,

Then evidently X <V = ¥, and we may also assume that 3 v, < oo.

n

Since Z has property (x), there is a biorthogonal system (z,), (k,)
with (h,) = Z* equicontinuous and total on Z.

For 4 =1, 2, let K;: Z-V; < H be the compact operator determined
by the sequences (h,: neXN;) and (v,: n»eXN,). Then K = K, K,:
Z-V,+V,c V is a compact injective operator whose range is dense
in V. Now it suffices to define Y as in Lemma 3.2, and it will remain only
to check that WnNY = 0. Suppose Tz = z-+K, 2+ K,z e W for some
ze€Z. Then Kype W+Z+V, <« X+W; but Ky(Z) = V, by definition,
80 K,2 = 0. Now 2+ K,2 € W, whence z € W; since XNn'W = 0, we have
% = 0. This concludes the proof.

3.9, OoroLrARrY. If X is non-minimal and H|X is separable, then
for every closed subspace W < H transversal to X there i3 a proper quasi-
complement Y to X in B transversal to W.

3.10. Lemma, Lot X < Z, and let Ky, Kyt Z~H be compact operators
satisfying the following conditions:

(la} K,(Z) < Z, (1b) K,|X s one-lo-one, (lo) XNK,(X) = 0;

(2a) ker K, = X, (2b) ZnK,(Z) = 0.

Then T = J+K,--K, i an isomorphism from Z onto Y = T(Z)
and XNY = 0. Moreover, if dimX = oo, then X - X 8 not closed.

Proof. Since K = K,+ K, is compact, ¥ is cloged by Lemma 3.1.
Suppose Tz = 2+ K, 2+ K2 e X for some zeZ. Then KyeeZ by (la),
whence K,z = 0 by (2b). This and (2a) imply 2z € X. Thus 2+ K,z e X
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and 2z € X, g0 K;2 e X and next K,z = 0 by (L¢). Finally, 2 = 0 by (1b).
This proves that XNY = 0 and also that T is injective; so T is an iso-
morphism.

If dimX = oo, then we apply Lemma 3.2 to see that the subspace
X 4 T'(X) is not closed (i.e., is not the topological direct sum of X and T (X)),
whence neither iy X+ ¥.

3.11. TuroreM. Assume X < Z, E|X is separable, and both X and
B|Z are infinite-dimensional.

If (X, Z) and Z[X have property (), then X has a proper quasi-
complement X isomorphic to Z.

Moreover, if W is a subspace of Z dominated by an F-space and
transversal to X, then Y may be chosen so that WNY = 0.

Proof. First consider the case when dim(Z/X) = co. Let N,, N,
be a decomposition of N guch that both N, and N, are infinite. From the
assumption that (X, Z) and Z/X have property (x) it follows that there
exigts an equicontinuous sequence (h,) = Z* and a sequence (#,) © Z such
that

(Zndnew, = X, (My)ney, is total on X and biorthogonal to (Zndneny s

(P )nen, 18 biorthogonal 50 (2n)nen,, and Q ker h, = X.
h neNy
Next, applying Proposition 2.1 to X <« Z and Z < B (note that
Z|X and E|Z are separable) and then uging 2.1 (c), we find an m-inde-
pendent sequence (v,) in F with 3 |v,]| < oo and such that, denoting
n

V;=<v,: neN) for i =1,2, we have

XAV, =0, X+4V,=2; ZnV,=0, Z+V,—3.

Now for ¢ = 1,2 let K;: Z—V,; < F be the compact operator deter-
mined by (h,: neN,) and (v,: » e XN,). It is clear that the hypotheses
of Lemma 3.10 are fulfilled, whence I' = J K, -+ K, is an isomorphism
between Z and ¥ = T(Z), XNY =0 and X+ ¥ is not closed.

If n e Ny, then v, = —2,+ T, € X%, whence

X+Y o> X+lin(n,: nelN,) =2.
If n e N,, then v, ==(——zn-.vK1zn)+TznveZ+ Y, whence

Z4+Y > Z+ln(v,: neN,) = H.

It follows that X+ Y = 1.
Now agsume we are algo given W as in the “moreover” part. Then
(v,) may be chosen so that, in addition to the conditions stated above,

icm®
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it will satisfy the following: There is a decomposition N, N,, of V. 4 such
that if Vy; = <{v,: n e Ny;>forj =1, 2, then

Vac W and X+WAnV,, =0.

Then K, = K, K,,, where K,;: Z—V,; « B is the compact operator:
determined by (h,: n € Ny;) and (v,: n e Ny)yj=1,2.

Suppose Tz =2+ K2+ K2+ Kee W < Z for some 2eZ. Then
K,z eZ, whence Ky2 =0 and 80 ze X. Now 2e X and 2Ky 2Ky
eW, 0 K,z e X+ W, whence K,z = 0. Finally, we have z-- KyzeW,
whence 2z € W; but also 2z € X, and therefore z == 0.

At last, consider the case dim(Z/X) ==k < co. By Theorem 3.8,.
X has a proper quasi-complement Y, isomorphic to X and such that.
W n ¥, = 0. By Proposition 5.1, X+ ¥,+W has infinite codimension
in B, so we may find a subspace V = F with (X-- Y +W)nV = 0 and
dimV = k. Then ¥ = ¥,+V is as required.

3.12. Remaxrk. It is not incidental that the proper quasi-complements.
X, Y constructed in the above theorems have isomorphic non-minimal
closed subspaces X, c X, ¥, X (e.g, X, =Z,¥, = Y in Theorem
3.8). By [2], Theorem 4.1 (b), all proper quasi-complements in F-gpaces.
share this property.

4. Diminution of quasi-complements. In this section we obtain
in Corollary 4.8 an analogue of the “Y, part” of (J-J -P) in the case of
F-spaces. We follow the idea explained in the Introduction.

4.1. THROREM. Let B = (H, 7) be an F-space, and lat ¢ be strictly
weaker metricable veclor topology on B such that (B y 0) 18 separable. Then
there ewists a strongly regular M-basic sequence (w,) in (B, z) with w,—0(o)
such that for any infinite subset A of N the subspace lin(w,: ne A) is dense
in (B, o). C

Proof. Let us agree that limits, series, closures, ete., unless specified.
otherwige, are to be understood in the sense of 7. Also, let |-} and || be-
F-norms defining v and g, respectively.

We start by choosing a sequence (y,) so that e-[(¥,)] = E and
2 Wall < oo. Then it ig easy to define a strictly increasing sequence (r).
n

in N guch. that

(1) j’ 5‘ I yull < o0,

Fwa) el
Define a function 2: (0,115 by

2(1) = Z "Y,,.

fim 1
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If 0 < <1 and t; 0, then

n—1

{2) Yp = limtf’?[z(tj)m 2 t;fy,[] Vne N,
oo

=0

where %, = 0. For k € N let v, = 2(ri"); then (1) implies

oo
D oyl < e
I=1
Next, as o < 7, using Proposition 2.4 we Afind g strongly regular
b B .
JM-bagic sequence (=) in (H, 7) such ‘tha‘t

(e, )—+0  ag  k->co.

Then J
{3) iz l>0 as  k—woo VmeN. ‘

b Z = [(2,)], and let (h,)= Z" be the sequenco .biorthogonml to

(2y)- ?)ii‘ilfe K [(ZIEE to be the compact oper.m;or deterrr}med by (hy) ang
»(v,;), and let J: Z—F be the identity embedding. 'I.‘hen'l =dJ+K: Z -;
has evidently a finite-dimensional kernel, hence t?mre‘ is m suc}vx.thaf; the
restriction T'|[(¢;)rmm] 8. one-to-one; by Lemma 3.1 %13 ha’s leosed. range.
‘Without loss of generality we may assume m == 1, Le, T is an isomor-
phism between Z and W = T'(%). It follows that oy = T% =2+,
(k € N) is a strongly regular M.—basis of W. o . o]

Let (k) be a strictly increasing sequence in N, and set v = o [(w 1eg) 1
Then, using (2) with # = r,:jl and (3), we have for every n €

n—1 n-1 )
jlim i [wkj - Z 7”1:}‘.?/1] = ]152 W"zjzk]-‘l'}i_fg U [’Uk]-““ 1;0' ”'kf?/i] = Yns
4o :

where the limits are taken in the p-sense. From thig we have 'clearly Yy, el
and, by induction, y, € I for all n € N. Hence JF' = F, which concludes
‘the proof. .

4.2. Remark. The above proof combines some of the ideas used
in a known construction of the so-called hypercomplet.;e f_seq.uonces ([29],
p. 59) with the proof of Theorem 1 in [12]. (Note that it is, in fact, 11nos§(_3n~
tial, whether we assume separability of (¥, o) (a_s above) or soparabl%wyl
of (H, 7) (as in [12]): the former case can be easily reduced to the latter
.one.) - ) )
Theorem 4.1 suggests the following question: Is it pos_mble to find
a geparable F-space F containing a dense subspace H dommatet‘:l by an
F-space and such that every infinite-dimensional subspace of F is dense
in F? We can make only these two remarks:
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(1) Such an F-space T, if exists, iy ¢g-minimal ([2], [3]). For, other-
wise, it would have a non-minimal Hausdorff quotient and this together
with Proposition 2.3 would imply that F contains a strongly regular
semi-basic (or minimal) sequence (u,) (see [2] and [13] for explanations).
By [2], Theorem 2.8, we can assume u, € B for all # ¢ N. But then if
(fo) = [(w,)T* is the sequence biorthogonal to (w,), it is obvious tha
Enkerf, o lin(u,);., are infinite-dimensional subspaces of ¥ which are
not dense in I

(2) Our question would have (trivially) an affirmative answer if
a separable F-space existed without nontrivial closed subspaces. Un-
fortunately, this is apparently an open problem (cf. [26], p. 114).

4.3. OOROLLARY. Let X, ¥ be proper quasi-complements in an F-space
B such that B|X is separable. Then there exisis o closed subspace W of ¥ with
a strongly regular M-basis (w,) such that (W, )neal 8 @ quasi-complement
to X for every infinite subset A of N, !

4.4. Remark. Note that ¥ need not be separable. For instance,
i F=1.@6¢ and X =1,, then from Theorem 3.8 (with Z = X,
W = {0}) we get a quasi-complement ¥ to X isomorphic to X. However,
from separability of B/X it follows trivially that any quasi-complement
Y to & eontains a separablo quasi-complement to X

5. Enlargement of quasi-complements. In this section we ecxtend
o arbitrary Fréchet spaces the ‘Y,-part” of (J-J-P).

In general, i.c., for F-spaces, we have only this result.

6.1. Provosivrow. If X, ¥ are proper quasi-complements in an F-space
B, then XX has wncountable codimension in F. Hemce there ewists an
inoreasing sequence (Y,) of quasi-complements to X such that Y < ¥, and
dim (Y, /Y) =n (n e N). .

Proof. The firkt assertion follows from a more general fact that if
B iy an ultrabarrelled TVS (= barrelled TVS in [1]) and W is its subspace
strictly dominated by an F-space, then the codimension of W in B is
uncountable. (Otherwise W would be ultrabarrelled by [1], p. 90, thus

contradicting [1], § 8 (4).) The second assertion is an obvious consequence
of the fivst one.

5.2. Remark. We were unable to verify our conjecture that the
codimension. of X' ¥ in 7 is at loast 2%, (It is so when K is a Fréchet
space, see Corollary 5.9 below.)

Trom now on, we shall deal exclusively with LCOS’s (except for some
remarks). As explained in the Introduction, we shall first look for condi-
tions under which, given a subspace X of an LCS B, there exists a closed
Infinite-dimensional subspace Z of  such that ZNX = 0. Our approach
to this question was highly ingpired by the works of Plitko [24] and [25].

8 — Studla Math, 77.4
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5.3. TimMMA. Let L be a finite-dimensional subspace and O a c;losecl
coawew- subset in an LOS B, If Ln C = @ and either 0 is bozmded' or In(C —x}
= {0} for some © € O, then there exists a closed hyperplane H in E such that

LcH and HNC =0.

i il £ he geometrical form of the
Proof. The assertion will follow from t .
Hahn-Banach theorem (see, e.g., [9], 7.3.1) if we show that there exists
a neighbourhood U of 0 in B such that

LA(C+T) =9.

Suppose it is not so. Then there exist nets (Yaduea I L and (0,)ecy in

(¢ such that
Yo — 2,0,
Now consider two cases. .

Case 1. (y,) has a bounded subnet (yaﬁ)ﬂEB. Then since -r].m.aL<t o0, by
passing to a further subnet we may assume thafu. (o) converges to SOI’I’(I)G
y e L. Then also #, -y and so y € ¢ because O is cloged. Thus y eL,nn »
which is impossible. Note that if ¢ is bounded, then Cage 1 does actually
occur, as easily seen. ' .

Case 2. (y,) has no bounded subnet. Then, if |]-|! is any norm on L, we
must have ¢, = |y~ '~ 0; without loss of genera,llty_lt may be a.sgumed
that ¢, < 1 for all « € 4. Now, using the fact that dimI < oo again, by
passing to a suitable subnet we may assume that (¢q9,) converges to some
4 € I, where of course |ly]| = 1. Then for each © € C we have 0aya—‘c,,w;

— 0 (1, —2)->0, €.y, —y and ¢, x>0, whence ¢, (z, —&)->y. But 0 < ¢, <

and 0,2,—zecC—a imply c,(w,—o)eC—», and therefore yeC—ax.

Thus 0 =4 € LN(C —a). Therefore, the altermative hypothesis that
IN(C —2) = {0} for some x e ¢ is violated.

5.4. PROPOSITION. Let W be an infinite-dimensional subspace of
an LCS B, and (C,) o sequence of closed comvew swbsets of B such that, for
each neN, Wn0, =0 and cither O, is bounded or Wn(C,—w,) = {0}
for some x, €0,.

Then there exists a closed subspace Z in B such that

dAm(ZAW) = o0  and ZnC,=@ VYnel.

Proof (cf. proof of Theorem 1 in [24]). We shall construct by ipduc—
tion a linearly independent sequence (w,) in W and a sequence (H,) of
closed hyperplanes in F such that for every n e N

(1) H,nC, =0
and
{2) H;>[w)., for 1<Ki<n.
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We start by choosing any 'w, e W\ {0} and applying Lemma 5.3 to
L =[w,] and O = €. This gives us a closed hyperplane H, satisfying
(1) and (2) for n = 1.
Assume we have alrcady defined w; and H;for i =1,...,k (k> 1)
so that (1) and (2) hold for » < k. Then we apply Lemma 5.3 to find a
closed hyperplane Hy,, > [w;]%., such that H. z41 N Oy =0, and next
we choose any wy.,, in WnH,n ... N o Nk, Bvidently, (1) and
(2) are then fulfilled for all 7 < k-+1. This concludes the inductive con-
struction.
It is now obvious that the assertion of the proposition. is satisfied
o
with Z = (" H,.
=]
5.5. COROLLARY. Let X and W be subspaces of an LOS B with dim W

= 00 and XNW == 0. Suppose that there is a sequence (C,) of closed convex
subsets of B such that

XN{0 =d,.
Nl
Then there ewists a elosed subspace 7 of B such that
AM(ZNW) = 0 and XNZ = 0.
5.6. TunormmM. Let B be an LOS and X 4 subspace of B. Assume that
one of the following conditions is satisfied.

(a) B is barrelled and X is striotly dominated by o separable Fréchet
space.

(b) B is separable, metrizable and barrelled (in particular, a separable
Fréchet space) and X is strictly dominated by a Fréchet space.

(¢) B is a Fréchet space and X is sirictly dominated by o Fréchet space.

Then there ewists a closed infinite-dimensional subspace Z of B such
that ZNX = (.

The theorem admits an equivalent reformulation; restricted to
the caso (c), it says the following :

Let T be & continuwous linear mapping from a Fréchet space I into a Fré-
chet space B. If 1 is not relatively open (which is the case when T(F) is not
barrelled), then there exists a closed infinite-dimensional subspace Z in B such
that Zn T(H) = 0.

Proof. Let = denoto the topology of J and & the (unique) topology
on X guch that vNX < & and (X, &) iz a Fréchet space. Choose a base
(Vi) of absolutely convex open neighbourhoods of 0 in (X, &) such that
Vi Vyo... For overy me N let V,, denote the closure of V7, in Z.

CrAM. There is m such that X, = h‘mﬁ s not a barrelled subspace
of .
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Otherwise, for every mm, ¥, i8 a neighbom’hood of 0 in (X,,, vnX,,),

whence V NX (= the closure of V,, in (X, zN X)) is a neighbourhood of
0 in (X, vnX). Thus the identity map (X, &)X, N X) is nearly opeu,
and since (X, §) is a Fréchet space, it must be open and so § =7nX,
contrary to the assumption.
"~ Without loss of generahty we may agsume that our claim holds for
m =1, ie., X; = lim V1 is not barrelled. Then, by a result in [16] or [30],
X, is of uncountable codimension in B. Tet W be any infinite-dimensional
subspace in J transversal to X,.

We shall now consider separately cases (a), (b) and (¢) of the theorem.

(a): We first observe that for every & € X\ {0} there exists m(z) e N
such that 0 ¢z~ Vm(z Since X\ {0} has the Lindeldf property under
&, there is a sequence (,) in X \ {0} such that

X \{0} U (6(‘,, ’{ 14 ”‘(‘n))

Denote C,= 2, Vm(%) Since Wn X, =0, X;> F >, —, and X; o z, -+
4 V > ¢, for every n € N, we can apply Proposition 5.4 to find a closed
subspace Z of B such that dim(ZnW) = oo and Zn(0, =@ VYneN.
The latter equalities imply Zn(X\{0}) =
(b): Since F iz separable, metrizable and 1OC¢L11Y convex, wo can find
2 sequence (4,) of closed convex subsets of X such tht B\ {0} = UA

Then the countable family of sets (Hf )NnA4, « X N{0}, where k, % e.i\
covers X, {0}. From Corollary 5.5 we have a closed subspace Z in H with
dimZ = oo and ZNX; = 0, hence also ZNX = 0.

(¢): Since £ > vN X, there is a sequence (w,) in X such that 2,0 (v)
but £,4+0 (£). Then define H, = v [(r,)] and ¥ = F;nX. Applying
(b), we find a closed infinite-dimensional subspace 7 of (Hy, vnH,) such
that ZNY = 0. Since Z is closed in K and ewdentlv ZnX =0, Z is a8
required.

"™ B.7. COROLLARY. If the assumptions of Theorem 5.6 are fulfilled and,
in addition, Y is a closed subspace of 1 such that X NY == 0, then there ewisls
o closed subspace Z of B satisfying

YcZ, dm(Z[Y)=o00 and XnZ =0.

Proof. Let @ B—E/Y be the quotiont map, and R: (X, &-(H, )
the identity map. We apply Theorem 5.6 in its equivalent formilation
to the map QR: (X, &) — (&, 7)/¥, and find a closed infinite-dimensional
subspace & of B/Y such thut £ @Q(X) = 0. Then Z = @~ (Z) has the
required properties.

icm
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In a gimilar way we obtain the promised extension of (J-J-P):

5.8. COrROLLARY. Let X, ¥ be proper quasi-complements in a Fréchet
space B. Then there exisls a quasi-complement Z 10 X such that ¥ = Z and
dim(Z|Y) = oo.

5.9. COROLLARY. Let X, ¥ be two closed subspaces of a Fréchet space B
such that XX 18 not closed. Then there emists a closed imfinite-dimensional
subspace Z in B such that (X -+ Y)NZ = 0. (Hence lim B[ (X - ¥) = 2%.)

5.10. Remarks. (a) Theorem 5.6 remains valid if B = (B , T) 18
a TVS with separating dual #*, and the respective absump‘rlon.s on Il in
{a), (b) and (c) arc replaced by the following ones: (a’) & is nltrabarrelled ;
(b’) B is separable, metrizable and ultrabarrelled; (¢’) F is an F-space.
(The agsumptions on X remain unchanged.) Indeed, F iz casily seen to
be a barrelled LOS under its Mackey topology u = (¥, B*)< 7, and
(B, p) is metrizable or separable if such is (¥, v). In cases (') and (b')
we may therefore apply the corresponding parts of Theorem 5.6 to (B, u)
and get a u-closed infinite-dimensional subspace Z in B with ZnX = 0;
then Z is also z-cloged. The assertion in case (¢’) follows from (b') in exactly
the same way as (c) from (b) in 5.6,

(b) Another extension of Theorem 5.6 (b), (c) is obtained by replacing
the original assumption about X' by “X iy strietly dominated by a B,-com-
plete LOS”. (We deduce (¢) from (b) as hefore.) Of course, this extension
of 5.6 may be combined with that indicated in the previous remark.

(¢) The author does not know whether 5.8 is valid for general (even
separable) I-spaces, and the same concerns of course validity of 5.6 when
F is an F-space and X iy its subspace strictly dominated by an F-space,
even if the latter is a separable Fréchet (or Banach) space. Note that if
5.6 were true under such assumptions, then this and Remark 2.2 would
imply the existence of many non-trivial closed subspaces in every infinite-
dimengional F-space, thus solving negatively the problem mentioned
at the end of Remark 4.2.

(d) The author has shown in [4] that every infinite-dimensional
Fréchet space B containg a dense barrelled subspace X with codim X >
2% guch that no infinite-dimensional cloged subspace of ¥ is transversal to
X. (A similar, but less preecise result is stated in [24], Theorem 2, without
proot.) Thus some assumption on X in Theorem 5.6, stronger than just
the requirement that codim. X is infinite, are necessary.

(e) From Theorem 5.6 (¢) and Remark 2.2 it follows that if B is
a Fréchet space (or, using Remark (a) above, an F-gpace with a geparating
dual), then for every countable-dimensional subspace L in B there exists
a closed subspace Z in F such that dimZ = oo and ZNL = 0.

(f) We have the following curious result: Let # be a Banach space,
(2,) a basic sequence in , and Z a-cloged subspace of B such that Znlin (z,)
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= 0. (See (e) above for such 2’s with dimZ = oo.) Then there exists
a subsequence (z;, ) such that Zn[(a,)] = 0.

In fact, it Q: F—H|Z is the quotient map, then (Qz,) is a linearly
independent sequence in H/Z, and therefore contains a. topologically
livearly independent subsequence (), see [19]. Assuming, as we may,

that (,) is normalized, we have [(w )] = <(w,cn)>, and the subsequence

(z,) is a8 required in view of 2.1 (a).

Added in proof. (a) Answering a guestion asked by tho present author, R. Pol
hag shown that if Z is an analytic linear subspace in a soparable IF-space B, then
codim Z is either << Ng or equaly 2%o. From this it follows immediately that thoe
conjecture stated in Remark 5.2 holds true for separable F-spaces. (The case of gen-
eral F-spaces is still open.)

(b) A version of Theorem 5.8 (c), with X assumed to be a nonbarrelled sub-
space of the TFréchet space B, has been recently obtained by M. Valdivia in 4 prop-
erly of Fréchet spaces, preprint. It is cagy to see that Valdivia’s result and our
Theorem 5.6 (¢) are, in fact, equivalent. :
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