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Posons B(s,s’, 1) = p(t—s)-p(s) —p(t—s')—g(s'), et soit u Pimage par &
de la mesure de Lebesgue sur T°. C’est une mesure sur 7', dont les coeffi-
cients de Fourier sont positifs et vérifient w(0) = 0% (n e Z) d’aprés (3).
Comme

N

N
1 ~ . 1 2mint
NI ;ﬂ(%) —Tf N1 ;0 du(t)

tend vers la masse «(0) gnand N—> co (théoréme de Lebesgue), on a u(0) > 0.
Done B = &71(0) est un fermé de mesure de Lebesgue > 0 sur 7%

Chacune des fonctions e™d—s) gin#(s) p=inelt=s)  o=ne(s\ gappartiont
4 A(T® aveec une norme inférieure & C, en vertu de (1). Done

1672 g3y < C*.

Pour chaque N entier > 0, la formule du binbme et I'inégalité triangulaire
donnent

1®\ N|
@) H(—l = )

1 61!15 N
Or ( B tend vers y, fonction indicatrice de F, quand N -»oo. D’aprés

< 0,
4(T3)

(4), les coefficients de Fourier de y appartiennent & 11(Z3). Donc y est
égale presque partout & une fonction continue, ¢t comme y = 1 sur un
fermé de mesure >0, x =1 partout. Donc D(s,s’,1) == 0.

Le premier membre de (3) est donc 1. Done (choigissant # = 1)

€78 = 1€ l|g2 =1,

done Ia série de Fourier de €™ ne contient qu'un seul terme, donc ¢(t)
= k(t—1%,) pour un ke Z et un t,e 7.

Bibliographie
[11 A. Beurling, H. Helson, Fourier-Stielijes transforms with bounded powers,
Math, Scand. 1 (1953), 120-126.
Beceived November 12, 1982 (1828)

1

i1

STUDIA MATHEMATICA, T. LXXVII. (1984)

‘Algebraic foundation of some distribution algebras

by
BENNO FUCHSSTEINER (Paderborn)

Dedicated to Professor Jan Mikusiiiski
on the occasion of his 70th birthday

1. Introduction. Since the pioneering works of L. Schwartz, J. Mi-
kusiniski, I. M. Gelfand, G. B, Shilov and others the problem of distribution
multiplication has attracted the attention of the practical-minded math-
ematician. Distributions are a wonderful tool to work with in the theory
of linear differential equations. But, alas, most of the real problems,
for example, in mathematical physics are connected with interacting
systems; and interaction means nonlinearity for the corresponding dif-
ferential equations. So @ distribution multiplication is required although
everybody knows quite well that this problem eannot be solved in a general
way. Numerous approaches can be found in the literature. (In our reference
list we have included some of the papers dealing with this problem; [11-[31,
[B1-[7], [9]-[16], [20], [21], [23], [25]. But this list is far from being
complete.) Many of these approaches are motivated by the special appli-
cation the author has in mind, and therefore, they contain a large amount
of mathematical arbitrariness. A special point, most authors insist upon,
ig that the distribution multiplication has to be commutative. Bub el-
ementary caleunlation (Section 2) shows that noncommutative models
not only make sense but, in addition, that the noncommutativity can
be considered g the mathematical analogue of the fact that pbysical
conservation laws can be violated by discontinuities (Section 3). We
therefore believe that distribution multiplication should not contain
any arbitrariness at all, and that the product definition should, in a canoni-
cal way, come out of eclementary algebraic properties. Of course, o
carry out such a program certain sacrifices, in terms of the size of the
space, have to be made.

In this paper we pick up an old idea [7] from 1967. At that time we
proved that in the space of the so-called almost-bounded distributions
a multiplication is given in a canonical way. This result is reviewed in
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Seétion 2. In Section 3 this algebra iz applied to the most elementary
problem in shock wave theory, and we demonstrate that noncommutativity
corresponds to the violation of energy density conservation by going
through the shock front. In the last two sections we generalize the alge-
braic concept, lying behind the multiplication of almost-bounded dis-
tributions, to a rather general and completely abstract situation. This pro-
cess illuminates the algebraic background. Further applications of these
constructions will be published in a subsequent paper.

2. The almosi-bounded distributions. For many of the problems in
physies, as well ag in applied mathematies, which are deseribed in terms
of partial differential equations, some relevant solutions are given by
discontinuous functions (e.g., in shock wave theory, quantum electro-
dynamies, ete.). So, it seems natural to look for distribution solutions
of the corresponding differential equations. But, alas, often these problems
are described by nonlinear equations, and it is well known that there is
no “reasonable” distribution algebra [23]. This is easily seen. Obviously,

for the é-distribution é(z) we have 26(x) = 0. Furthermore, —;-w =1,

Hence, because of

1 1
(2.1) o{w) = (—a:)a(m) # — (zd(w)) =0,
@ »
there can be no associative algebra for the distributions.

Since ignorance is sometimes a precious asset, let us suppose that
we do not know this result. For the fun of it, we calculate the product
d(x)n(x), where 7(x) is the jump-function 5(z) = —1 for # < 0 and -+1
for # > 0. From #(z)? = 1 and (%) = 2 é(#) we obtain, by differentiation
of 7% - '
(2.2)
Because of

0 = (7(2)" = 21(2) §(2) +2 8(2)n ().

w(é(w)ﬂ(m)) = (zd(@))n(z) =0

we see that dx is annihilated by multiplication with .
Since the scalar multiples of the é-distribution are the only distribu-

tions which are annihilated by multiplication with the C™-function a,
we have

d(@)n(») = ad(x), aed.
And from
(2.3) (8n)n = 8(n) = é-1 = 4,
(2.4) (0n)n = ady = a6
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we see that o = 1. Hence a = 41 and the algebra must (by virtue of
(2.2)) be noncommutive.

Of course, all this only makes sense if we can justify the calculation
rules we have used so far. These rules are:

(2.8.1)  product rule for differentiation,
(2.5.2) agsociativity of the product,
(2.5.3)  the distribution algebra has to be an extension of the usual

funection algebra.

For the sake of convenience we include the following
(2.5.4) the algebra has to be translation invariant.

Tet us see if there is a canonical algebra which satisfies the rules
(2.8). Of course, in virtue of (2.1), the best we can hope for is a noncommu-
tative algebra in a subspace of distributions. And the least we have to
expect, are two different algebras, because interchanging the factors
yields an algebra isomorphism different from the identity (noncommu-
tativity!).

2.1. DorNrmioN. A distribution ¢ is said to be almost-bounded if,
for every n € N, its nth derivative is of the form

g™ () = b(a)+4(2),
where b is a locally bounded function and where A has a diserete support
without accumulation. point. By B(R) we denote the space of almost-
bounded distributions. ) i
‘ 2.2. THEOREM [7]. For the space of almosi-bounded distributions there
are emactly two algebras fulfilling (2.8). These algebras ave for @, peB(R)
given by

(2.6) @(@)p (2) = limp(z-+e)¢(x)
def 64,0

and

(2.7) @ ()7 (v) = limp (s +6)p ().

det 10

The products (2.6) and (2.7) do always exist sirgce Definition 2.1
ensures that the places where the singularities of ¢, p live are not too
close together. In view of Theorem 2.2 and the fact that we have to expect
at least two different algebras, we are entitled to say that the almost-
bounded distributions have a canonical algebraic structure. Before we
are going to make the algebraic background more transparent we like
to illustrate the use of these algebras at a simple example.

3. An elementary application. In this section we describe bores (hy-
draulic jumps) by distribution solutions of the nonlinear partial differen-
tial equations derived from shallow water wave theory (0th order). Bores
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are shock waves (see the standard literature [4], [17], [24], [27]) which,
over the time, have even attracted much attention in the popular scien-
tific literature (for example [18]). This fact can be understood by every-
body who ever had the opportunity to observe such a beautiful phe-
nomenon. Mathematically speaking, bores are in complete analogy to the
shock wave phenomena of nonlinear gas dynamies.

For reasons, which will become obvious later on, we like to have
a look on the derivation of the rclevant equations. We consider the flow
of an incompressible fluid along the horizontal z-axis.

free surface

7

constant pressure

fluid,

N

. 7 .
o ,n= —
bottom/ u(x.g//

flow at time ¢ alt) bt x

Here (2, y,1) denotes the velocity along the s-axis and »(x,y, t) the
velocity in the direction of the y-axis. We assume that the viscosity is
zero, and that there is neither surface tension nor rotation. The only
exterior force is gravitation. Then the assumptions of shallow water
wave theory (of 0th order) are v(w,y,t) = 0 and that w(x, y,t) hag to
be independent of y. This is the same as assuming that vertical sections
remain vertical sections and that the pressure p(z,y,t) in the fluid is
the same as the hydrostatic pressure:.

eg{h(z,t)—y}—p(®,y,t) = constant (exterior pressure).

Here ¢, g are suitable physical constants. In other words, we can assume
the conservation of mass between moving vertical sections a(?) and b(t)

b(1)

[ n(z,1)dz = constant,
a(t)

(3.1)

and that the change in momentum is given by the difference of the pressure
acting on these sections

b(t) hiah) R(bi))
62 og [ b pu@,nio= [ plaw,vday— [ »po,v,a.

a(t) 0 0
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Elementary manipulation with these equations yield the wusual non-
linear equations

(3.3.1)
(3.3.2)

(hu)y+hy = 0,
Wiy + gy 1y = 0.

Now, inserting the ansatz h(z,?) = h(z—ct), w(z,?) = u(z—ct), one
gees that no shock wave solutions do occur. So at first view it seems that
our distribution algebra is of no use at all since it even cannot be used
to describe the most elementary phenomena. But we completely forgot
that the algebra was noncommutative, and we used commutativity freely
by going from (3.1), (3.2) to (3.3). Doing this derivation again, without
using commutativity, we see that the relevant equations are

(3.4.1) (hu)g+hy =0,

(3.4.2) By, +% g (B*) -+, = 0
instead of (3.3).
Now a shock wave ansatz makes sense:

(38.5.1) hiz,t) = H(x,t)+an(v—ct),
(8.6.2) w(x,t) = Ulw, t)+pn(@—cl).

Here H (#,1) and U (s, 1) denote the mean values of right and left hand
gide limits w_, h_ and u,, h,, respectively: )

H(z, 1) = §(h. (2, t)+h_(z, 1)),
U@, 1) = Houy (@, +u_(2,1),
a =}k (2, ) ~h_(2,1),
B = Hu (@, ) ~u_(,1).
Using the algebra given by, e.g., (2.6), we obtain
(3.6.1) —ca+ph, +au_ =0,
(3.6.2) puy b, —cfhy +gaH = 0.
Tngertion of (3.6.1) into (3.6.2) yields the usual shock wave conditions [24]
(3.7.1)
which together with (3.6.1)
(3.7.2)

determines the shock wave solutions (bores, hydraulic jumps).
Now it seems appropriate to remark that these results are completely
independent of the special algebra ((2.6) or (2.7)) we have chosen. Of

(e—u_)(e—uy) = gH

hy(wy—u_) = (c—u_) (hy—h_) .
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course, this is essential since physical results should not depend on math-
ematieal arbitrariness.

A more interesting discovery iz made if we turn our attention to the
problem of energy conservation of the system. Between the moving sec-
tions a(f), b(?) the change in energy (kinetic and potential) and the power
given by the pressure is

(®)
f ${uh +gh?}dz
aft)

oE d

a - @

R(bt) n(a)
+ulb®,9 [ 20,y Hay—u(a), 1) [

0

pla, y,)dy.

By elementary manipula;ﬁon 'we obtain
b(t)

= (uh+guhf +3 | (wih-+gh)do
aft)

1 o

o Ot

Hence the energy density is
1 B

2 i — (Whobgult), 3 (uh +gh),.

Again by elementary calculation and (3.3) we infer from the above

1 &%

(3.8) o iaw = Wl BIh I, (9,0,

where [, ] denotes the usual commutator [4,B] = AB—BA.

The preceding calculation not only shows that the distribution algebra
of Section 1 yields suitable deseriptions of discontinuous solutions in
terms of nonlinear differential equations but, in addition, it shows that
the noncommutativity of the algebra is the miathematical analogue of
the fact that physical conservation laws can be violated by discontinuitics.

For an extensive investigation of shock fronts, in the context of
distribution multiplication, the reader is referred to [16] and [26].

4. The algebraic background. The proof of Theorem 2.2 is lengthy
and boring but not difficult at all [7]. Nevertheless , eéven by going through
all its details, it does not become transparent from the algebraic point
of view. . .

Furthermore, it is not clear how the proof has to be adapted for
situations which ave slightly different. For example, for higher dimensions,
or if the convergence in (2.6) or (2.7) is replaced by convergence along
a suitable ultrafilter. Completely in the dark remains the problem how
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to extend the algebra under consideration by introducing new artifical
elements in order to have products like (1/z)é(z), ete.

To give a satisfactory amswer to these problems we have to shed
gome light on the algebraic background of Theorem 2.2.

Let us try to pin down what the real problem is. It is well known,
although sometimes forgotten, that distributions were invented to enable
applied mathematicians to consider derivatives of uncontinuous functions.
But taking derivatives of, lets say, functions in the space of almost-bounded
distributions (almost-bounded functions) is no problem at all: Just take
the derivative wherever it exists and forget about the other points. This
is an honest derivation in an honest algebra. Of course, the disadvantage
of this approach is that then one cannot define a reasonable integration
because the kernel of that derivation will be an infinite-dimensional
gubspace. The practical disadvantage of the large size of this kernel is
that there will be no reasonable duality theory where the transpose of
the differentiation will have nice properties. Thus one would obtain an
algebra, where the interesting elements — like the §-distributions—are
migsing. )

So, from this point of view, the real question will be: How to reduce
the kernel of an abstract derivation?

This question will be treated in the following.

4.I. Hvaluation operators. Consider some associative algebra -, -)
over the real numbers. A pair (B*, B™) of linear operators &/—. is called
a pair of evaluation operators if

(4.1.1) ‘
E*(ab) = E*(a)E*(b) and B~ (ab) = B~ (a)E~(b) forall a, b e,

B*, B~ are algebra homomorphisms, i.e.,

(4.1.2)  B*, B~ are idempotent, i.e., B*E" = B, BB~ = H~,

(4.1.3) I+, B~ ave right-absorbing, ie.,

BtH- =Et and E Et=FE".

Standard example for such a pair of evaluation operators are the operations
of left and right side limits in the algebra of almost-bounded functions.
But many other examples can be constructed (§everal dimensions, con-
vergence along filters, ete.)

Assume in the following that B*, B~ is such a pair of evaluation
operators. Then the “product” * defined in <« by

(4.2) axb = (E*a)-b-+a-(B-b)—(H*a)-(BD)

is called: the evaluation product.
4.1. TUBOREM. (&, *) is an associative algebra.

3 — Studia Math. 77.5
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Proof. All properties—apart from associativity —are e&sﬂy seen.
Associativity is proved by direct caleulamlon .

ax(bxc) = (Bta)-(BTh)- o-|—(E+a) b+ (B c)+a-(E"b) (B c)—
—(B*a)-(B™b):(B~e)—(B*a) - (H*D) (B~c).

Moving the bracket from (b#¢) to (a#b) does not change the right-hand

side. Hence the operation = must be associative. m
This algebra is henceforth called the evaluation algebra.

4.9, DERINITION. (1) o5 = {a e | EFa = 0} will be called the
singular elements in 7.

(i) o7, ={ae | Bta= B a} wﬂl be called the continuous elements
in .

Now the following can be verified by direct calculations.

4.3. Remark. (i) Bt and E™ are algebra homomorphisms from
(o, *) into . (&, ) and from (s, *) into (7, *).

(if) The products in (.7, ) and (&7, %) coincide modulo singular el-
ements, i.e., axb—a-be L for all, a,b € .

(i) B~a = 0 for all a e g (since B~ is right absorbing).

(iv) o is a two sided ideal in (a7, %).

(V) o, is a subalgebra of (o7, *) as well as (o, -).

(

_(vi) If (#, -) is commutative, then (7, ) and (&, *) are commuta-.

tive.

From Remark 4.3 we know that the quotients (57, -)| #/ and (&7, %)/ /g
are equal and are constituting an associative algebra. We denote this
algebra . by A:

(4.3) A = (o)l = (s, %) L.
Since /g is a two-sided ideal in

(4.4)

o, the quotient

4, = (oo, )/&{S = (Ao ¥)] &y

must be a subalgebra of 4. We call it the algebra of continuous elements.
Since the kernel of the homomorphism B+ i equal to the kernel of the
quotient map q: (o, %)—4, the map B* provides us with a monomorphism

A (s, *). The same is true for F~. Since no confusion ecan ariso, these
moqomorphisms are again denoted by E* and E~. We have

qBt %QE“ =1.

And, obviously, the algebras 4, H+4, B~A are isomorphic.

Let us see what the algebras A and A, look like in the case of our
standard example. Recall that 7 is then equal to the almost-bounded
functions. 7y are the functions whose supports have .no accumulation

icm
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points: Hence 4- are the almost bounded funetions which are undetermined
on a set without accumulation point. And 4, are exactly those functions
in A where the limits from both sides coincide. Hence A, are the functions
in A which can be (uniquely) extended to continuous funections. The
map BT: A—s/ is the map where each g € 4 is replaced by its right-
side limit. For example, a derivation in A4 is given by taking the usual
derivative wherever it exists. But this notion of derivation has the serious
disadyantage that it annihilates to many functions, namely all piecewise
constant functions. What we would like to do now, is to extend the algebra’
A and this derivation (in a canonical way) such that the only functions
which are annihilated by the extended derivation are only those clements
in the kernel of d which are continuous. That this can be done in all gen-
erality iz the content of the next subsection.

41T, Derivations and trivial extensions. Consider some algebra B
(always over R or C) and some B-bimodule .#. Recall that a B-bimodule
A8 a vector spacs such that products bm and mb, m € #, b € B are defined
in a reasonable way (associativity, distributivity). Examples for B-bimod-
ules are two-sided ideals in B. The set (B x ) can eagily be made into
an associative algebra by
(4.5) (b, m)(b, ) =, (b5, bin+mb), b, beB,m,heH.
This algebra is called [8] the m'vial ewtension (of B via the module .#)
In other words, an algebra C is said to be a trivial extension of B if there
are homomorphisms ¢: ¢—B and y: B—C such that

(4.6.1)
(4.6.2)

@y = id|p,

JJ =0 where J =ker(p) ={ceC] ¢(c) =0}.
B itgelf can he considered as a trivial extension of B. For the sake of
convenience we consider ‘B as a subalgebra of C in case that 0 = (B X.#)
is a trivial extension of B (via the module .#). The canonical homomorphism
(B x .#)->B and projection (B x .#)—4 given. by (b, m)—b and (b, m)->m
are denoted by ¢ and p, respectively, i.e., (b, m) =b,p (b, m) = m.
Obviously, ¢+p =1i

Now consider a derivation d: B—(Bx.#) from B into the trivial
extension (B X.#), that is a linear map with

d(c;65) = d(e;)ept+ed(e,)  for all ¢y, 0y € (B X A).

One easily checks then that pod: B—B is a derivation from B into B
and that pod: B—4 is again a derivation. The following theorem shows
that there is a canonical way of extending derivations d: B—(B X.#).


GUEST


448 B. Fuchssteiner

4.4, TerorEM, Let d: B—>(B X.#) be a derivation. There is a trivial
extension (B x.HA®) of B and a derivation d*: (B X M®°)—(B X M) such
that

(i) H® > A,

(i) @"|p = d,

(ili) @*: A=A,
(iv) if ¢e(Bx.#®) with d*(c)eB, then ¢eB;
and :

(v) if o is gemerated by 4, i.e., # = {m| b ¢ B with d(b) == (b, m)},
then A™ and &* are minimal ; that means any other trivial extension (B x M)
with derivation & fulfilling (i) to (iv) contains an isomorphic copy of (B X M*)
(isomorphism v) such that d* = z~dz.

Furthermore,

(vi) 4= is the direct sum M°= MDA MDIMD.. QA" MD...

Proof. Put # to be the set of all finite sequences (of arbitrary
length) (sg, 81y ..., 8,) in 4. We embed .# into £ in the obvious way
§—>(8,0,...) and we define d* on (B x.#%) by:

a*(b) =d(b) for

*
a" (8gy Sy ee-

beB,

3 8,) = (0,881, ...98,) for 8y, 8:, ..., M.

i !
That means d* coincides on B with d and shifts all components of elements
in 4% by one place to the right. For the sake of convenience we introduce

base vectors in .#%, i.e., we adopt the notation

n
) 8p) = Z‘siei}
i

where e, ...,¢,,... are the obvious base vectors.
'We make a B-bimodule of .#% via the following product definition
for se#, beB, neN:

(4.7.1) affz

(S0 819 -+

)n—k( ){S dn—lrb }e,“

(4.7.2) “(s6,) = 2

k=0

() (@ +8) - s)ey,,

where, on the right-hand side, the multiplication in (B x.#) is used.
A direct inspection shows that .#* and @* have the required properties
(i) to (iv) and (vi).
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Let us now gketch the proof for the minimality. Take # and d ful-
filling (i) to (iv). Recall that # < 4. We claim that the sum
MADAMDEMD. ..

is direct in .. This is then an isomorphic copy of .#* and the minimality
agsertion is proved. To prove the claim assume that

N adt(m) =0, @ #0, qecR, med.

fe=0
We have to show that all the d*m, = 0. Take some b eB with d(b)

= (b, m,) (which exists since .# is generated by d). Then
[l{b -}—2 o d® (mk)} eB.
k=1

Hence, by property (iv),

my = 0
and
n—1
D @ (am4y) = 0.
k=0

Induction yields that all m, =0. m

Let us go back to the situation of the evaluation algebra (=7, *).
Let A Dbe the quotient with respect to the singular elements /g For
a €A and s e &y define

(4.8.1) as = (Hta)*s,

(4.8.2) 86 = s*(Ea).
Then g is an A-bimodule. This is easily seen from the associativity
in (&,«) and the fact that BT, B : A—(s, ») are homomorphisms.

Now let A x o7y denote the trivial extension. Consider a derivation
D,: A—~A. Obviously, this can be considered also as a derivation D;: A
A X Ag.

Our standard example suggests that the kernel of D, may be too
large to do any reasonable analysis with this derivation. We would like
to replace D, by a derivation D* which coineides on A, (continuous el-
ements) with D, and which has the property that its kernel is the inter-
section of A, with the kernel of D,.

Fortunately, another derivation D,: A—&/g < A X /g is given by

(4.9) Dy =B —H".
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That this must be a derivation is the consequence of a rather general
theorem ([8], Prop. 20.1.1) but it can also be checked by a simple calculation.
Now put ’
(4.10) D =D,+D, = D,+B*—-F".
This is a derivation D: 4-—»4 x &y and certainly ity kernel is the inter-
section of A, with the kernel of D,. But now we have to deal with the
disadvantage that our derivation is not completely defined on all of the
algebra A4 x s#5. To abolish this disadvantage we need Theorem 4.4.
Taking the canonical extension provided by that theorem we obtain
‘ 4.5. COROLLARY. There is a trivial extension A X AF of A and a deri-
vation D*: A X AL—A x AL such that ‘
(i) o8 > g, :
(i) D*4 =Dy +E* —F~ and D*|4, = Dily,
(ili) D*: A>T,
(iv) if D*(a)e A then a e A, in particular if D*(a) = 0, then a € A, with
Dy(a) = 0;
and
C (V) if sy is generated by Dy d.e., (BT —E")A = s, then % and
D* are minimal realizations of (i) to (iv).
- Furthermore,
(vi) o is the direct sum AT = A DD A ®DVAD...
- 3. Duality. In this chapter we briefly indicate what the construction
of Section 4 can do for analysis in the context of duality theory.
Consider some evaluation algebra (s, ) and its quotient 4 with
respect to the singular elements «7g. Again A, denotes the continuous
elements in A. Furthermore, we assume throughout this section that =g
is generated by H*—E~, ie., 5= (B*—E)A.
Let an integral be given. To be precise congider
5.1. Bituation: Let J be some left ideal in 4 and [ - a linear fune-
tional on J such that
(i) DyJ = J,
(li)y A = (BT —E")J,
(iii) [ Dy(§) =0 for all jeJ, =.4,nJ,
(iv) for every monzero a e A there is some j eJ with f aj 0.
To keep a concrete example in mind consider our standard example
and let J be the ideal of all almost-bounded functions with compact
+ 00
support and put [ to be [ -dx. Then all required assumptions are fulfilled.

o0
Let us return to the abstract situation and let us interprete what
Situation 5.1 means.

icm
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Abbreviate <a,j> == [aj, ac A4, jeJ. Then the elements of A

can be considered as linear functionals on J via a->{a, ->. Because of
(iv) this map is injective. Therefore we identify with <{a, ->. Now (iii)
means that integration by parts is possible for continuous elements, i.e.,
(5.1) {Dya,j> = —{a,D:jy Naed, jed,
Our problem is, whether or not we can embed 4 into an algebra of linear
funectionals on J (or an enlarged ideal) such that there is a derivation
D on that algebra having the property that it coincides on A, with D,
and such that integration by parts (with respect to D) holds in general.
The answer is yes!

5.9. TumorEM. There is u trivial emtension A* of A, a derivation D*:
A* > A* and some left ideal J*> J of A* and a bilinear functional (-, >t
A* xT*—>R such that :

(i) D*J* = J*,
(i) -D*[Ac = Dn

(iii) <(a,j> = [aj for all a €A, jed,

(iv) (D*a,jy = —<a, D) for all a € A*, jed*.

Proof. Take A* = A x #F and D* as in Theorem 4.5. Recall that
A* iy a direct sum
(5:2) LAY = A@A DD A ®... OD" AL D...

Congder J* = J +A*T 4-D*A*J +D*¥A*T +... Since D* is a derivation,
this is a left ideal; furthermore, D*J* < J* and J * ':;J . Again from D,J = J
and our pioduct formula (4.7) we obtain &2 = | Dot Fro'm‘(ii) of

‘ne=0 .
Situation 5.1 we have &/yJ = (BE* —F~)J. Hence, using AJ = J, we
obtain finally :
J* = JQET—E)I @D (F —E)JD... @D*™Er—HE7)J D...
and this sum must be direct (see 5.2). The projection onto J we denote
by =, the projection onto (BY —E™)J we call p. Define a linear functional
on J* by :
(5-4) ["i @ [ =) —[ Div(i)
where p(j)ed is such that (BY—E7)w(j) =p()

Although w(j) is arbitrary up to & continuous element; of J the func-
tional is well defined because [ D, vanishes on the continuous elements
of J. The functional is linear. We claim that [* D% =0 for all j e J*.
In view of (5.3) and the fact that, by definition, [* vanishes on D** (Bt —
—F")J, n=1, we have only to prove the claim for jed. So, let jeJ
and let : :
(5.5)

for all jeJ*,

[* D% = [ a(D%)— [ Dup(D") = [ Dyj—[ Dib,
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where h may be an element of J with (E+* —E")h = p(D*j). Since j e J,
we have p (D"j) = (B* —F")j. Therefore we may take h =j and obtain
in (5.5)

[*D% =o.
Obéerve (by (5.4)) that [* is an extension.of [, ie.,
(5.6) [i=[i
Now define for a e 4%, jeJ*
i = " g

Then all the required properties are fulfilled. m

for all jed.

Acknowledgement. I am indebted to my colleague K. H. Kiyek who
undertock the difficult task to teach some elementary algebra. to an
analyst.
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