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Abstract. The completion theory developed by J. Novak for sequential conver-
gence groups with maximal convergences i extended to the case of general conver-
gence groups. The properties of the minimal completion are studied and, in particular,
necessary and sufficient conditions are given for the minimal completion of a Fréchet
convergence group to be Fréchet.

1. Convergence groups. This paper is concerned with sequential
commutative convergence groups. As neither filter convergence nor the
non-commutative case will be considered, the words “sequential commu-
tative” will be omitted in the sequel.

Recall ([6], [2]) that a convergence £ on & seb L is a set of pairs ({z,>, @)
satisfying the axioms : .

(Zo) ({mpy, @) e and ({2,),9) €8 imply z =y,

(£,) ({ad, @) e @ for each z €L and

(%) (&Y, %) € & implies ({(z,,) e for each subsequence {(ng
of {(n).

It ({x,>, %) €8, then we say that the sequence {m,> R-converges
to @, in symbols £-limz, = z. A convergence is said to be mazimal and
denoted by £* if it also satisfies the axiom

(Zq) Let (m,>, #) € I¥ x L. If for each {n;> there exists (n,> such
that ({an;>, %) € 8, then ({m,»,a)e L.

A convergence space (L, 2, 1) is a closure space where the closure
operator 2 is induced by the convergence £, i.e., M = {o| A Lz, U (2,)
c A, (<&, , ) € 8}. The topological medification of the closure operator 2,
i.e., the finest topological closure operator coarser than 4; will be denoted
by A°L
. The notion of a convergence group was introduced by J. Novak
in [5] and a general theory of such groups was given in [7]. Let (L, £, A)
be a convergence space and let (L, +) be a group. Then (L, &, 4, +)
is a convergence growp it the mapping f: (L, 2, ) xX(L, &, )~(L, &, 4)
defined by f(#,y) =2 —y is sequentially continuous. -
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Let (L, 8,1) be a convergence space and let (L, 4) be a group.
Then ([7]) (L, 8, 4, +) is a convergence group iff the following condition
is satisfied:

(%) It ({,>,x) €8 and ({y,>,y) €8, then there iz a subsequence
{mpy of (m) such that (Kt —¥y,>,x—y) el

If the convergence £ iy maximal, ie., £ == 8% then (I, g, 4, -},)\

is a convergence group iff the following condition is satisfied:
(£9%) I ((ayp), @) €L and ({y,»,9) €&, then ({m,—y,>,x—y) Q.
.-I - Novik &as shown in [7] that there are convergence groups satisfying
condition (&°%*) which are not maximal, i.e., for which & 5 8*, Hence
we can distinguish three classes of convergence groups.

DEFINITION 1. A convergence group will be called a C-group, a con-
vergence group satistying condition (#%*) will be called a O*-gr;up and
a convergence group for which 2 = 8* will be called a C*-group.

If we denote by €, C* and C* the corresponding classes of convergence
groups, then we have C*Z C* S C.

ExampLE 1. Let Q be the group of rational numbers and let £ be
the usual convergence on §. Then (@, £, 2, +) is a (™*-group.

EXAMPLIE 2 ([1]). Let X= {m=(§)| & eRVieN,E,’ |éi] < oo} and
(e

let & = {((@,,2) | &V >EVieN,Ty =( -
& . i =(p)eX, €M<V
Then (X, £, 2, +) is & 0%-group which is not & 0*-’3’1‘0111). < ¥ne X}

Exawveie 3. Let X = {[f]| f: [0,1]—>R,f B-mes
; : - ble} and let
ey - ) ) Tneasura
L noi i[_{j}ﬂ}g,r[g;]l))l Jo>f a.e.}. Then (X,8,24, +) is a Ot-group which
ExAmrLE 4. Let (Q, 2,1, +) be the C* i
-group of rational numbers
from Example 1 and let (x>, %) eM if ({x,>,#)eQ and {wy> is

a monotone se . ¢ 1) s .
o O*-group. quence. Then (@,M, u, +) is a O-group which iy not

2. Cauchy sequences in convergence
: . rgence groups. J. Novak hag constructed
2,;01111;1?1011 for O‘Y-‘I}gh'ro?ps in [8]. We are now going to consider the general
ase of C-groups. The first step is to decid

e o D ide what should be the Cauchy

‘We shall use the following notation ([2]). & i

' . . & ny ... will denote
of points, £ (‘n) will denote the nth term of the s’eq’uenoe & e, & §:€1<1156(1{'1;;f;5
831, %, ... will denote monotone mappings of N into ¥, Eo; will denoté
a subsequence oi? the sequence & and éAz will denote the sequence whose
(2n—1)th term' is &(n) and whose 2nth term is #(n).

The following natural definitions of Cauchy Sequences suggest them-
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gelves. Let (L, R, 4, +) be a C-group. Denote
¢ ={teL”| VsVitIu: (<Eosou(n)—.§otou(%)>,0) e 8},
0" ={&eI”| Vs Vi((€os(n)—Eot(n), 0) e 8},
0" = {¢eIN| Vs ((E(n)—Eos(n)), 0) € 8}

ProPoOSITION 1. (i) 0' = 0" = (.

(i) & = £* implies ¢' = (0" = 0.

Proof. (i): ¢’ = 0" is obvious. Now let £eC” and let s and t be
given. We have ({(£(n)—£os(n)),0)ef and (¢E(m)—&ot(n)), 0) € L.
Tt follows by (#%) that for some u ((fosou(n)—Eotou(n), 0)e 2 and
therefore ¢ e C.

(ii): Suppose & = £* and £ e and let s and ¢ be given. For each »
there exists « such that ((Eosovou(n)—-50tovou(n)>,0) e and by
(#,) we have ((fos(m)—&ot(n), 0) e* = 8. Hence £eC'.

ExAMPLE 5. Let (@, &, 4, +) be the (-group of rational numbers
from Example 1. Define a convergence N:

(g, m)eR i (&0)el and @ #0,

(6,0)0eM if (§0)ef and £ is a monotone sequence.
(Q,M,v, +) is a C-group which is not a ¢+-group.

(i) Put

@, = 1420+,
Yo = 1427 (=470,
$ony = By AU -
‘We have ({2,>,1) e N.

Put 2, = i Then (2,2, 0) ¢M and hence <z,> ¢ C” and
by Proposition 1 we have (z,» ¢’ Notice that, in fact, & e (' only if
there exists # € Q such that &(n) = « for all bub finitely many ». Indeed,
if & is not of this kind, then it contains either two distinet constant. sub-
sequences or a one-to-one sequence which contains a monotone subsequence
£os. In the first case clearly &¢C'. In the second case put t(n) = 4n,
w(@n—1) = 4(2n—1)—1, u(2n) =4(2n)+1.  Then (¢Gosot(n)—
—Eosou(n)y, 0) ¢ N and hence £¢('. On the other hand, obviously
{z,> € C. Henee 0" # C.

(ii) Put v, = 27" We have ({v,, 0) e %t and by the argument given
in (i) we have <{v,» ¢ C'. On the other hand, for each {g,> we have ({v,—
—v,,>; 0) €N and therefore <v,> € C". Hence C' 0.

Example 5 shows that there exist C-groups for which O’ = 0" # C.
Turther it shows that in general neither ¢’ nor 0 contain all convergent
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sequences. Since it is natural to expect a convergent sequence to be a
Cauchy sequence, it would not be appropriate to use either ¢’ or C" as a set
of Cauchy sequences. (The situation is different in the case of C+-groups
which will be considered in Section 4.) We shall see that C is better behaved
in this respect. Therefore while ¢/ = ¢"" = C for C*-groups and 0’ was
uged by J. Novék ([8]) as a set of Cauchy sequences in a C*-group, in
the general case of C-groups only C can serve as a st cf Cauchy se-
quences. We ghall now examine the set ¢ in some detail.

PROPOSITION 2. Let (L, 8, A, +) be a C-group. If (£, @) €8, then
Eed.

Proof. Let s and ¢ be given. We have (£os, ») e & and (éot, &) € 8.
By (¥9) there is u such that ((Eosou(n)—Eotou(n), 0) el a.nd hence
ted.

J. M. Irwm and D. O. Kent ([3] and [4]) developed a general theory
of Cauchy sequences from the axiomatic point of view by introducing
the notion of a sequential Cauchy. space. Following [2] sequential Cauchy
spaces will be called ¥ZL-spaces.

Let L be a set and let B < LY. We say that (L, B) is a ¥.%-space
if the following conditions are satisfied:

(¢%,) (&) €B for each we L,

(6%,) éeB implies £os e B for each subsequence £os of &,

(6%,) é,neB and fos = yot for some ¢ and ¢ imply £aneB.

A #%-space is said to be separated if it satisfies the condition

(8ZL,) @wyAly) e B implies # = y.

A ¢Z-space is said to be maximal if it satisfies the condl‘mon

(¢%,) Let £e LY. If the conditions

(a) For each s there exists ¢ such that £osote B and

(b) £oseBand £ote Bimply £osA ot e B
are satisfied, then £ € B. If ¢ e B, then £ is said to be B-Cauchy.

ProrosrrionN 3. Let (L, 8, 4, -+) be a O-group. Then (L, 0) is a mawi-
mal separated €.L-space.

Proof. (¥¢,): For each 2 eL obviously (m) e 0. :

(62.): Let £ €0 and let £os be a subsequence of 6 Aga.m, obvi-
ously, fose(,

(€25): Let & g e C, let there be v and w such that oo = now and
let s and ¢ be given. Wlbhout any loss of generality we may assume that
there exists w, such that

(Eam)osou, = Eop
and that there exists %, such that

for some p

(éAm)otowuom, = nog - for some ¢.
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We have
(EAn)080U; 0%y = EOPOUH,.

There exists u; such that
(((E./\n)osoulouaoua(n) —Eovoug(n)y, 0) e L.
There exists u, such that
((nowoupm(n) —(EAN) 010U 0 U, 0U50U% 4 (7)), O) €8,
Finally, there cxists u; such that for #’ = %;0%,0%;0%,0%u;

(((Eam)osou’ (n)—(EAn)otow’(n)>, 0) e &
and hence £aneC.

(6%0): {x>Ay> €0 clearly implies » = y.

(42,): Let & e LV, let for each p there exist v such that fopoved
and let £og eC and &or eC imply &oga éor eC. Let s and ¢ be given.
There exists v, such that fosow; e . Further there exists v, such that
&otov,00, € 0. For each v, and v, there exists v; such that

(¢(E080v;00,A 010V, 005) 003005 (1) —
—(£E080v;00,A £EOL0D,00,)0v,075(n)), 0} € L.
For vy(n) = 2n--1, v,(n) = 2n we have , - ‘
(¢£0s0w,0m,005(n) —E0t0v;00,005(n)), 0)el
and hence ¢ € C.

3. Completion of convergence groups. :
DrFINITIoN 2. Let (L, 8, 4, +) be a O-group. A sequence & eLN is’
said to be a.Cauchy sequence in (L 8, 4, +) it & €0, ie., if for each s and ?
there is & u such that
(¢Eosou(ny—Eotou(n)y, 0)eL.

DerNiioN 3. Let (L, 8, 4, +) be a C-group and let & and n be
Cauchy sequences in (L, £, 4, +) The sequences £ and 7 are said o
be equivalent, in symbols & ~ 1, if for each s and there is a « such thab
(¢Eosou(n) —Eotou(n)y, 0)e8.

Tor the case of 0*-groups we obtain the notions of a Cauchy sequence
and equivalence of Cauchy sequences introduced in [8].

The following statement is easy to prove.

ProrosITIoN 4. Let (L, 8,2, +) be a O-group. Then

(i) 4 subsegumce of a Cauchy sequence is @ Oauohy SeqUENCe.
(ii) If ( x) e %, then & is.a Cauchy sequence.
(iii) The wlatwn ~ 18 an equivalence.
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DerFINITION 4 (cf. [8]). A C-group (L, 2, 4, ) is said to be complete
if for each Cauchy sequence & there exists a point # € L such that (&, ) e Q.

ProPOSITION 5. A complete C-group is a O*-group.

Proof. The assertion follows by Proposition 4.

DEFINITION 5 (ef. [8]). A C-group (M, M, u, +) is said to be a com-
pletion of a C-group (L, 8, 4, +) if it is complete and contains (L, £, 2, )
as a u“l-dense subspace and a subgroup.

J. Novék constructed in [8] a completion for each O*-group in the
following way. Let (L, £, 4, +) be a 0*-group. Denote by L, the get of all
equivalence classes [{w,>] of Cauchy sequences <(x,». Identify points
z of L with classes [{#>]. Let [{@,>]1+[{¥n>] = [{#,+¥,>] and let ({z,>, 2)
€ &, if there is a Cauchy sequence @, such that z—=z, = [{x,>]—a,. The
C*-group (L, 8%, 4, +) is a completion of the (*-group (L, L, 4, +).

PROPOSITION 6. Every C-group (L, 8,4, +) has a completion (M, M,
My +). . :

Proof. By Theorem 1 in [8] the (*-group (I, 8%, 1, --) has the
completion (L,, 8, 4, +); put (M, M, p, +) = (Ly, &Y, 4, +).

DEFINITION 6, The completion (L, 87, 4, ) is said to be the minimal
completion of the C-group (L, 8, A4, +).

ProposiTIoN 7. Let (Ly, 8%, Ay, +) be the minimal completion of
a C-group (L,8, 2, +). Then

(i) (L, 8,4, +) is Ay-dense in (Ly, &%, Ay, +).

S () If (M,M, u, +) 98 a completion of the C-group (L, 8,1, +),
then there is a continuous homomorphism of (Ly, 87, Ay, +) into (M, I, u, +)
leaving L pointwise fived.

Proof. (i) follows directly from the construction of IL,.

(ii): Define a mapping f: (Ly, &1, 4y +) = (M, M, u, +) by f(x)
= M-lima, for # = [{w,»]. Clearly f|L = id. The mapping f is well-defined.
Namely, if [{2,>] = [{¥,>], then 8"lim(v,—y,) = 0. Hence M-lim (x,—
—Y,) = 0 and M-limy,, = M-lim=z, = f(»). The mapping f is a homo-
morphism  sinee  f([<2,51+ [<¥,>]) = f([@p> +<¥,>]) = Ve-lim (2, +9,)
= f([<%,>]) +f([{Y,>]). PFinally, if £}-lime, =2, then for each subse-
quence {n;» there is a subsequence {my,» such that ,-limen, =2 Hence
there is a Cauchy sequence (w,> such that & —zny, = [{®,>]—a;. We have
M-limf () = fl2) —F([{2,0]) +M-limay; = f(2). It follows by (&) that

Melimf(2,) = f(2). |

Exsmere 6. Let (@, 8,4, +) be the (™-group of rational numbers
with the usual convergence from Example 1. The minimal completion
of the C*-group (Q, 8,1, +) is the minimal completion (R, 8%, 4y, -+)
constructed in [8], ie., B is the set of real numbers and ((z,>,%) € &
if there exists a real number @ and a sequence <z,> of rational numbers
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converging to » in the usual way such that 2 —z, = @z, This C-group
differs substantially from the topological group of real numbers. It fails
to have many properties of the topological C*-group (@, 2,1, +). In
particular,
(i) (B, 4 faily to be regular,

(i) (B, A7) fails to be regular,

(iii) (R, 87, A,) fails to be sequentially regular, ie., limf(z,) = f(z)
for each feC((R, Ly, 4)) fails to imply &f-lims, =& ([6], [2]).

=
Proof. Let P = |J (p;'*) where (p,) is the sequence of primes.
Ti=al

Suppose thete is a sequence {z,> and a point & R such that (¢a,), ) € &F
and | (#,) < P. Then there is a sequence {m,,> such that ( ;,:/2>, ) e Q.

n=l
By the definition of the convergence £, there iy a sequence {y,> of rational
numbers converging to a real number y such that m—p;b;’z =y —Y,. It
follows that p;j/z —Pal? = Y1 —y, €@ which is a contradiction, Hence A,P = P
and therefore also A1P = P. Sinee P is A;-closed, B —P ig a 4;-neighborhood
of 0. Let U = R—P be a A;-neighborhood of 0. Then 4, UnP s @ and (i)
holds. Since P ig also Afi-closed, B —P is a A{i-neighborhood of 0 as well.
Let V <« B —P be a AP1-neighborhood of 0. Since 4, < 471, it follows that V'
is a A;-neighborhood of 0 as well. Hence 4,Vn P = @. Therefore A1V P
#* @ and (ii) holds.

Denote @,, = p,"* We have 0eR~1, | (a,). For each melN
m=1

let {a,,,> be a sequence of points of § such that 0 < a,, < a,, and ({a,,,>,
a,) € 8. Let fe O((R, £, 4)). For each ¢ >0 and for each m ¢ N there
is n,, such thatb |f(a,) —f(@m,)| < &/2 for each n = n,. Since ({py,>, 0) € L4
there is m, such that ]f(amnm) —f(0)| < &/2 for each m = m, For m = m,
we have [f(a,) —F(0)] < [F(t) —F (Gyun,)| +1F (@pm,) —F(0)] < 8/2 462 = &.
Since ({@,y,0) ¢8%, it follows that (iii) holds.

By (i) and (i) both (R, 4,, +) and (R, 471, 4-) fail to be topological
groups. ‘

Examrre 7. Let (X, 2, A, +) be the C*-group of sequences of real
numbers from Example 2. Using (v) in [1] we obtain that the minimal
completion (X, &, A, -+) of the C*-group (X, 8, 4, +) is the complete

metric space I, = (X, ¢) where o(z,y) = > |&—n,l, i.e., 8 is the con-
. f=1
vergence induced by the metric .

BxampLe 8. Let (X, &, 4, +) be the C*T-group of equivalence clases
of B-measurable functions with convergence almost everywhere from
Example 3. The minimal completion (X, L}, 4,, -+) of the C*-group
(X, 8,4, +) is the metric space of equivalence classes of B-measurable
funections with convergence in measure, i.e., 87 is convergence in measure.
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Bxavere 9. Leb (@, M, u, +) be the C-group of rational numbers
with the monotone convergence from Example 4. The minimal completion
of the C-group (Q, M, u, ) is the minimal completion of the topological
group of rational numbers.

Example 6 shows that the minimal completion of even a topological
group can fail to have “nice” properties. T.et us now congider whother
the property of being a Fréchet space is preserved.

DermxiTioN 7 (cf. [8]). Let (Ly, 87, 41, +) be the minimal completion
of a O-group (L, 8, 4, +). T'wo points x and y of L, are said to be equivalent
if #—y e L. The class of all points of L, which are equivalent to » will
be denoted by [z].

PrOPOSITION 8. Let (L, 8,4, +) be a Fréchet convergence group.
Then the minimal completion (Ly, 8%, Ay, +) of (L, &, 4, ) 48 o Fréchet
conwvergence group iff there is only a finite number of distinct equivalence
classes of points of L.

Proof. I. Suppose that the condition is fulfilled. We have to prove
that A, is a topological closure for L. Let A < L be given and let # & 434,

@) < Ay A and (<>, 2) € L.
Henece there is a Cauchy sequence <a,> in (L, &, 4, +) such that 4 —z,,

Then there is a sequence <z,> such that | (
m=1

= [{a,>]—a,, It follows that z,, = a,+8—[{a,>] = ¥+ —a; = @1 +b,
where (¢ bm>, —m, e £,. Since «,, € 1,4 for each m € N, there are sequences
By such that U U D) < A DA (B y By) € L1, Wo have @,,, € [By,]

m=1n=1
for each m and n. Since the number of distinct equivalence classes is
finite, we can assume without loss of generality that ,, & [#;;] for each

o0 =]
m,n eN. It follows that @, = @,,+a,, where | U (ay,,) =L and

me=l =l
= &,,—®, = b,, €L for each m e N. Put ¢,, = @,,—b,. Then

U Uen) = L and ({6, 0) € 9* for each m e, Since (L, 8,4, +)

m=1ln=1
is Fréchet, 0 is not a g-point of L ([7]) and hence there exists a sequenco
e ”£> such that ({eyny>,0) 8. It follows that Bl-hmmmﬂ‘
= Sll-llm(mlw—i—cmlm—l-bmi) =g Hence ®eid and therefore 2} =1,
IT. Suppose, on the contrary, that there is am infinite number of
distinet equivalence classes. Hence there is a sequence {a,> such that
a; ¢ [a;] for ¢ #4. Let a; = [{a;,>]. Put wm = Gy 0, DA Dy, = 03—
-“m-f"“mu Uprine Then ((Bpn>, 3,) € 8F and (<z,>, 0) € 8. Hence

0ea2 U U (). Let 2, ~%¢n Then #—2; ¢ L for i = j. Henco by

m=1n=1

Lemma 11 in [8] 0¢ 4 U U (Zpn) and therefore 1, # 3.

m=1n=1

_—
L-lima,,,

icm

Completeness of sequential convergence groups 463

CorOLLARY 1. The minimal completion of the topological group of
rational numbers is not a Fréchet convergence group.

Proof. Clearly p;® ¢ [p;**] for ¢ #j where (p,)> is the sequence
of primes.

Let (L, B) be a ¥¥-space. A sequence <w,» of points of L is said
to converge to a point x of L if {z,> A {(x) € B. The ¥.%-space (L, B) is called.
complete if for each (y,> € B there is y € L such that <{y,> converges to ¥
([31, [4D-

ProrosrrioN 9. Let (L, 8, 4, +) be a C-group and let (L, C) be the
gL*-space of Cauchy sequences in (L, 2 , Ay+). Then a sequence {x,y con-
verges to @ in (L, 0) iff ({e,0, @

Proof. I. Let {x,>A<lz) eC. Then for each (m,> there exists <fn,,>
such that ({zn;—a),0)ec L. Hence ({w,»,s) el

II. Let ( (mn>,w) e 8*. By Proposition 4 we have <(z,>e€C. Let s
and ¢ be given and consider the sequence & = {({@,>ALE>) 0§ (n) —({B> A
Alad)ot(n)>. By a suitable choice of « we can obtain a subsequence &ou
of ¢ which will be of one of the following forms: {@; —u; >, {¥-%; >,
{w;,—x> or <0> and therefore <{w,»A<w) e C.

COROLLARY 2. A C-group (L, 8,1, -+) is complete iff the 4.¥*-space
of Cauchy sequences in (L, 8, A, -+) is complete.

4. Cauchy sequences in (*-groups. In [2] the notion of an #-group
was introduced. For these groups we require that the group operation
be #-continuous instead of sequentially continuous. Let (L, &) be an
%-space and (L, +) a group. (L, 8, +) is said to be an Z-group if the
following condition is satisfied

(%) (@, 2)el and (Y,p,y) el imply (K2, —¥p),—y) el

R. Fri¢ has shown that for #-groups the following statement holds

ProposrrioN 10 (R. Frid). Let (L, &, +) be an Z-group. Then

(i) 0" = 0"

(i) (&,2)eQ implies £eC".

(iii) If £eC", them £oseC" for each s.

(iv) If &€ (", then & is either convergent or totally divergent.

We see immediately that the following statement holds.

ProrosITION 11. There is a one-to-one correspondence between the
class of C+-groups and the class of Z-groups.

Propositions 1, 10 and 11 yield the following corollary.

CoROLLARY 3. Let (L, 8, 4, +) be a C*t-group. Then

@ e =0
(ii) (&,2) e 8 implies £eC".
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(iiy If &eC”, then &oseC" for each s.
(iv) If éeC", then & is either convergent or lotally divergent.

The Example 3 of the ¢*-group (X, 8,4, +) of equivalence clagses
of B-meagurable functions with convergence almost everywhere shows
that in general for (*-groups we have ¢’ = ¢'" Z 0. Indeed, if f, —f
in measure but not almost everywhere, then {[f,]) € C—0" in view of
(iv) of Corollary 3. In fact, it is easy to sec that (X, £, 4, ) is “C""-eom-
plete” in the sense that each {([f,]> € ¢'' converges in (X, &, 1, ).
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On the structure of L,-solution sets of
integral equations in Banach spaces

by
WEADYSEAW ORLICZ and STANISEAW SZUFLA (Poznat)

Abstract. In this paper we consider the integral equation
i
1L sty =p W)+ [ f(t 8, w(s))ds
o

in a Banach space X. We prove that under suitable assumptions the set of allsolutions
of (1), belonging to a certain Orlicz space L, (J, X), is a compact R;.

Let X be a separable Banach space. For any compact interval J
and for any N-function ¢ (cf. [4], [6]) we shall denote by L,(J, X) the
Orlicz space of all strongly meagurable functions #: J — X for which
the number

llull, = inf {9’ >0: [o(lu(s)lr)ds < 1}
J

is finite. It is well known that <{L,(J, X),]-||,> is a Banach space. More-
over, we shall denote by H,(J, X) the closure in L,(J, X) of the set of
all bounded functions. For properties of the spaces L, (J, X) and B, (J, X)
see [4], pp. 76-106.

In [7] we gave some conditions which guarantee that the integral
equation

i
(1) a(t) =p()+ [f(tys, a(s))ds

has at least one solution « belonging to a certain space L,(J, X). In this
paper we shall show that under the same assumptions as in [7] the seb
8§ of all solutions « e L, (J, X) of (1) is a compact B, in the sense of Aron-
szajn, i.e., § is homeomorphie to the intersection of a decreasing sequence
of compact absolute retracts.

Let L'(J, X) denote the Lebesgue space of Bochner integrable func-
tions u: J — X provided with the norm |lull; = [ llu(s)lds, and let g and

J

8. be the ball measures of noncompactness in X and I'(J, X), respectively.
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