icm®

508 A. Kamidski

(iv) there emist & e PY p e N and measurable functions T, such that
f, = F® T, -0 aimost everywhere im R and

[F, ()] < Cexp(plz’)

for some C >0 and almost all @ e RY
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Sobolev’s and local derivatives
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KRYSTYNA SEORNIK (Katowice)

Dedicated to my teacher
Professor Jan Mikusivisks
on his 70th birthday

Abstract. The paper deals with local derivatives of functions of seveialva,ri_ables
having values in a fixed Banach space. It is shown that the local derivative and
Sobolev's derivalive are equivalent.

Local derivatives of functions of one real variable with values in
a Banach gpace were considered by J. Mikusifgki in [2], and. earlier, in [4],
loeal derivatives of functions of g real variables with values ih a Hilbert
gpace were introduced. In [6] the author gave a list of properties, the-
orems and also some comments concerning local derivatives. The func-
tions congidered in this paper are defined in a g¢-dimensional Euclidean
space RY; their values are elements of a Banach space Z. ‘

By a local derivative of a function f of & real variable we mean the
local limit of the expression

2 (a1 ~F(@)]

a8 b - 0. In other words, g is .a local derivative of f if

—:;L; [f(@w-h) ~f(@)]—g(»).| do =0

]
1) lim f
h-r0 M

holds for every bounded interval (a, b). (We assume that the integrand
in (1) is locally integrable). :

Lot f and ¢ bo locally integrable functions on an open set 0. If, for
each real valued infinitely derivable function ¢ with bounded support
in @, the following equality holds:

[ogdn = — | fp'dm,

then g is called weak derivative of for Sobolev's derivative f'off(ef. [3], p.172)a
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‘We shall show that the Sobolev derivative f' and the local derivative
of f are equivalent. We generalize this result to any number of variables
and to any order of the derivative. This is the subject of this note.

This result to be somewhat unexpected because weak convergence

1
is essentially more general than local convergence. For example, W sin —;;
converges weakly to 0, whereas local limit does not exist.

1. The points of the g-dimensional Euclidean space B? are denoted
by &, Yy 2y 50 = (&5, .0y £, Y = (93 +++y N,). The set of all non-negative
integer points of R? will be denoted by P% We adopt the notation: w-+y
= (51+"71) ceey Egtng)y A o= (A&y, .o, A),  ay = (Eyy e, Emg)y o™
= £t ... e, where m = (Uy, ...y fy) eP“ and A is a real number. The
letter ei denotes the point whose ith coordinate is 1 apd all the remaining
ones are 0. It will also be convenient to wuse the mnotation:
e=(1,..,1). ‘

Let a = (a1y...,a;) and b = (B;,...,6,). The set of points x e R

such that a; < &< f; (j =1,...,q) will be called a g-dimensional open

interval and denoted by a < & < b or (a, b). Infinite values tor oy and fB;
are admitted. If ¢; and g, are finite, then the set of all pomts 2 e R*whoge
coordinates satisfy inequality o;< §<f; (j=1,...,0q) will be called
a g-dimensional closed interval and denoted by a<xo<b or [a,b]

All integrals congidered in this paper are meant as Boohner integraly
(see [2]).. .

The synibol - .

[ £y aem
Zo

will stand for the iterated integral of order m & P of a locally integrable
function f (see [1], p. 69).

We adopt the definition of the difference operator of order m (m e PY,
h=(2,..., xq) e k9

A(m,h)f — Atlul.zl) . A(éxqixq)f, :

where the symbols on the right-hand side mean the iteration of difference
operators :

Hy

Aperif(m) = 3

j=0

=143 f (@ +jeigs) s
and ) :
. AP =

icm®
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By the m-th iocal derivative of a function f in R? we mean the local
limit of the expression

1
o AR ()

ag b — 0. In other words, ¢ is the mth local derivative of f if

(2) lim.

1

holds for every bounded interval I in B% In order for this definition to
be sengible, we always assume that the integrand in (2) is a locally inte-
grable function of @w. The mth local derivative of f will be denoted by
Dipf. |

If a locally integrable function f has a local derivative, then its local
derivative ig locally integrable because the limit of a locally convergent
sequence of locally integrable functions is locally integrable. If g is a local
derivative of f, then every function equivalent to g is also a local deriva-
tive of f. No other function has this property. If & meastrable function ¥,
of a real variable, has a local derivative D.f, then both f and D} f are
locally integrable (see [2]).

The local derivative is also a dlstrlbumonal derivative because each
locally convergent sequence of distributions is distributionally convergent.

2. A function I will be called the mth local primitive of f, if f is the
mth local derivative of F.
The following are the main theorems in this section.

TEREOREM 1. If f is a locally integrable function, m > e (m € P?), then
for every w, the indefinite inlegral

= [fmam

is the m-~th local primitive for f. .
Tamornm 1 If f is a locally integrable function and 0 < m < e
then for almost ecvery w®, the indefinite dntegral

P(sy = [ fyaen

ig the m-th local primitive for f.
Before giving the proof of Theorem 1 we shall need three lemmas.
LmmmA 1 -(see [40). If.f 48 a locally integrable fumtw'n in R% then
b

f fiydt.

(m e P%),

4o ff Nt =
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LevuaA 2 (see [4]). If f is a locally integrable function in R% m e P?,
then

z+h x-+h

Am0 [ fiya = [ A™Df@)a.

Lemma 3. If fis a locally integrable function in B? and m = ¢, then
the equality

*q
f J(@+1) d""'ww
0

Al Xq
[ gy e [ g
0 0

y Tt Ty )y o= (.o

x X
(3) 400 [ fyam = fldru...

Ty

where v = (vy+. T, .- sy b=y
«v3 Xg)y holds.

Proof. It is easy to verify that

E+z
(4) A(“i) f G(t)dio = f G (1) di% = f G (¢ o) dis

- my

for an arbitrary continuous function . Using the notation from [1] (p. 69)

of the iterated integral of order m e P? we have .

x & I
(5) [rware = [ avy,,, [f@ar,
z o1 2y

B =& —0 €Ty
By L.emma 1, we have

z+h

4en f foat = [ feydt =

h
[ flo+tyit

‘We now proceed by induction with respect to m. Assume that the
asgertion is true for all m satisfying e < m < %, k e P% We have to prove
that the assertion is true for & = m-e; with arbitrary ¢, 1<i<gq
Let us denote the right-hand side of (3) by ¥ (). Then, by the induction
assumption, we have

Atmn) ff(t)dtm = I'(z),
]

where T = @ —e,0+6;7;,..;. Hénee, by Lemma 2 and equalities (4), (5),

&

i::m©
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we havo

4 & ' z
Almetephy J f('l)dt””'ci - A(m‘h)Agci”‘i) f‘hi/xﬁl ff(t)dtm
2 b %y

- &ty x
we AU f d-rwll f FOyam = [ dry 400 [ f)aem
& & %y

LR
e f I (&) dvgy .y = j (074 40) Oy
6

% %1 Xq *q
f Gty | Ay [ oy oo [ dvge [ F@+7H00000) @0,
[0 0 0 (] 0

where % = @ —-e@-teTypy T = (Tut o,
agsertion is “rhus proved.

The proof of Theorem 1, which hag not yet been given, can now be
deduced by using Lemma 3.

Proof of Theorem 1. Using the definition of the mth local deriva-
tive, Lomma 3 and the Fubini Theorem, we have

. rql—l—...—l—rq”g). Our

b

o = f
1 %

f dz“...fx iy, . fxdrql...qu(w—i—-c)drw—-f(w) da

f tmw AN () —F ()

%A(W)wf S @t 1) do

b

EE

EE

; hﬂ‘b ‘ § g
b % %1 X Xa
S v
w [ e | drgg e | dv e | g e | [f@A0) = (@) 1drg,, | do
,z’ "'mof a] ' of of

% %1 %a *a

' b
«fl:“} m,l...f d’rlm...f d'rai...f dr(mgj f (@ +7) — f(o)|d,
i 0 b 1 a

Where 7 == (Tyg-Fevu-l Ty s very Taobeee o Tgu)e
Txpression (6) Lends to 0. Indeed, by Corollary 1.2 (see [2], p. 166),
for given ¢ >0, there exists an index h, such that

b
[ 1f@4r) —f(@)ldn <& for 0<7< b


GUEST


514 K. Skérnik
Hence
1
f o AV E (@) ~f (a) |do
a

1 A % Xg % 1
<—-,,—,,—f d'rn...fdv:ml...f drql...f sdtq,,qzﬁx o yple =g
b b b o

for % < hy. This proves that the mth local derivative of ' ig f. Conge-
quently F is the mth local primitive of f.

The proof of Theorem 1’ ig similar to the proof of Theorem 1. We
only need to apply the following

LeMMA 3/, If f is a locally integrable funclion in R?, 0 m< e then

X1
4 f fyam = [ dn
oo my - .

0

% .
..ff(w—}-mt)dr{z‘a a.e.,
P

where t = (T:y ooy Tghy M= (fay ooey figy b= g1y ey 2
Proof. Without loss of generality we may assume that the first ¢
(1 < i< g) variables of a pomt m are 1 and all the remaining (q—%)-vari-
ables are 0. Let my = (1, ...,1) e P* and let m, denote a point in P
whose all coordinates are 0 Then we have m = (m,, my) e P4, Let o
= (&1, ..., £,) € B% By @, we denote the point (&, ..., &) in B! and by =,
the point (&;,,,..., &) in R We note that o = (v, @), t = (t, ty)
and b =: (hy, hs). Then S :

A6m1) f ftarm = Atmm) f Fltyy @)ty
)

By the Fubini Theorem, it follows that the funetion

%1
F(wy, @;) = f Sty wy)dty
o1
is determined for almost all points @, in R, Let », be an arbitrary fixed
point such that the function F(w,, #,) is determined. Applying Lemma 1
and substituting @, +u, = ¢, we get
ayhy
Almah) f Flty, @) dty, = f Fyy @)ty = f F @y 41035 05) Ay .
m‘)l .
Under the sign of integral, we can replace u, by ¢, and write the integral
in the form
hq %

1
[ flos+ty, 2)at, = [ .. f f (@ -+mit) drta,
0

0

icm
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wheret = (7y, ...
for j=14+41,...

2T M = gy oeey gy gy =1 for j =1, ...
»¢- This means that

st and uy =0

[ X1 Xg
A0 [ fayam = [ ana ... [ f@+mt)dzia ace.
0 [ 0

for 0 < m < ¢. Thus the proof of Lemma 3’ is finished.

TurorrM 2, If alocally integrable function f has a local derivative Df,.f,
then

L 4437 (z) > Diuf(@)

almost. everywhere, as h — 0.
In order to prove Theorem 2 we shall use the theorems given below.
TeroREM ON LocAL CONVERGENCE (see [2], Th. 1, p. 173). If f s
a locally integrable function in R% then for almost every point z, € RT we
have .

Fl@o-+ht) ~ fao) loc., as k- 0;

in other words, for each bounded interval I < R% we have

lim [ |f(@+ht)—f(@o)ldt =0  for a.e. @€ R7.
B0 §

TaeorEM 3 (see [6], Th. b). If a function f has a locally integrable
local derivative Df.f, then
. z+h
AeVf(@) = [ Df,f(t)dt
@
for each fiwed h € RT and almost all w e RY
Proof of Theorem 2, By Theorem 3 it follows that

wth

A(d h)f f Dloof '“‘)du

for almost all @ € B¢ and for each k e RY Substituting ¥ +ht = u, we get

A(a.h)f

(7 =} f Diof(w-+ht)dt

for almost all @ e R? and for each h e R% According to the Theorem on
Local Convergence, for almost every point @ ¢ R* we have

Deof(0-+ht) — Dfyof(w) loc, a8 h—0,
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which implies
f Do fo 4Rty @t — Do f(@) a.é., as k b0,
o
Hence and from '(7)":it follows that .
—l—A“’”)f(w) -r])mf( ) a.e.,‘ as  h-0.

Thus the ploof of Theorem 2 is fmmhed
3. The following theorem tells us that the local derivative Dfj.fand
the Sobolev derivative f™ coincide with each other, when f™ oxists,

THEOREM 4. The distributional derivative f™ of f is equal to the m-th
local derivative Dig.f-of. f if f(’”) and f are locally fmtegmble Junctions.
Pro Qf Consxder the function

Fla) = ff”‘)(t jae,
By Theorems 1 and 1', 1t follows that for almost every &gy L' 18 the mth,
local primitive for f™., Hence . . .
(8) - DRF (@) = F""’(90) = f(’”’( )

Thus the dmfference F—f has its mth dlstrlbuuonal detivative cqual
to.0. By Theorem 4,5.4 (see [1], p, 106), we have

i

#y—1 #q——l
9 m)fw+2?mm+ +Z%M
. i=0

where f;; are constant in 5 (18 u; =0 for ‘ome ¢ in formula (9), then
the corresponding sum is ta.ken to be 0.) It is easy to see that .

. » Hl—l 1
gl@) = D Hfy@+ .. +Vemm”
j=0 ,7‘—0
is a locally integrable' function. Since = °
g1
S _.»Agm;xf)fzhyﬂfu(m)w: 0 (i = 1, ',‘..,‘.q)"
J=0
weo have o
C g1
A(m’m(p(w) — A(m meyh-eqz) A("l”‘l)z 5.-jflj
A - F=0 f

g1 ' ‘ o
R A(queq,h—eqxq) Amq.rq) 2 Eg qu @) = =0

J=0:

Y

8 to i

©

cm
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and Dy () == 0. Since the mth local derivative of T exists, we obtain
ool = Dof,
in view of (9). ¥ence and by equality (8) it follows that
I®™ = Dtf.
Thus the proof of Theorem 4 is finished.
Remark. L. Locally integrable functions f(») and g () ave cqual iff
they are equel as distributions which furns out on the same iff f(z) =
= (o) almost everywhere.

Romark 2, If fis a locally integrable function and ity distributional
derivative £ is a locally integrable function, then ™ is a Sobolev deri-
vative of order m.
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