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Connected subgroups of muclear spaces
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Abstract. It is proved that closed and connected subgroups of nuclear spaces are real
linear subspaces.

1. It is well known that a closed subgroup of a' Lie group is a Lie
subgroup. In the simplest linear case this amounts to the elementary fact that
every closed and connected subgroup of R” is its linear subspace. However,
considering infinite-dimensional topological linear spaces we encounter essen-
tial differences. For example, the subset of all integer-valued functions in
L?(0,1) is a closed and connected subgroup of I?(0,1) but it fails to
contain any line.

Our aim in this note is to show that in the case of nuclear spaces the
situation is analogous to the finite-dimensional case, namely:

Tueorem 1. Closed and connected subgroups of nuclear spaces are real
linear subspaces.

This theorem substanties a conjecture of W. Wojtynski and provides one
more example that nuclear spaces are closer- to finite-dimensional spaces than
normed spaces are.

After proving the theorem we have found that it can be derived also
from the results of the first named author concerning unitary representations
of groups which are quotiens of nuclear spaces by its closed subgroups.

We are indebted to many persons for stimulating discussions, especially
to T. Dobrowolski, S. Kwapief,, W. Wojtyriski and T. Wolniewicz.

2. All linear spaces we shall deal in the sequel are assumed to be real.
We shall obtain Theorem 1 as a consequence of the following

THEOREM 2. Let G be a subgroup of a real nuclear space X such that for
each neighbourhood U of zero in X span (GnU) is dense in X. Then G is
dense in X.

In fact, assuming that Theorem 2 holds true let G be a closed connected
subgroup of a nuclear space X, let X; =cl(spanG) and let U be a neigh-
bourhood of 0 in X.

The set GNU generates G, hence span(GnU) is dense in X, . Then, by
Theorem 2, G is dense in X;, whence G =clG = X|,.
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Proof of Theorem 2. Since X is a nuclear space, let (|| [|;, iel) be a
family of seminorms defining the topology of X such that:

1° For each iel the seminorm || ||; induces a Hilbert norm on the space
X/ker|| |- The completion of X/ker|| ||, with respect to this norm is a
separable Hilbert space which will be denoted by H;. We have the natural
continuous linear operator p;: X — H;.

2° For each iel there is kel such that || ||, =1 ||; and the canonical
mapping Tj,: H, — H; is a Hilbert-Schmidt operator.

Let xeX, iel and & > 0. In order to prove our theorem we shall find
¢eG such that ||g—x|; <s. Take kel as in 2° and 0 <r <¢/2|[|Tilll, where
Tl is the Hilbert~Schmidt norm of the operator T. .

Since K = {geG: ||glly <r} is linearly dense in X, the set p,(K) is
linearly dense in H,. Hence there are uy, #, ...€K such that the vectors

Do), Pi(uz), ... form a complete system of vectors in H,, ie. they are

linearly independent and total in H. o
Let ¢, e,, ... be the system obtained by the orthonormalization of the

vectors  py(uy), pe(uz), ... Then py(u,) =Y are,, where obviously |y
m=1
<rn=1,2,..., m=1,..,n
The vectors p;(u,), p;(ua), ... are total in H; and T py(u) = p; (), n
=1,2, ... By omitting linearly dependent vectors in this sequence we obtain
a complete system of vectors p;(u;,), py(u,)s -« . in H,. Let fl,jzn, ... be the

orthonormalization of this system. We have then p(y;) = S Brfw o n
! @ m=1

=1, 2, ... As easily verified, the matrix of the operator T in the bases

ey, €5, ... and f,f,, ... has the form

Y11 Y12 V13
0 722 723
0 0 7a

[ral

where Y |yf* =IITlI* and y,, =0 if m <j(n). Moreover,

Li=1

B = [ywy, @l <Flpwg)s n=1,2,..
Let p,(x) = Z O fm. Take natural I such that
m=1
L4

Y 18l < 3c¥/4.

m=1+1

icm°
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Now we can construct inductively a sequence ¢, ¢,_ 4, ..., ¢; of integers so
that

!

1 0
pi(x)_ Z] Cmpi(ujm) = Z mem+ Z 5mfnn

m= m=1 m=1+1

where [0,| < |83 <7{Ym; | m=1,..., L

1
Putting g = . ¢, we have geG and
1

m=

1 3 1
llx—gll? = leamlz+ Y 10a? < T [y, [+ 3674,
m= m=1

m=[+1
whence

Ix—gll? <2 TllI>+36¥/4 <2, qed.

3. The other well-known result in the theory of Lie groups is the
theorem of Yamabe [2] which says that an arcwise connected subgroup of a
Lie group is its Lie subgroup. Unlikely to the case of closed subgroups this
theorem does not remain valid when we pass to infinite-dimensional nuclear
spaces.

An easy example is the subgroup of C*(R), the nuclear space of
infinitely differentiable functions on R, consisting of those functions which
take non-integer values only on subsets of finite measure.

This subgroup is arcwise-connected, contains constant integer-valued
functions but does not contain the line of constant functions.
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