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On the positive projection constant
by
CARSTEN SCHUTT (Linz)

Abstract. The positive projection constant of I, p # 2, is proportional to min {ntie, ptir'},
and for [ it is proportional to a (n/log 2r)'/2. These results are extended to symmetric spaces,
~ Introduction. We study the positive projection constant and the positive
distance for finite dimensional Banach lattices. A Banach lattice is called -
injective if it is A-complemented in any Banach lattice in which it is
embedded as a sublattice. The infimum of all such numbers A is the positive
projection comstant. Cartwright [1] proved that the finite dimensional
Banach lattices with positive projection constant 1 are the spaces
k

(Y @i j),,,. While this is a purely isometric result, Lindenstrauss and Tzafriri
=1

[2] gave the answer for the isomorphic problem: There is a function (1) so
that every lattice with positive projection constant A is f (4) order isomorphic
k
5 SPAC 1
to one of the spaces (J;l @ln,)m-

Our main concern is to find out how small £ (1) can be choosen, It turns
out that for the classical spaces [, p # 2, f (1) can be chosen to be a constant
times A, Surprisingly, this is not sufficient for p = 2. Here we need a constant
times 1./log 27. ,

We also show that the function cA(log 24)* is sufficient for the class of
symmetric lattices. On the other hand this result cannot be improved
significantly as the example 12 shows.

I would like to thank Hermann Ké&nig, Kiel, for several helpful dis-
cussions on the subject of this paper.

1. Preliminaries. We consider here a finite dimensional Banach lattice E.
{e}y denote its normalized atoms. We call such a basis 1-symmetric if

n n
”21: a,e| = “2;, ] ew(l)“

for all g = 41, i=1,...,n, and all permutations = of {1, ..., n}.
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186 C. Schiitt
The dual basis is denoted by {e}}{.,. To simplify our notation we put
k k
M=||Z el and k) =% .
i=1 i=

The positive projection constant of E is defined by

7w (E) = supinf {||P|| | P is a positive projection from F onto E},
E<F

where F ranges over all lattices which contain E as a sublattice.
By the positive distance between E and F we mean

d*(E, Fy=inf (I (1"l | I is an order isomorphism}.

N
By (3 @llz../)m we understand the space of double sequences with norm
=1

N K ky
= su
”];1 i; ol e 1; lay,)-

If k; = n for all j we write If (I}). Of course, I*(I}) is the infinite dimensional
analogue.
It is known ([1], [2]) that
N

V(T @) =1,
i=1
E can be embedded into ”(I}) as follows. Suppose x}, je N are positive!
functionals that are dense in the set of positive extreme points of the dual
unit sphere.

(L.1) I(e) = Z <xf: € Uy
J
We shall refer to it below as “a standard embedding” for the sake of brevity.
If the number of extreme points is finite E embeds into 1% (1%) for some
NeN.

2. Positive projection constant, positive factorization and positive distance,
Phe first lemma collects some well-known facts.

Lemma 2.1. Suppose E is an n-dimensional Banach lattice. Then the
Jollowing are equivalent.

(i) For every lattice- F which contains E as a sublattice there is a

projection P from F onto E with ||P|| < 4.

(ii) -For every lattice F which contains E as a sublattice there is a positive
projection P from F onto E with ||P|| < A.

(iti) There are positive operators ReL(E, I*(1})), SeL(I* (1}, E) with SR
=idg and |IS||||R|| < 4.

icm
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(iv) For every lattice F with
Te L(G, E)
T < AT

Proof. (iii) follows easily from (ii); We choose as R a positive embed-
ding and for § a positive projection with (ISl < 2. Now we show that (iv)
follows from (iii). Instead of T we consider the map RTe L(G, I*(1}). By [3]
there is an extension RTe L(F, I (I})) with ||KT)| = [IRT||. Thus S o RT gives
the extension of T.
(i) follows from (iv) by extending the identity idg e L(E, E). Obviously
idge L(F, E) is a positive projection.

Trivially (i) follows from (ii). So it remains to prove that (i) implies (ii).
By (if) and (iii) it suffices to consider the case where F = [*(I!) and E is
embedded as in (1.1). Without loss of geverality we may assume that the dual’
unit ball of E has finitely many extreme points, ie. E embeds in I (I for
some NeN,

We show that for every projection P from I¥ () onto E ‘there is a
positive projection P* from [ (I¥) onto E with ||P|| > [|P*|.

The projection can be written in the form

sublattice G and positive operator
there is a positive operator TeL(F, E) with Tie=T and

P(.V) = lzl </1 y> I(ei)’ .VGIR;)(I,]'),

where {¢;}f., is the I-unconditional basis given by the atoms and I the
standard embedding (1.1). By dualization we get ‘

1Pl = max || 5 <fi, p>1(e)]
Ipll=1 "i=1 -
N n

= max' max Y max |Y ¢dxf, e oo )|
1€JEN gy= k1 J=] 16k€n (=1

N n i
max 2" ¥ | o ot €0 <o ).
LR

2 max
15JSN Jw) L &k&En

On the other hand we have the elementary estimate for a,e R
"
max la| € 2°"Y | Y 5 ay.
1%i%n LT =1
Thus

N
1P = max ¥ max max [{xF, e <fi wedl
1£jEN Jmy 1£kSn 1 €ign

N
> max ¥ max [(xf, e (f, ugdl.
1€JEN =] 18i%n

(2.1)
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Now we choose as P* the positive projection given by
N

( [{xF, > {fis ”u>|)‘~l [{fo )l if i=k,
1

<fl(: ukl> = { 1=
0 il ik,

By the same computation as above one gets that [[P*|| is bounded by the
expression on the right-hand side of (2.1). w

The following lemma is an immediate consequence of Lemma 2.1.

Lemma 2.2. (i) y5(E) < yo(F)d™ (E, F), (i) 75(E) < y4(E).

The following lemma will be used several times.

' LemMA 23. Let {e}}=y be a l-symmetric basis of E. Then
N

2.2 Yo (B) =inf max 3 max [{x*, ¢ (x;, !,

|x*|=1 jm1 L&€i€n
! w .
N .
where the infimum is taken over all sequences > lx)l =n.
=1

Proof. The proof uses the same notation as that of Lemma 2.1. We also
assume that the dual unit ball has finitely many extreme points. We prove
first that y7,(E) is greater than the right-hand expression.

For a positive projection P we get, by (2.1) and the fact that ¢ Ji> )
> 0, that

N

[P > max % max {xf, e (fi,up.
1€j€EN =1 1Si$n

.3)

Now we define (x;, e¥>:= (f;, u;>. Because of | = {fi.1(e)> and (1.1)
‘N o N N
n=3 Y &hedlng, > < Y IxMixll =Y lxl.
J=1i=1 i=1 J=1
This and (2.3) give that y}(E) is greater than the right-hand expression of

(2.2). Now we p;ove the opposite inequality. Suppose x;, =1, ..., N, is a

sequence with Y ||x|| = n so that
i=1

N

max 3. max |{(x*, e {x, e}l
I%*| =1 1=y 1€1Sn

2.4)

is 1+e-close to the infimum. Since {e}fwy is a l-symmetric basis, we may
assume that with every x; the vector

n
2.5 Y efde,y, 7™ a permutation of {1,...,n}
i=1 '

©
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is also in the sequence. Without loss of generality, we may assume that the
extreme points xf, ..., x¥ used in (1.1) for a standard embedding satisfy

N N N
(2.6) n=3 lxll =Y Ikl fx} = 2, xp).
I=1 I=1 I=1

Now (2.5) and (2.6) assure that the functionals f; defined by the formulae:

oo thad =0 i i 5%k,
ooty = (o e,

represent 4 projection with norm less that (2.4). The computations are as
above. m

LemMA 24. Suppose {e}}., is a l-symmetric basis of E and k;, i
n

I=1,..., N,

=1, ..., F, are natural numbers so that Y k =n. Then we have for some

i=1
¢c>0
@ d*‘(('Z1 O l)ws E)<||T A* (k) e,
] | ™ i=q
' r
(fi) iof d*(F,E)< min ||} A*(k)el|<c _inf d*(F, E).
A LT o =1 yhFy=1
” PR N

Proof. Let wy,i=1,...,r, j=1,..., k;, denote the natural basis

in (Y Q)l,}j)m and let ey, i=1,...,r, j=1,..., k, an enumeration of the
i=1

l-symmetric basis in E. Then, by considering the diagonal map I with

Iuy) = A*(k) ey, we get (i). The left-hand inequality in (i) follows from

(i) and the fact [1], [[3] that !

,
va((Z @) =1.
To prove the right-hand inequality we observe first that since I and I~ are
positive and {¢}l., is a [-symmetric basis we may assume that I is diagonal,
Le. I'(uy) = ay e for scalars ay. Then we observe that we may also assume
that ay=ay, for 1<j, | <k. We finish the proof with an elementary
computation. w
Since {e}f.; is l-symmetric one might conjecture that

min || )i A* (k)|

Thy=n gy

and  min 2*(k) A([n/K])
1€ksgn
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are proportional. This is not true. The space I»* with norm v 1 L ezt
1k xk.Jzz 1+lo‘g';"; €, k=0,---,10gzn, j=0,...,2"“n——1.
lIxl] = max max —= Y [|x(n()) tmj2k 1 :
n 1$k<n Kk i=1 ‘
serves as an counterexample. One gets that We get
: Y7 Yo (B) < max ¥ max |x(i)x,,(
min || 3 2% (k) ef] < c/nlog 2n , " slg= kEJ [ pe(d)xe, ()
Thy=n =1 logn 1
i i | = the s i = max k2 m ,
if one chooses k; ~nfilogn, i=1, ..., [n/logn]. But the second term is allg=1 k;() log, 2n ;jz‘wlsztx)zk 1x(8)]

proportional to ﬁ

. ” at this point we introduce the nor
3. The positive projection constant of /. We now estimate the positive it p m

rojection constants of £, 1 <p< oo, neN, It turns out that for p'# 2l y LS| -
5;(]15) and oS EE lIll2, 1 msl:pkgl Mﬁx(fr(k))'é ~/1ogs 2n 1x]]
. op o ‘
,,;:?)21 " (F. B and get
are proportional. This is not true for 2. By Lemma 24 we have C 1 logn
prop il e PHD) € —===m=  max 2k12 max ' |x(j).
inf d*(F,B)~./n while y%(2) ~./nflog2n. V108,20 Ixlz, =1 k50 T pkcicge ek
+
rEP=1

Since it is enough to consider the maximum over the extreme points of

TreoreM 3.1. There are constants a,, by >0 such that for all neN the unit ball for the norm || |l,, we get

@ aymin {n'?, n*"'} <y (B) < min {n'P, R} if p £ 2, h 1 1
" o Valh) S~ max = { ¥ W24 7 2742p)
(ii) a~/nflog2n < yE(IAH < b, \/n/log 2n, \/iOB 0 b=t \/l LW prya
by is less than 10, <2/2(1+./2) \/nflog2n. =
The main part of Theorem 3.1 is easily derived from the following In order to prove Proposition 3.2 we require the following lemma.
proposition.

. Lemma 33. There is an universal ¢ > 0 such that for all xeR"
ProposiTion 3.2. Let {¢;}-, be a 1-symmetric basis of E and id e L(2, E) ' .
n

':/-‘_;(' ‘n(k)
i dH)ﬂ where m denotes a permutation of the set {1,..., n}.

Proof of Proposition 3.2. We apply Lemma 2.3. Choose a sequence
X, I=1, ..., n, such that

H

identity i " )= £ |x <-1- max
the natural identity id((a)- ) —};ai ¢;. Then we have \ \/r;” ll2 < n!>,; foved

y‘;(E)zcﬁ( ¥ —at
for some universal ¢ > 0. k=1 f

Proof of Theorem 3.1. By Lemma 2.1 it is clear that in order to
compute yZ (E) it is enough to compute

| N
. . 1+¢)p* (E) = max max [{x* ¢> {x,, e}
inf{|P|| P projects I*(I%) onto E}. (I+0)75(E) > max Y, max [Kx% &) Cxp e
The left-hand inequalities are immediate consequences of Proposition 51 * *
3.2. The right-hand inequality of (i) follows by considering the identity maps > max 2:1 " ); max [<x*, ex) (% €l

between % and I} and between £ and .
So it is left to prove the right-hand inequality of (ii). We may assume > “Zmlw e
that n =2', reN. We apply Lemma 2.3 and choose the sequence xwelf ‘ \/’;

<X o)

(D)

lNl
L L max
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By Lemma 3.3 we get

=1

(L+e)yh(E) > ”Z?/IT ot

N
1 ] \/— Z|<Xl, ety )”2

et

1 .
ﬁ \/ HldH l;llxdl

1
=co/n ) et
v 2 Ji
where ide L(/2, E) is the natural identity. w

Lemma 34 ([4]). Let n~j >k and 1<, k < n. Then

(D)) <=5

LemMma 3.5. For all seN, reR with 2s <r we have

1
llid]|~*,

LemMA 3.6. Let A and B be finite sets with |Al = a, (Bl =b and AnB
= (. Suppose teN,

(i) If 2a(t—1) < a+b, then we have
1 at

a+b
0ars" ( ) card {(xy, ..., x) < AUB| 3i: x,e ).
(i) If 2a(t—1) = a+b, then we have
3! (““:”)scard{(xl, cs %) € AUB| 3i: x,€A).
Proof.

card {(xy, 1y %)| 3 xj€ A) =t!< >-card{(x1, o X)| Vit xeB}

By Lemma 34 we get

e _ © |
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Case (i) follows from Lemma 3.5 and case (i) by using the inequality
—r<e’. »

Lemma 3.7, Assume that n2jozjiz..2j=1, jeN, and

35 j, gn, I=0,..., k. Let Py denote the set of permutanom 7 of the set
A1, .0, n} such thaz

3.1) @9, m@* =0} {1, L) # O

and

(32 Jor all 1=0,...,k—1 we have
{m(2y, ..., w2t =1} < §i+1, ..., n).

Then we have

b
—p1R
(3.3) [Pol = 0"

1 Zk i 1 k-1
(34 1P 316"!'”}1&(1"5 ) 2‘“1,) k0.

=0

Before we start the proof we would like to point out that condition (3.2)
makes sense since 2'*! < n—j,. This follows from the inequality 2'*3j, < n.
Proof. We have to consider in how many ways we can permute
{1, ..., n} so that (3.1) and (3.2) hold. We use a counting argument. We start
with 1 =0, ie. the set {1}. According to (3.2) we have n—j, choices. For
l=1, ie. the set {2, 3}, we have (n—j, —1)(n—j; —2) choices. In general,

" we Have for [=0|..., k—1 . bl j

1 { Qi+l
(3.5) (n=jp= % 2) . (== L 2+ )= I (r—ji=n).
i=0 i=mQ r=2le

Now we consider in how many ways we can insert the set {2%, ..., 2¥"1—
—1}. There are still n—2%-1 places left. We apply Lemma 3.6 (i) with a = j,,
t=2% auob = n—2k41. Since 2¥*?j, € n the assumptions of Lemma 3.6 (i)
are fulfilled, There are at least

| (ViR ‘
3.6 k 2%1 hoices.
(36) 10i"2n 41 ( 2 ) ehot

We have now n—2¢"1.41 clements left. There are no restrictions on

them. Thus we obtain

(3.7 (n—2k4 4 1))
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choices. Collecting (3.5), (3.6) and (3.7) we get altogether
k=1 20+2-2

1 1 n—25+1
okl ok ) .
=2t ()T T i
1 A 1 . k-1 2lt1-2
= Ko (n— ! —_—— i
IOJ"Z n—2"+1(n 25+1)! '] lo ’=|2'| l('! r) (1 ) choices.

Now we apply the elementary inequality (1—a)(1—p8)=1—af if 0
<a, B <1 to obtain (3.4) w
Proof of Lemma 3.3. We choose j, to be the greatest number such

n
that for x, = x; > ... > x, > 0 with lef———l we have
i=

(3.9) x2/2%2n  forall i<y, k=0,...,r=[log,n]+1.
Let P, be as defined in Lemma 3.7. Clearly we have

xnl
max 2—= (neP, k=0,...,7
N4

because of (3.1).
Thus it remains to show that for some universal ¢ > 0 we have

69 |0 P> ent,

We consider two cases. First, suppose there is some k = N, with 2¢*3j,
= n. Then we apply Lemma 3.6 with t = 2% a+b = n, a = j,. We consider
the set of all permutations with {n(2Y),..., n(2**' = 1)}n{L, ..., j,} = O.

By Lemma 3.6 we get (3.9). ‘

Now we assume that for all k we have 2¢*3j, < n. Thus we may apply

Lemma 3.7. Since P,nP, = @ for k # k' we get
(3.10) |kQOPk| = Z |Pk|
Zcn! Z 2"],‘(1——~ 2 2% ) for all ¥ <r

k=0 M i=o
Because of (3.8) and 273, < n we get
1

k}; n2"jk 2 xtz and ;2‘"’"j,\<,i for all I=0,...,r.

These two inequalities and (3.10) give (3.9).

4. Positive projection constant and positive distance of symmetric spaces.
It is clear from the previous paragraph that the positive projection constant

icm°®

_ and the positive distance cannot be the same, (up to a constant). The n-
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dimensional Hilbert spaces are counterexamples.

In this paragraph we prove that both these expressions are, nevertheless,
very close to each other. More precisely, they are, up to some logarithmic
factor, proportional to

7Y e 1 *
x(E) = min 1 (k) A(Ln/kD).
In fact, we have
Tueorem 4.1. Let {¢}la be a 1-symmetric basis of E. Then

| c(log 24B) *%(E) S y4(E) S min d*(E, F) S (E).

For the proof we require the following simple lemmas.
LemMa 4.2. Let 7 be a permutation of {1, ..., n} and

kel

Loy ks
ak, l)={ e "

1 if k'l>n.

Then there are positive numbers cy, ¢; such that
d < - max <e, ), € ey alk,
cyo(k, ’)*—- 1“,‘(:]2 ) < cpalk, D).

The left-hand 1nuqua11ty js a consequence of Lemma 3.6.

" LemMa 4.3 ([4]). Let {e}lay and [ fi}{=y be symmetric bases of E and F
with Ag(k) = Ag(k), k=1, ..., n. Then we have for all a;€R, i=1,..,n

||Z ae| < ¢(logmin {Ag (n), 2% (M)} Z a fi;

where ¢ > 0 is a absolute number.

Lemma 4.4, lgzglll(k)l*([n/k])z imin [ /A(n), /A*(n)].

Proofl of Theorem 4.1. The second inequality follows from Lemma
2.2 while the third follows (rom Lemma 2.4 (ii). Throughout the proof of the!
first inequality we a%ume that the extreme points of the dual unit ball are

the points A* (k) ' Z & ¢}y, m & permutation, g = +1, k=1,..., n. Indeed,
[EB
by Lemma 4.3 and 44 we may assume this if we admit a factor log2x(E).

Now we apply Lemma 2.3.

N
For every ¢ > 0 there is a sequence x;, I=1, ..., N, with n = 121 !
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and

7B > max S max |G e xi e,

llx*H ll 1 1<‘<
We now group the vectors x;. Put
M, = {l| x, attains its norm on a functional with exactly k
non-zero coordinates}.

Clearly we nriay assume that each x;, leM,, has exactly k positive
coordinates. Thus we have

n

@4n n= Z Il = Z 2 Axmt Z 1<, eyl = 3 % (k)" il

k=1 leMy C k=1 leMy
and, since {91}1-1 is 1-symmetrlc

i@ ma BT S max ot 00 (S nmen, o).

Because of our assumption on the extreme points of the diial unit ball we get

"
3+72(E) > max 2*()” Z 21 [max. <}1: et e (m; X4(m) ey, €8 )|
- 1
= 1@?%‘»2*(]-) T ; 1 15i$jl<ﬁ %1 (M) exmy» €f >’

For every x;, le M, there are exactly k non-zero, positive coordinates
{is, ..., i} There is a set G = G(x) of permutations such that for Ty, TG
we have {m,(iy), ..., @ (i)} # {m3(0y), ..., m3(iy)}. Of course |G| =(:) For

every meG there is a set D, with |D,|=kl(n—k)! which leave'
{n(iy), ..., n(iy)} invariant

e+yi(E) > max A¥()~! i Y (") 1><

1sj<n k=1 leMy k

k
X Z max I<k' n k ) Z Z xl(i.v)erm(fs)' "31*>|

neG 18§ mal) y= 1
n
= ()= 1 n
mx 207 3 3 (k) T max nx.ul|< }: Car @

By Lemma 4.2 we get

VB> max (7t Y T ag,

1<j<n k=1 leM) . k

e ©
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Putting
1
42 be=- T A [l
leM),
we get

n

v (E) 2 ¢ max A*() 'n Y b A(k) ta(j, k).

1€ /€n k=l
Because of (4.1), (4.2) this means that

(4.3) 9y (E) 2 cinf max Z AG) A* (k) by + Z «A(})A*(k)bk,
£jgn ) on
7 T \
where the infimum is taken over all {b}i.; with Y b, =1. Now we

consider two cases, Firstly A*(n) < A(n). Without loss of generality we may
assume that there are natural numbers ko, ky, ..., k, with r < log A*(n), ko
=0, k,=nand A*(k) =2/, j=1,...,r. By (43) we get for some constant
¢>0 and a sequence by, ..., by,

cya (E) > Z bkl*(k)ﬂ(IHZ 12 <kbu~1*(k)l*(i)-

1‘15" an kj. {Tk& kl>" ko
J

For at least onc [ we have
2 Y be=(log2a*(n)!

ko g <k Eky

since r < lbgl* (n) and ¥ by = 1. Therefore

k=1
¢y (E) 2 (log 24* (m)™* max AG) A* (k)-«.
geisn
Since A(j)/j is decreasing
cyn (E) = (log 22* () ' 2* (k) A ([n/K]).
| The case A(n) € A¥(n) is treated in the same way. m

I
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A counterexample for the strong maximal operator
by
MARCELO ENRIQUE GOMEZ (Buenos Aires, Argentina)

Abstract, The following conjecture is stated:

Let fe L{log' Ly" ' (R"); then f* is integrable over every set of finite measure if and only
if feL(log® Ly"(R"). (f* denotes the strong maximal function.)

We give a countercxample in R?

Introduction and statement of results, For a function fe L, (R"), Hardy
and Littlewood defined the maximal function Mf at each xeR" by

MY (x) = sup = [f i dy,
f (x) plQ( < Q(L) Wl dy
where Q(x,r) stands for the open cubic interval of center x and
side length 2r.

A covering theorem due to Vitali leads immediately to the weak type
(1,1) of the maximal operator, ie.

)

X Coon.
M) > ll < T 1Ny
C a constant independent of f and A,

Using Whitney's covering theorem, the converse inequality can be
proved, see [4], p. 57. Let feL,(R"); then

@ ¢ [ 1< 1x/Mf(x) > 4.

A Mfsa
The strong maximal operator f—» /* is defined by

S*(x) =sup 7 i} Jlf Ol dy,

where the supremaum is taken over the set of all intervals I (cells with sides
parallel to the axes) containing the point x.
In 1971, N. A. Fava proved the following (see [1])

3) /% () > 43 < C j A (10g+ L{_l) ¥
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