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A counterexample for the strong maximal operator
by
MARCELO ENRIQUE GOMEZ (Buenos Aires, Argentina)

Abstract, The following conjecture is stated:

Let fe L{log' Ly" ' (R"); then f* is integrable over every set of finite measure if and only
if feL(log® Ly"(R"). (f* denotes the strong maximal function.)

We give a countercxample in R?

Introduction and statement of results, For a function fe L, (R"), Hardy
and Littlewood defined the maximal function Mf at each xeR" by

MY (x) = sup = [f i dy,
f (x) plQ( < Q(L) Wl dy
where Q(x,r) stands for the open cubic interval of center x and
side length 2r.

A covering theorem due to Vitali leads immediately to the weak type
(1,1) of the maximal operator, ie.

)

X Coon.
M) > ll < T 1Ny
C a constant independent of f and A,

Using Whitney's covering theorem, the converse inequality can be
proved, see [4], p. 57. Let feL,(R"); then

@ ¢ [ 1< 1x/Mf(x) > 4.

A Mfsa
The strong maximal operator f—» /* is defined by

S*(x) =sup 7 i} Jlf Ol dy,

where the supremaum is taken over the set of all intervals I (cells with sides
parallel to the axes) containing the point x.
In 1971, N. A. Fava proved the following (see [1])

3) /% () > 43 < C j A (10g+ L{_l) ¥
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Now, for the Hardy-Littlewood maximal operator, inequalities (1) and
(2) lead to the theorem:
Let feI! (R"). The following conditions are equivalent:
B [ M<+4ow;
(Mf>1)
(ii) fe Llog™ L.

De Guzmién proposed the following problem (see [4], p. 64): Are these
conditions equivalent? ‘ ‘

Let f= L'(R". Then

@A f f*<+ow;

U*>1)

(i) fe L(log™ L)*(R?).

Using inequality (3), it is easy to prove that if fe L(log* L)?, then
| f*¥< +oo0. :
U*>1) :

The purpose of this paper is to show that the conditions are not.

equivalent, more explicitly, that there exists a function f such that f does not
belong to L(log* L)* and such that

¥ < +o0.
7*>1)

Given the function g: R* — R defined by

X8 (X,‘y)
—dllog(y—HI*’

where B = {(x, yyMax(x—4]; [y—4) < 1}.

Clearly, ge L(log* L) and g¢ L(log* L)>. We have proved in [3] that g*
is locally integrable but since V3{[g(-,))]=0 for all yeR, where
Vi#i [9 (-, ¥)] denotes the variation of g(-, y) in [4, 2], another result in [3]
proves that g* is not integrable over the set {(x, y)/g*(x, y) > 1}; hence,
{(x, ¥)/g* (x, y) > 1} is not bounded and inequality (3) yields that g* is not
integrable over every set of finite measure.

Now, given the retation in an angle }n centered at (3, %),

Rx, 3) = (3/2(c+9)+4, $/20- %) +1),

g(x, y) =

we prove that (goR)* is integrable over every set of finite measure and that
the set {(x, y)/(g o R)* > 1} is bounded. Comparing these results with the two
results we have stated before about g*, the geometric nature of the strong
maximal operator can immediately be observed.

icm
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Given fe I (R"), the following operators can be defined:

b
1 .
M;f (x) = sup —“flf(xl, e Xie1s Uy Xigy, Xpldu (i=1,2,...,n).

a<xj<p0—a
a

The operation M, ... M, f is well defined for any function f in
L(log* L)"~! (see [1]). Fava, Gatto and Gutiérrez proved the following: Let

feL(log™ L)"*. Then M, ... M, f is integrable over every set of finite

measure if and only if fe L(log* L)" (see [2]).
This work shows then the difference in R* between the strong maximal
function f* and M, M, f.

Proof of the results.

THeoREM. There exists a function fe Llog* L such that f¢ L(log* L)? and
such that f* is integrable over the set {(x, y)/f*(x, y) > 1}.

Proof. Let B = {(x, y): Max(|x~4|; ly—1%) < 1}.

o,

0,3

Nl

(4.0 12,00 (1,0

Fig. 1

We consider the rotation in an angle n/4 centered at (3, 4),

J20x+p)+1 \/i(y—x)-|-1>

R(x, y) = ( 5 5

Let
Xn (x7 .V)

g(x, y) =

and let /: R* — R be defined by

7 = Studin Mathematica LXXVII, 2
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; S2(x+p)+1 ﬁ(y—x)+1>
B i}

Counterexample for the strong maximal operator 203

1 1 1
X, 1), (X SSXS Y+ —mi 5=y <y
s aoREe > 5 (x,y),(x,yo)E%(x,y)/2 x<y+ NGE \/s\y\Zé
X, y) =goR(x, y) =
1 =8 ¢ 2./2(p-x)+1 LOgZ\/E(y——xH—l 3 and
4 (x, ) ' 0 ={(x,y/x=4 y<i} Q={lx,y/x<k y<i}
- X, y
= x’l‘ 1(”)2\[2 e Qs ={(x,p/x<%y21, Qu={(c,yx 24 y= 1.
2\/§(y—x)+ ‘Log (y4_—x)+ i Consider the statement:
4 Given an average over an interval I which is not the one indicated in
The function f is infinite in Fig. 3, more explicitly, I & Q; or larger side of I is not parallel to the
C={(x, Wi<x<i+1//8; y=x—1//8} horizontal axis as shown in Fig. 4.
and decreasing through the lines perpendicular to C included in R™'(B).
mel
{0,1) y=x-75
\ yf / \»—\R"(B)
(0,0) 11,0) T
v Fig. 2 Q, &
We prove that {(x, y)/f* (x, y) > 1} is bounded. To show this, it will be
sufficient to calculate the averages over the intervals I with larger side
parallel to the horizontal axis and I < Q,. See Fig. 3, where Fie. 4
ig.
@, a, We consider the interval 7 which satisfies the following conditions:
M 17 = H.
(i) Let
(1) = longth of larger side of I,
{xo, y0 “Y length of smaller side of I’
&,y then e(l) = e(T).
o o (i) b (INR™ (B)"Q)) = TAR™ (BInQuy (i =1, 2,3,4) with II: 11,
— 11, a permutation, IT, = {l,2, 3,4} and where the functions h, are
compositions of S, (a symmetry with respect to the line y=14), S, (a
Fig. 3

symmetry with respect to the line x = 3), S (a symmetry with respect to the
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Q, /\ Q,
[ AN ]
[ / ]

/// 7
Q, &
Fig. 5
line y = —x+1). Any of the symmetries may not be used or can be repeated.
(iv) Max|Q,nINnR™(B)| =|Q,nInR™1(B).
ielly

(v) Larger side of T is parallel to the horizontal axis.
There is only one interval T satisfying properties (i}-(v).

Let us assume that | f< I fi=1,2,3,4) which
I1nQ;nR™1(B)

1nQinR™1(B)
will be demonstrated afterwards. Then

1 1 1 &
- f= = J‘ == J
) J 11 / 1 ,.;1 /
InR™1(B) InR™1(B) 1nQ;nR™1(B)
4 4
<— <= J
11 f 1nQ,| /

TnQinR™1(8) TnQ1nR™1(B)
| (@ If (%, 7)eQanInR™'(B) (see Figs 4, 5 and 2), then f(%, )
<f(Se(%, ﬂ)ﬁf(sy‘sx(f, 7)) =5 (SS, S.(%.9), since when aeQ,nR™!(B),
f(a) = f (Sa); moreover,

58,5.(Q30InR™*(B)) = Q;"TnR~!(B)
because of properties (iii), (iv).

(b) Similarly, if (%, f)EQ4ﬁ]f\R"1(B),~ then f(X, ¥) <[ (Sx(%, )
=1(8S8.(%, 7)), and $S,(Q,~INR™!(B)) = Q,ATAR™!(B) by properties (i),
(iv).

(We use the symmetry S when the larger side of InQ, is parallel to the
y-axis as is Fig. 4)

icm°®
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© If (X, 7)€Q,nINR™'(B), then f(%,7) <f(S,(X, ) =1(S5,(% 7)
and SS,(Q,nIAR™1(B) € Q,"TnR™'(B).
d I (% peQNINR"'(B), then
$(Q;nINR™(B)) € @, "TnR™*(B).
Using (a), we have
fofe&ns
Q3nInR™1(B) Q3nInR™ (B
similarly for (b), (c) and (d).
We consider now an average over an interval I < @, with larger side
parallel to the horizontal axis. We have

f(& 5 =f(SE% ) and

165,85,z )< |
Q1nInR™1(B)

f& 9

1 ) 1
J _ _ dxdy
1] 2.2(y—x)+1 2./2(p=x)+1p
InR™ 1(B) ( 4 ) Log 2 ‘
Yo y+1/v8
1 ly ! dx
= | & _ :
1) 2.2(y—x)+1 2\/5(}1—x)+1‘3
P |
(see Fig. 3).
Since
dx = 1 ‘a O<B<a<llb,
(ax+b)|Log(ax+b)>  2a[Log(ax-+b)]3|,’
P
we have
Yo y+1/v8
1 f J j dx
= | dy
I (2ﬁ(y—x)+1>1 (2\/§(y——x)+1)3
5 x Log
4 4
Yo
1 -1 1 y+1/V8
B L eeest
I \/2{ <2\/2(y—-x)+1>:|2 P
v log [ =-S5
4
Yo
1 1 ! Cdy _
e e = 3 Hl=(xe=X)(yo—5)
(Xo—%) o—D) /2 J [ (2\/2(y—3‘c)+1>]2 ¢ ¢
y | log R —

(see Fig. 3) since (X, ¥),(%,yo)e R™1(B).
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1/2/2.

If §< y <y, then Max((x+yl; [X—)) <
Consequently,
—?(y—)"c)+} <i<l,
so that
1 .
[log (/20— 3+ )1
is increasing and bounded in [V, yo]; then
1 1

h(y) =

sup —
sv<yo [log(4/2(y— )+ })]? [log i\/— o~ %)+ )]
1
T
hence
Yo ) .
__1_ 1 1 f h()d 1 1 1
iR 00-9 | "V S g2 o= -
5
.
Xo=E> ot 1
© T J2log2p

Consequently, {f*> 1} is bounded.
feLlog*LanJ fé#L(log* L)* since f=goR with
%8 (x, ¥)

g(x,y) = Wm and geLlog*L; gé¢L(log™ L)
Let us prove that
j f*< 4.
R™1(B)

If aeQ3nR™!(B), it is already known that

(l) : f (a)<4 sup — 1
I=Qy III

[

InR~(B)

e ©

icm
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where S,S,aelnR™*(B) < Q;nR™*(B); similarly, if acQ,nR™Y(B), i
=1,2,3,4.

Havmg in mind (1), we see that for all aeQ,~R™'(B) the inequality

P
asl SQ4 III

2 4 sup
I1nR~1(B)

is verified, where f% is the maximal function over intervals rotated in the
angle 4n (in the counterclockwise sense).

(log 2)2 fR(

R(B)

Fig. 6
Given aeR™'(B)nQ,, we have f%(a) = g*(Ra). If Ra=(a, f), then
B
—1 dy
*(Raq) =
TRI=FD j(y—%)[log(y»—w
1/4
1 1 1
~ 28— [og(B— D) 2d(a, L) (logd(a, L))"’
where Lis the straight line {(x, y)/y = x—-l/\/—} and
d(a, L) =d(Ra, RL) = f—4 = i\/_(y x)+4)~

where ¢ = (x, y) and

F=1/20-x+1

={(x, y)y =4}

Then
1

3 - .
0g '——“—’“"—""—"”—4
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Now, given an interval I € Q, with larger side parallel to the x-axis, we

have
| s
InR™1(B)
y  ytyvE
lfdy J‘ dx 1
= — - s o
I (2\/—()) x)+1) (2\/2(y~x)+1>
¥ % log T
Yo %
IJ‘ dx 1
+— dy.[ = = Fig
11| I (2\/2(y~x)+1>3 (2\,//2(y—x)+1 (see Fig. 7)
y = |log
4 4
¥
1 [ -1 1 |y+1/\"a‘
=57 = d
i \/E[ (2\’/20”'3‘)4‘1) Z‘x v
¥ log| ——————no
4 -
o
+}_ -1 1 0,
] 2 2y — 2| W
P P[RR
4
< -9 _ ,1 N
V256 =D(yo~7) [1 (2\/2(;7~x)+1‘ Jz
og| L
)
Yo
1
" 211 j z
v Iv [bg(z /Egglﬂj'l)j

1

1 1
< v
V203 [D‘)gu Vi |hlog<?_%2_.(¥q“’?)+ i

since § = xo—1/./8 (see Fig. 7).
1 1 1 1

/20560~ [log(3/2(x0— )2 [1og(; fz(vo £+6))]*
since yo = xo—1/\/8+6 (0< 6 < 1/4/8), & = yo—

@
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Now, 0< 6 < y,—y < xp—X since averages are taken over intervals
with larger sides parallel to the x-axis. Then
1 1

< .
[log(t /200~ % +8)]* ~ (log(y/2(x0= D))

S~

(xg:5%)

(x,7) " xep)

L

Fig. 7

Using (4), we have only to prove that
2 1
<Cfia
J2(x%p—3%) [log (+/2 (% — )]

&)

2C

2 1
2\/2(y x)+1) [log( f(y 9+ \)]
or equivalently,

) — ) — 2
© (2\/2-()4 x)+1>|:log(2\/5()4 x)+1):|

< 1C(y/2(x0— %) [log (v/2(xe = D)J?

for a constant ¢ not depending on a = (x, y).

The function x(logx)* is increasing in [0, 1/¢*] and decreasing in
[1/e* 17 with maximum (2/¢)*> < 1. On the other hand, we have 5\/ 2(y—x)-+

1
+1 2(x—% < 2 27 = | since X, — X = yo—J, so that (xo —X)-+y—y
N o
Zyo—y= 0 F—x, and y+X—x < (xg—F)+F = (xo— %) +xo—1/,/8. Hence
y=x+1/ 8 < 2(xo—3).



GUEST


1210 M. E. Gomez

Consequently,

3C 1(log3)* =1 > (2/e)?
is sufficient. Then C = 8/(log 2)* > 1 and we obtain (2). Using (1) and (2), we

get
4
128
* = * < * .
j 4 i=21 ,[ A (log 2 j Jh<+oo;

R 1p) 0;nR~1(B) ‘ _QnAR™ 1(B)

since, clearly,

[ fi= | ¢*R=[g*< +c.
B

R™1(B) R™1(B)
Ry Az Ra
Ha Hy
s He S| 4
A
A 4y “ e Ay
H, Hy
Jy Jy
H Hh R A R,
£ T
Fig. 8 Fig. 9

4
Now, let R™!(B) = .-91 Ji and let S;: H —J, be the corresponding
symmetries. Obviously, if asH,, then f*(a) <f*(S;a) (i =1, 2, 3, 4). Thus
. ) 4
!f* <+, where P=R'(B)U(U H).
1= 1
Let
Sy =H;UJ\UJ,UH,, 8, = H,0J,0d,UH,,
‘ 83 =HyUJ3UJ,0H,, S, = H,0J, 03 UH,,
and let S;: 4, —§; be the corresponding symmetries. Clearly,
S*(@<f*S;a) if acd; (i=1,2,3,4).

e ©
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Similar relations hold for R; and the cubes (H,uJ) (i=1, 2, 3, 4).
4 4 . ‘
Then if T=(U 4)o(U R)UP, we have |f* < +co. With a recursive
i=1 i=1 7

proceeding, we obtain [ f* < +oco for every bounded set H.
H

In particular, we bave that [ f* < +4o0.
' u*>1

CoroLLARy. There exists fé¢L(log* L)* such that f* is integrable over
every set of finite measure.

Let

f=goR, where g(x,y)= (}T_%

If a = (a;, ay) is such that Max(ja, —4{; la;— 1)) > M with M big enough, we
know that f*(a) < 1. Then if H = {(a,, a;)/Max(ja;—4; la,—3) < M} and

N ol
N4

Fig. 10

D is a set of finite measure we have

[ f*dxdy < |HND| < |D),
HeAD

and since

[ frdxdy < [f*dxdy < + oo,
HnD H

we conclude that [/* < o0,
D
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The generalization of Cellina’s Fixed Point Theorem
by
ANDRZEJ FRYSZKOWSKIT (Warszawa)*

Abstract. Let L (7, Z) be the Banach space of integrable functions from a compact space T
into a Banach space Z. A set K e I1(T, Z) is called decomposable if, for every u, veK and
measurable A4 e T, w0y +0-xp 4 €K, In this note we prove that each compact mapping from a
closed and decomposable subset K < (T, Z) into itself has a fixed point.

§1. Introduction. In paper [2] Cellina proved that the set K, of all
functions integrable on a closed interval [a, b] whose values belong to a
fixed closed subset P of a Euclidean space R™ has a fixed point property; this
means that each compact mapping from Kp into itself has a fixed point. The
set Kp can be nonconvex; thus the result of Cellina is interesting when
confronted with Schauder’s Fixed Point Theorem, where the assumption of
convexity is essential (see [3], [8]).

In this note we generalize the above result to an arbitrary closed and
decomposable subset K of the space of integrable functions. The decom-
posability of a set K means that for each u, veK and A measurable u-y, +
+0" Yaua €K, where y stands for the characteristic function of A.

Obviously, the set Kp in the theorem of Cellina is decomposable.

This generalization is quite easy to obtain if we apply a certain theorem
on continuous selections proved by the author in [5]. The theorem is an
abstract version of Antosiewicz and Cellina’s Selection Theorem [1] and can
also be applied to the problem of the existence of solutions for the
functional-differential inclusion x(t)&F (¢, x(-)) (see [6]). The required facts
about the selections are given in §3. We formulate the main results in §2 and
prove it in §4.

§2. The main result. Let T' be a compact topological space with a o-field
M of measurable subsets of T given by a nonnegative, regular Borel measure
dr and let Z be a separable Banach space with norm |+|. By I(T, Z) we
denote the Banach space of functions u: T—Z, integrable in the Bochner
sense, with norm |lu] = | |u(n)|dt.
P
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