C. Schütt

198

STUDIA MATHEMATICA, T. LXXVIII. (1984)

cm

[3] H. Lotz, Extensions and liftings of positive linear mappings on Banach lattices, Trans. Amer. Math. Soc. 211 (1975), 85-100.

[4] C. Schütt, On the Banach-Mazur distance of finite dimensional symmetric Banach spaces and the hypergeometric distribution, Studia Math. 72 (1982), 109-129.

UNIVERSITÄT LINZ, AUSTRIA

Received August 30, 1982

(1796)

A counterexample for the strong maximal operator

by

MARCELO ENRIQUE GOMEZ (Buenos Aires, Argentina)

Abstract. The following conjecture is stated:

Let $f \in L(\log^+ L)^{n-1} (\mathbb{R}^n)$; then f^* is integrable over every set of finite measure if and only if $f \in L(\log^+ L)^n(\mathbb{R}^n)$. $(f^*$ denotes the strong maximal function.)

We give a counterexample in \mathbb{R}^2 .

Introduction and statement of results. For a function $f \in L_{loc}(\mathbb{R}^n)$, Hardy and Littlewood defined the maximal function Mf at each $x \in \mathbb{R}^n$ by

$$Mf(x) = \sup_{r>0} \frac{1}{|Q(x,r)|} \int_{Q(x,r)}^{\infty} |f(y)| dy,$$

where Q(x, r) stands for the open cubic interval of center x and side length 2r.

A covering theorem due to Vitali leads immediately to the weak type (1.1) of the maximal operator, i.e.

$$\left|\frac{x}{Mf(x)} > \lambda\right| \leqslant \frac{C}{\lambda} \|f\|_1;$$

C a constant independent of f and λ .

Using Whitney's covering theorem, the converse inequality can be proved, see [4], p. 57. Let $f \in L_1(\mathbb{R}^n)$; then

(2)
$$\frac{\tilde{C}}{\lambda} \int_{(Mf>\lambda)} |f| \leq |x/Mf(x) > \lambda|.$$

The strong maximal operator $f \rightarrow f^*$ is defined by

$$f^*(x) = \sup_{\mathbf{x} \in I} \frac{1}{|I|} \int_{I}^{\infty} |f(y)| \, dy,$$

where the supremum is taken over the set of all intervals I (cells with sides parallel to the axes) containing the point x.

In 1971, N. A. Fava proved the following (see [1])

$$|x/f^*(x) > 4\lambda| \leqslant C \int \frac{|f|}{\lambda} \left(\log^+ \frac{|f|}{\lambda} \right)^{n-1} dy.$$

Now, for the Hardy-Littlewood maximal operator, inequalities (1) and (2) lead to the theorem:

Let $f \in L^1(\mathbb{R}^n)$. The following conditions are equivalent:

(i)
$$\int_{(Mf>1)} Mf < +\infty;$$

(ii) $f \in L \log^+ L$.

De Guzmán proposed the following problem (see [4], p. 64): Are these conditions equivalent?

Let $f = L^1(\mathbf{R}^n)$. Then

(i)
$$\int_{(f^*>1)} f^* < +\infty;$$

(ii) $f \in L(\log^+ L)^2(R^2)$.

Using inequality (3), it is easy to prove that if $f \in L(\log^+ L)^2$, then $\int_{(f^*>1)} f^* < +\infty$.

The purpose of this paper is to show that the conditions are not equivalent, more explicitly, that there exists a function f such that f does not belong to $L(\log^+ L)^2$ and such that

$$\int\limits_{(f^*>1)} f^* < +\infty.$$

Given the function $g: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$g(x, y) = \frac{\chi_B(x, y)}{(y - \frac{1}{4})|\log(y - \frac{1}{4})|^3},$$

where $B = \{(x, y)/\text{Max}(|x-\frac{1}{2}|; |y-\frac{1}{2}) \leq \frac{1}{4}\}.$

Clearly, $g \in L(\log^+ L)$ and $g \notin L(\log^+ L)^2$. We have proved in [3] that g^* is locally integrable but since $V_{1/4}^{3/4}[g(\cdot,y)] = 0$ for all $y \in \mathbb{R}$, where $V_{1/4}^{3/4}[g(\cdot,y)]$ denotes the variation of $g(\cdot,y)$ in $[\frac{1}{4},\frac{3}{4}]$, another result in [3] proves that g^* is not integrable over the set $\{(x,y)/g^*(x,y) > 1\}$; hence, $\{(x,y)/g^*(x,y) > 1\}$ is not bounded and inequality (3) yields that g^* is not integrable over every set of finite measure.

Now, given the rotation in an angle $\frac{1}{4}\pi$ centered at $(\frac{1}{2}, \frac{1}{2})$,

$$R(x, y) = (\frac{1}{2}\sqrt{2}(x+y) + \frac{1}{2}, \frac{1}{2}\sqrt{2}(y-x) + \frac{1}{2}),$$

we prove that $(g \circ \mathbb{R})^*$ is integrable over every set of finite measure and that the set $\{(x, y)/(g \circ \mathbb{R})^* > 1\}$ is bounded. Comparing these results with the two results we have stated before about g^* , the geometric nature of the strong maximal operator can immediately be observed.

Given $f \in L^1(\mathbb{R}^n)$, the following operators can be defined:

$$M_{i}f(x) = \sup_{a < x_{i} < b} \frac{1}{b - a} \int_{a}^{b} |f(x_{1}, ..., x_{i-1}, u, x_{i+1}, x_{n}|) du \quad (i = 1, 2, ..., n).$$

The operation $M_n \dots M_1 f$ is well defined for any function f in $L(\log^+ L)^{n-1}$ (see [1]). Fava, Gatto and Gutiérrez proved the following: Let $f \in L(\log^+ L)^{n-1}$. Then $M_n \dots M_1 f$ is integrable over every set of finite measure if and only if $f \in L(\log^+ L)^n$ (see [2]).

This work shows then the difference in R^2 between the strong maximal function f^* and $M_2 M_1 f$.

Proof of the results.

THEOREM. There exists a function $f \in L\log^+ L$ such that $f \notin L(\log^+ L)^2$ and such that f^* is integrable over the set $\{(x, y)/f^*(x, y) > 1\}$.

Proof. Let $B = \{(x, y): \max(|x - \frac{1}{2}|; |y - \frac{1}{2}|) \le \frac{1}{4}\}.$

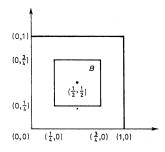


Fig. 1

We consider the rotation in an angle $\pi/4$ centered at $(\frac{1}{2}, \frac{1}{2})$,

$$R(x, y) = \left(\frac{\sqrt{2}(x+y)+1}{2}, \frac{\sqrt{2}(y-x)+1}{2}\right).$$

Let

$$g(x, y) = \frac{1}{(y - \frac{1}{4})} \frac{\chi_{B}(x, y)}{|\log(y - \frac{1}{4})|^{3}};$$

and let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

7 - Studia Mathematica LXXVIII, 2

$$f(x, y) = g \circ R(x, y) = \frac{\chi_B\left(\frac{\sqrt{2}(x+y)+1}{2}, \frac{\sqrt{2}(y-x)+1}{2}\right)}{\frac{2\sqrt{2}(y-x)+1}{4} \left| \text{Log} \frac{2\sqrt{2}(y-x)+1}{4} \right|^3}$$
$$= \frac{\chi_{R^{-1}(B)}(x, y)}{\frac{2\sqrt{2}(y-x)+1}{4} \left| \text{Log} \frac{2\sqrt{2}(y-x)+1}{4} \right|^3}.$$

The function f is infinite in

$$C = \{(x, y)/\frac{1}{2} \le x \le \frac{1}{2} + 1/\sqrt{8}; \ y = x - 1/\sqrt{8}\}$$

and decreasing through the lines perpendicular to C included in $R^{-1}(B)$.

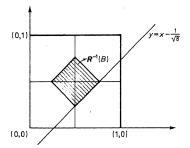
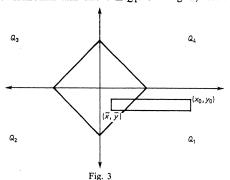


Fig. 2

We prove that $\{(x, y)/f^*(x, y) > 1\}$ is bounded. To show this, it will be sufficient to calculate the averages over the intervals I with larger side parallel to the horizontal axis and $I \subseteq Q_1$. See Fig. 3, where



$$(\bar{x}, \bar{y}), (\bar{x}, y_0) \in \left\{ (x, y) / \frac{1}{2} \le x \le y + \frac{1}{\sqrt{8}}; \frac{1}{2} - \frac{1}{\sqrt{8}} \le y \le \frac{1}{2} \right\}$$

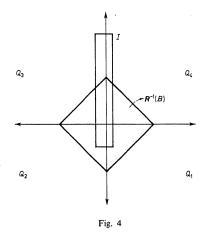
and

$$Q_{1} = \{(x, y)/x \ge \frac{1}{2}; y \le \frac{1}{2}\}, \qquad Q_{2} = \{(x, y)/x \le \frac{1}{2}; y \le \frac{1}{2}\},$$

$$Q_{3} = \{(x, y)/x \le \frac{1}{2}; y \ge \frac{1}{2}\}, \qquad Q_{4} = \{(x, y)/x \ge \frac{1}{2}; y \ge \frac{1}{2}\}.$$

Consider the statement:

Given an average over an interval I which is not the one indicated in Fig. 3, more explicitly, $I \nsubseteq Q_1$ or larger side of I is not parallel to the horizontal axis as shown in Fig. 4.



We consider the interval \tilde{I} which satisfies the following conditions:

- (i) $|\widetilde{I}| = |I|$.
- (ii) Let

$$e(I) = \frac{\text{length of larger side of } I}{\text{length of smaller side of } I};$$

then $e(I) = e(\tilde{I})$.

(iii) $h_l(I \cap R^{-1}(B) \cap Q_l) = \overline{I} \cap R^{-1}(B) \cap Q_{II(l)}$ (i = 1, 2, 3, 4) with $II: \Pi_4 \to \Pi_4$ a permutation, $\Pi_4 = \{1, 2, 3, 4\}$ and where the functions h_l are compositions of S_x (a symmetry with respect to the line $y = \frac{1}{2}$), S_y (a symmetry with respect to the

 a_{2} a_{2} a_{1}

Fig. 5

line y = -x+1). Any of the symmetries may not be used or can be repeated.

- (iv) $\max_{i \in I} |Q_i \cap I \cap R^{-1}(B)| = |Q_1 \cap \widetilde{I} \cap R^{-1}(B)|$
- (v) Larger side of \tilde{I} is parallel to the horizontal axis.

There is only one interval \tilde{I} satisfying properties (i)-(v).

Let us assume that $\int\limits_{I\cap Q_1\cap R^{-1}(B)}f\leqslant\int\limits_{I\cap Q_1\cap R^{-1}(B)}f\ (i=1,\,2,\,3,\,4)\ \text{which}$

will be demonstrated afterwards. Then

$$\begin{split} \frac{1}{|I|} \int\limits_{I \cap R^{-1}(B)} f &= \frac{1}{|\widetilde{I}|} \int\limits_{I \cap R^{-1}(B)} f &= \frac{1}{|\widetilde{I}|} \sum_{i=1}^{4} \int\limits_{I \cap Q_{i} \cap R^{-1}(B)} f \\ &\leqslant \frac{4}{|\widetilde{I}|} \int\limits_{\widetilde{I} \cap Q_{1} \cap R^{-1}(B)} f \leqslant \frac{4}{|\widetilde{I} \cap Q_{1}|} \int\limits_{\widetilde{I} \cap Q_{1} \cap R^{-1}(B)} f. \end{split}$$

| (a) If $(\bar{x}, \bar{y}) \in Q_3 \cap I \cap R^{-1}(B)$ (see Figs 4, 5 and 2), then $f(\bar{x}, \bar{y}) \le f(S_x(\bar{x}, \bar{y})) \le f(S_y \cdot S_x(\bar{x}, \bar{y})) = f(SS_y \cdot S_x(\bar{x}, \bar{y}))$, since when $a \in Q_1 \cap R^{-1}(B)$, f(a) = f(Sa); moreover,

$$SS_y S_x(Q_3 \cap I \cap R^{-1}(B)) \subseteq Q_1 \cap \widetilde{I} \cap R^{-1}(B)$$

because of properties (iii), (iv).

(b) Similarly, if $(\bar{x}, \bar{y}) \in Q_4 \cap I \cap R^{-1}(B)$, then $f(\bar{x}, \bar{y}) \leq f(S_x(\bar{x}, \bar{y}))$ = $f(SS_x(\bar{x}, \bar{y}))$, and $SS_x(Q_4 \cap I \cap R^{-1}(B)) \subseteq Q_1 \cap \tilde{I} \cap R^{-1}(B)$ by properties (iii), (iv).

(We use the symmetry S when the larger side of $I \cap Q_i$ is parallel to the y-axis as is Fig. 4.)

(c) If $(\overline{x}, \overline{y}) \in Q_2 \cap I \cap R^{-1}(B)$, then $f(\overline{x}, \overline{y}) \leq f(S_y(\overline{x}, \overline{y})) = f(SS_y(\overline{x}, \overline{y}))$ and $SS_y(Q_2 \cap I \cap R^{-1}(B)) \subseteq Q_1 \cap \widetilde{I} \cap R^{-1}(B)$.

(d) If $(\bar{x}, \bar{y}) \in Q_1 \cap I \cap R^{-1}(B)$, then $f(\bar{x}, \bar{y}) = f(S(\bar{x}, \bar{y}))$ and $S(Q_1 \cap I \cap R^{-1}(B)) \subseteq Q_1 \cap \widetilde{I} \cap R^{-1}(B)$.

Using (a), we have

$$\textstyle \int\limits_{Q_3\cap I\cap R^{-1}(B)} f(\overline{x},\,\overline{y}) \leqslant \int\limits_{Q_3\cap I\cap R^{-1}(B)} f\big(SS_yS_x(\overline{x},\,\overline{y})\big) \leqslant \int\limits_{Q_1\cap \widetilde{I}\cap R^{-1}(B)} f(\overline{x},\,\overline{y})\,;$$

similarly for (b), (c) and (d).

We consider now an average over an interval $I\subseteq Q_1$ with larger side parallel to the horizontal axis. We have

$$\frac{1}{|I|} \int_{I \cap R^{-1}(B)} \frac{1}{\left(\frac{2\sqrt{2}(y-x)+1}{4}\right) \left| \log \frac{2\sqrt{2}(y-x)+1}{4} \right|^{3}} dx dy$$

$$= \frac{1}{|I|} \int_{y}^{y_{0}} dy \int_{x}^{y+1/\sqrt{8}} \frac{1}{\left(\frac{2\sqrt{2}(y-x)+1}{4}\right) \left| \log \frac{2\sqrt{2}(y-x)+1}{4} \right|^{3}} dx$$

(see Fig. 3). Since

$$\int_{a}^{\alpha} \frac{dx}{(ax+b)\left|\log(ax+b)\right|^{3}} = \frac{1}{2a\left[\log(ax+b)\right]^{2}}\Big|_{\beta}^{\alpha}, \quad 0 < \beta < \alpha < \frac{1-b}{a},$$

we have

$$\begin{split} &\frac{1}{|I|} \int_{\bar{y}}^{y_0} dy \int_{\bar{x}}^{y+1/\sqrt{8}} \frac{dx}{\left(\frac{2\sqrt{2}(y-x)+1}{4}\right) \left| \text{Log}\left(\frac{2\sqrt{2}(y-x)+1}{4}\right) \right|^3} \\ &= \frac{1}{|I|} \int_{\bar{y}}^{y_0} \left| \frac{-1}{\sqrt{2}} \frac{1}{\left[\log\left(\frac{2\sqrt{2}(y-x)+1}{4}\right) \right]^2 \left|_{x}^{y+1/\sqrt{8}} \right|} dy \\ &= \frac{1}{(x_0 - \bar{x})} \frac{1}{(y_0 - \bar{y})} \frac{1}{\sqrt{2}} \int_{\bar{y}}^{y_0} \frac{dy}{\left[\log\left(\frac{2\sqrt{2}(y-\bar{x})+1}{4}\right) \right]^2}; \quad |I| = (x_0 - \bar{x})(y_0 - \bar{y}) \end{split}$$

(see Fig. 3) since $(\bar{x}, \bar{y}), (\bar{x}, y_0) \in R^{-1}(B)$.

If $\overline{y} \leqslant y \leqslant y_0$, then $\operatorname{Max}(|\overline{x} + y|; |\overline{x} - y|) \leqslant 1/2\sqrt{2}$.

Consequently,

$$\frac{\sqrt{2}}{2}(y-\bar{x})+\frac{1}{4}\leqslant \frac{1}{2}<1,$$

so that

$$h(y) = \frac{1}{\lceil \log(\frac{1}{2}\sqrt{2}(y-\bar{x}) + \frac{1}{4}) \rceil^2}$$

is increasing and bounded in $[\bar{y}, y_0]$; then

$$\sup_{y \leq y \leq y_0} \frac{1}{\left[\log\left(\frac{1}{2}\sqrt{2}(y-\bar{x})+\frac{1}{4}\right)\right]^2} = \frac{1}{\left[\log\left(\frac{1}{2}\sqrt{2}(y_0-\bar{x})+\frac{1}{4}\right)\right]^2} \\ \leq \frac{1}{\left[\log\left(\frac{\sqrt{2}}{2}\frac{1}{\sqrt{8}}+\frac{1}{4}\right)\right]^2} = \frac{1}{(\log 2)^2};$$

hence

$$\frac{1}{\sqrt{2}} \frac{1}{(x_0 - \overline{x})} \frac{1}{(y_0 - \overline{y})} \int_{\overline{y}}^{y_0} h(y) \, dy \leqslant \frac{1}{\sqrt{2}} \frac{1}{(\log 2)^2} \frac{1}{(x_0 - \overline{x})} < 1$$

if

$$x_0 - \bar{x} > \frac{1}{\sqrt{2(\log 2)^2}} \sim 1.$$

Consequently, $\{f^* > 1\}$ is bounded.

 $f \in L\log^+ L$ and $f \notin L(\log^+ L)^2$ since $f = g \circ R$ with

$$g(x, y) = \frac{1}{(y - \frac{1}{4})} \frac{\chi_B(x, y)}{|\log(y - \frac{1}{4})|^3} \quad \text{and} \quad g \in L \log^+ L; \quad g \notin L(\log^+ L)^2.$$

Let us prove that

$$\int_{R^{-1}(R)} f^* < +\infty.$$

If $a \in Q_3 \cap R^{-1}(B)$, it is already known that

(1)
$$f^*(a) \leqslant 4 \sup_{I \subseteq Q_1} \frac{1}{|I|} \int_{I \cap P^{-1}(P)} f,$$

where $S_y S_x a \in I \cap R^{-1}(B) \subseteq Q_1 \cap R^{-1}(B)$; similarly, if $a \in Q_i \cap R^{-1}(B)$, i = 1, 2, 3, 4.

Having in mind (1), we see that for all $a \in Q_1 \cap R^{-1}(B)$ the inequality

(2)
$$4 \sup_{a \in I} \frac{1}{|I|} \int_{I \cap R^{-1}(B)} \le \frac{32}{(\log 2)^2} f_R^*(a)$$

is verified, where f_R^* is the maximal function over intervals rotated in the angle $\frac{1}{2}\pi$ (in the counterclockwise sense).

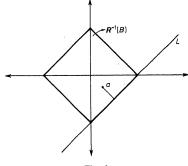


Fig. 6

Given $a \in R^{-1}(B) \cap Q_1$, we have $f_R^*(a) = g^*(Ra)$. If $Ra = (\alpha, \beta)$, then

$$g^*(Ra) = \frac{-1}{(\beta - \frac{1}{4})} \int_{1/4}^{\beta} \frac{dy}{(y - \frac{1}{4}) \lceil \log(y - \frac{1}{4}) \rceil^3}$$
$$= \frac{1}{2(\beta - \frac{1}{4})} \frac{1}{\lceil \log(\beta - \frac{1}{4}) \rceil^2} = \frac{1}{2d(a, L)} \frac{1}{(\log d(a, L))^2},$$

where L is the straight line $\{(x, y)/y = x - 1/\sqrt{8}\}$ and

$$d(a, L) = d(Ra, RL) = \beta - \frac{1}{4} = (\frac{1}{2}\sqrt{2}(y-x) + \frac{1}{2}) - \frac{1}{4} = \frac{1}{2}\sqrt{2}(y-x) + \frac{1}{4}$$

where $a = (x, y)$ and

$$RL = \{(x, y)/y = \frac{1}{4}\}.$$

Then

(3)
$$f_R^*((x, y)) = \frac{2}{(2\sqrt{2}(y-x)+1)} \frac{1}{\left[\log\left(\frac{2\sqrt{2}(y-x)+1}{4}\right)\right]^2}.$$

Now, given an interval $I \subseteq Q_1$ with larger side parallel to the x-axis, we have

$$\frac{1}{|I|} \int_{I \cap R^{-1}(B)} f$$

$$= \frac{1}{|I|} \int_{y}^{y} dy \int_{x}^{y+1/\sqrt{8}} \frac{dx}{\left| \log\left(\frac{2\sqrt{2}(y-x)+1}{4}\right) \right|^{3}} \frac{1}{\left(\frac{2\sqrt{2}(y-x)+1}{4}\right)} + \frac{1}{|I|} \int_{y}^{y_{0}} dy \int_{x}^{x_{0}} \frac{dx}{\left| \log\left(\frac{2\sqrt{2}(y-x)+1}{4}\right) \right|^{3}} \frac{1}{\left(\frac{2\sqrt{2}(y-x)+1}{4}\right)} \quad \text{(see Fig. 7)}$$

$$= \frac{1}{|I|} \int_{y}^{y} \frac{-1}{\sqrt{2}} \frac{1}{\left[\log\left(\frac{2\sqrt{2}(y-x)+1}{4}\right) \right]^{2}} \Big|_{x}^{y+1/\sqrt{8}} dy + \frac{1}{|I|} \int_{y}^{y_{0}} \frac{-1}{\sqrt{2}} \frac{1}{\left[\log\left(\frac{2\sqrt{2}(y-x)+1}{4}\right) \right]^{2}} \Big|_{x}^{x_{0}} dy$$

$$\leq \frac{(\tilde{y}-\tilde{y})}{\sqrt{2}(x_{0}-\tilde{x})(y_{0}-\tilde{y})} \frac{1}{\left[\log\left(\frac{2\sqrt{2}(\tilde{y}-\tilde{x})+1}{4}\right) \right]^{2}} + \frac{1}{\sqrt{2}|I|} \int_{y}^{y_{0}} \frac{dy}{\left[\log\left(\frac{2\sqrt{2}(y-\tilde{x})+1}{4}\right) \right]^{2}}$$

$$\leq \frac{1}{\sqrt{2}(x_{0}-\tilde{x})} \left[\frac{1}{\left[\log\left(\frac{1}{2}\sqrt{2}(x_{0}-\tilde{x})\right) \right]^{2}} + \frac{1}{\left[\log\left(\frac{2\sqrt{2}(y_{0}-\tilde{x})+1}{4}\right) \right]^{2}} \right];$$

since $\tilde{y} = x_0 - 1/\sqrt{8}$ (see Fig. 7)

(4)
$$= \frac{1}{\sqrt{2}} \frac{1}{(x_0 - \bar{x})} \frac{1}{\left[\log\left(\frac{1}{2}\sqrt{2}(x_0 - \bar{x})\right)\right]^2} + \frac{1}{\left[\log\left(\frac{1}{2}\sqrt{2}(x_0 - \bar{x} + \delta)\right)\right]^2},$$
since $y_0 = x_0 - 1/\sqrt{8} + \delta$ $(0 \le \delta \le 1/\sqrt{8})$, $\delta = y_0 - \tilde{y}$.

Now, $0 \le \delta \le y_0 - \overline{y} \le x_0 - \overline{x}$ since averages are taken over intervals with larger sides parallel to the x-axis. Then

$$\frac{1}{\left[\log\left(\frac{1}{2}\sqrt{2}(x_0-\overline{x}+\delta)\right)\right]^2} \leqslant \frac{1}{\left(\log\left(\sqrt{2}(x_0-\overline{x})\right)\right)^2}$$

Using (4), we have only to prove that

(5)
$$\frac{2}{\sqrt{2}(x_0 - \bar{x})} \frac{1}{\left[\log\left(\sqrt{2}(x_0 - \bar{x})\right)\right]^2} \leqslant C f_R^*(a) = \frac{2C}{\left(2\sqrt{2}(y - x) + 1\right) \left[\log\left(\frac{2\sqrt{2}(y - x) + 1}{4}\right)\right]^2}$$

Fig. 7

or equivalently,

(6)
$$\left(\frac{2\sqrt{2}(y-x)+1}{4} \right) \left[\log \left(\frac{2\sqrt{2}(y-x)+1}{4} \right) \right]^{2}$$

$$\leq \frac{1}{4} C(\sqrt{2}(x_{0}-\overline{x})) \left[\log \left(\sqrt{2}(x_{0}-\overline{x}) \right) \right]^{2}$$

for a constant C not depending on a = (x, y).

The function $x(\log x)^2$ is increasing in $[0, 1/e^2]$ and decreasing in $[1/e^2, 1]$ with maximum $(2/e)^2 < 1$. On the other hand, we have $\frac{1}{2}\sqrt{2}(y-x) + \frac{1}{2} \le \sqrt{2}(x_0 - \overline{x}) \le \sqrt{2} \cdot \frac{1}{2\sqrt{2}} = \frac{1}{2}$ since $x_0 - \overline{x} \ge y_0 - \overline{y}$, so that $(x_0 - \overline{x}) + \overline{y} - y \ge y_0 - y \ge 0 \ge \overline{x} - x$, and $y + \overline{x} - x \le (x_0 - \overline{x}) + \overline{y} = (x_0 - \overline{x}) + x_0 - 1/\sqrt{8}$. Hence $y - x + 1/\sqrt{8} \le 2(x_0 - \overline{x})$.

Consequently,

$$\frac{1}{4}C \, \frac{1}{2}(\log \frac{1}{2})^2 = 1 > (2/e)^2$$

is sufficient. Then $C = 8/(\log 2)^2 > 1$ and we obtain (2). Using (1) and (2), we get

$$\int_{R^{-1}(B)} f^* = \sum_{i=1}^4 \int_{Q_i \cap R^{-1}(B)} f^* \leqslant \frac{128}{(\log 2)^2} \int_{Q_1 \cap R^{-1}(B)} f_R^* < +\infty;$$

since, clearly,

$$\int_{R^{-1}(B)}^{\infty} f_{R}^{*} = \int_{R^{-1}(B)}^{\infty} g^{*}R = \int_{B}^{\infty} g^{*} < +\infty.$$

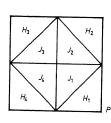


Fig. 8

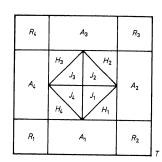


Fig. 9

Now, let $R^{-1}(B) = \bigcup_{i=1}^4 J_i$ and let $S_i \colon H_i \to J_i$ be the corresponding symmetries. Obviously, if $a \in H_i$, then $f^*(a) \leq f^*(S_i a)$ (i = 1, 2, 3, 4). Thus

$$\int_{P} f^* < +\infty, \quad \text{where} \quad P = R^{-1}(B) \cup (\bigcup_{i=1}^{4} H_i).$$

Let

$$\begin{split} S_1 &= H_1 \cup J_1 \cup J_4 \cup H_4, & S_2 &= H_2 \cup J_2 \cup J_1 \cup H_1, \\ S_3 &= H_3 \cup J_3 \cup J_2 \cup H_2, & S_4 &= H_4 \cup J_4 \cup J_3 \cup H_3, \end{split}$$

and let S_i : $A_i \rightarrow S_i$ be the corresponding symmetries. Clearly,

$$f^*(a) \le f^*(S_i a)$$
 if $a \in A_i$ $(i = 1, 2, 3, 4)$.

Similar relations hold for R_i and the cubes $(H_i \cup J_i)$ (i = 1, 2, 3, 4).

Then if $T = (\bigcup_{i=1}^{4} A_i) \cup (\bigcup_{i=1}^{4} R_i) \cup P$, we have $\int_{T} f^* < +\infty$. With a recursive proceeding, we obtain $\int_{H} f^* < +\infty$ for every bounded set H.

In particular, we have that $\int_{(f^0>1)} f^* < +\infty$.

COROLLARY. There exists $f \notin L(\log^+ L)^2$ such that f^* is integrable over every set of finite measure.

Let

$$f = g \circ R$$
, where $g(x, y) = \frac{\chi_B(x, y)}{(y - \frac{1}{4})|\log(y - \frac{1}{4})|^3}$.

If $a = (a_1, a_2)$ is such that $\max(|a_1 - \frac{1}{2}|; |a_2 - \frac{1}{2}|) \ge M$ with M big enough, we know that $f^*(a) \le 1$. Then if $H = \{(a_1, a_2)/\max(|a_1 - \frac{1}{2}|; |a_2 - \frac{1}{2}|) \le M\}$ and

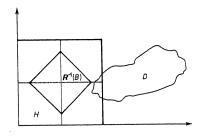


Fig. 10

D is a set of finite measure we have

$$\int_{H^c \cap D} f^* dx dy \leq |H^c \cap D| \leq |D|,$$

and since

$$\int_{H\cap D} f^* dxdy \leqslant \int_{H} f^* dxdy < +\infty,$$

we conclude that $\int_{D} f^* < +\infty$.

212

M. E. Gomez

References

- [1] N. A. Fava, Weak type inequalities for product operators, Studia Math. 42 (1972), 271-288.
- [2] -, E. A. Gatto and C. Gutiérrez, On the strong maximal function and Zygmund's class L(log+L)ⁿ, ibidem 69 (1980), 155-158.
- [3] M. E. Gomez, Note on the strong maximal operator, ibidem 76 (1983), 225-248.
- [4] M. de Guzmán, Differentiation of integrals in R", Springer Verlag, vol. 481.

Received September 10, 1982

(1799)

STUDIA MATHEMATICA, T. LXXVIII (1984)

The generalization of Cellina's Fixed Point Theorem

by

ANDRZEJ FRYSZKOWSKI (Warszawa)*

Abstract. Let $L^1(T,Z)$ be the Banach space of integrable functions from a compact space T into a Banach space Z. A set $K \subset L^1(T,Z)$ is called decomposable if, for every $u,v \in K$ and measurable $A \subset T$, $u \cdot \chi_A + v \cdot \chi_{T \setminus A} \in K$. In this note we prove that each compact mapping from a closed and decomposable subset $K \subset L^1(T,Z)$ into itself has a fixed point.

§1. Introduction. In paper [2] Cellina proved that the set K_P of all functions integrable on a closed interval [a, b] whose values belong to a fixed closed subset P of a Euclidean space R^m has a fixed point property; this means that each compact mapping from K_P into itself has a fixed point. The set K_P can be nonconvex; thus the result of Cellina is interesting when confronted with Schauder's Fixed Point Theorem, where the assumption of convexity is essential (see [3], [8]).

In this note we generalize the above result to an arbitrary closed and decomposable subset K of the space of integrable functions. The decomposability of a set K means that for each $u, v \in K$ and A measurable $u \cdot \chi_A + v \cdot \chi_{(a,b) \setminus A} \in K$, where χ_A stands for the characteristic function of A.

Obviously, the set K_P in the theorem of Cellina is decomposable.

This generalization is quite easy to obtain if we apply a certain theorem on continuous selections proved by the author in [5]. The theorem is an abstract version of Antosiewicz and Cellina's Selection Theorem [1] and can also be applied to the problem of the existence of solutions for the functional-differential inclusion $\dot{x}(t) \in F(t, x(\cdot))$ (see [6]). The required facts about the selections are given in §3. We formulate the main results in §2 and prove it in §4.

§ 2. The main result. Let T be a compact topological space with a σ -field $\mathfrak M$ of measurable subsets of T given by a nonnegative, regular Borel measure dt and let Z be a separable Banach space with norm $|\cdot|$. By $L^1(T,Z)$ we denote the Banach space of functions $u\colon T\to Z$, integrable in the Bochner sense, with norm $||u||=\int |u(t)|\,dt$.

^{*} Current address: Institute of Mathematics, Technical University of Warsaw, 00-661 Warsaw, Pl. Jedności Rob. 1, Poland.