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On commutative algebras of unbounded operators
by
JAN NIECHWIEJ (Krakéw)

Abstract, This paper deals with a kind of algebras of unbounded linear operators in a
Hilbert space, called extended C* and W*-algebras. It is shown that any commutative EC*-
algebra is a subalgebra of the algebra of spectral integrals for a certain spectral measure. It is
also shown that for any spectral measure the algebra of all spectral integrals for this measure is
an EC*-algebra. The conditions for this algebra to be an EW*-algebra are investigated. Some
implications and relations to known results are also discussed.

1. Introduction,

1. There are some possible ways of investigating algebras of unbounded
linear operators in a Hilbert space. Such algebras are usually explored under
the assumption that all operators have a common dense domain. In this
paper an other method is presented, which can be used for commutative
algebras, namely a method of connecting them with spectral measures. This
is the subject of the paper.

Following Dixon [4], by a *-algebra of closed operators we understand
a s€t o of closed, densely defined linear operators in a given Hilbert space H
(with perhaps different domains) which satisfies the following conditions:

(i) o contains identity and the zero operator;

(i) for any operators 4, B from the set .o their sum 4+ B and product
AB are closable;

(iii) for any operators 4, B from the set ./ and any complex number A
the operators

A+BELA¥B, AoBL4AB, A1 ALTA,
and A* belong to the set .o

(iv) the set o together with the operations (+, o, -, ¥} form an algebra
with involution.

For any *-algebra of closed operators «# we will write o/* to denote the
set of all bounded operators from ./, ie., 7" = & N B(H) (B(H) denotes the
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algebra of all bounded linear operators mapping the space H into itself).
A *-algebra of closed operators .7 is called symmetric if and only if for
any operator A that belongs to this algebra the operator (I+A4*A4)™" lies
also in /.
A symmetric *-algebra of closed operators .«/ is called an EC*-algebra
(an EW*-algebra) if and only if its bounded part ./* is a C*-algebra
(respectively a W*-algebra).

2. Algebras of spectral integrals.

2. Let E be a spectral measure on a certain measure space (2, M) into a
Hilbert space H and define

Ay L {é)f dE: f: Q — C-measurable].

ProrosITION 1. For any spectral measure E the set <7y is a commutative
EC*-algebra.

Proof. To prove that .«/; is a *-algebra of closed operators it is
sufficient to show that for the spectral integrals the following equalities are
true:

@ | (f+g)dE=[fdE+[gdE, (i) [fgdE=(]fdE)(] gdE),
2 Q 2 2 Q [r]
i) AfdE =1 | fdE, (v} [JdE=([fdE),
Q n 2 Q2

.where f and ¢ are measurable functions and A is a complex number.

Let 0, ={zeQ: n—1<(1+|f@)(1+lg@))<n}, n=1,2,3,... and
H,=E(s,) H. As the sets o, are pairwise disjoint and cover the whole set Q,
we get a decornposition of our Hilbert space H onto an orthogonal sum of

subspaces H,, H = @ H,. Any subspace H, is contained in the domains of

all the eight operators on both sides of (i), (ii), (iii) and (iv) and, what is more,
these operators are bounded on H, and map the spaces H, into themselves.
But these operaturs are closed, and so they are uniquely determined by their
parts in H,, (as direct sums of parts in H,). Hence to obtain equalities (i), (if),
(iii), (iv) it suffices to check them only on the spaces H,, which we im-
mediately get from the relations

[ U+ 1dE = [ fundE+ | gxudE, [ Afr,dE = A | fy,dE,
2 a2 Q o n

§ fo1dE = (] findE)({ 92, 4E), [ JandE = (] fundE)",

valid as the functions involved in them are bounded (y, denotes the charac-
teristic function of the set ¢,).
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The algebra ./ is symmetric because the
(fde) (fde)] ! is equal to j(1+lf|2)'1dE

To see that the bounded part ;JE is closed in the norm topology we shall
only consider that '||ffdE| =E-esssup|f| and that the algebra of all
[t}

operator [I+

measurable functions on Q is complete in the topology of the norm ||f||
= E-ess sup|f].

3. Nevertheless .o/ does not always have to be an EW*-algebra — an
example will be given later (Example 5). Now let us formulate a sufficient
condition for the algebra s/ to be EW*, Before we do that we shall introduce
some measure terminology. For details reader can consult [2], from which this
terminology is taken.

If 4 and v are positive finite measures on a measure space (Q, M) we
write p<v to denote that the measure u is absolutely continuous with
respect to the measure v and p~v if both u<v and v~< u. Later on the
measures are regarded up to the equivalence ~. The partial order < gives
us in the set of all the classes of equivalence for all finite positive measures
on (2, M) a lattice structure. The supremum p v v is the class of equivalence
for the measure u+4v and the infimum u A v is the class of equivalence for
the measure y' from the Lebesgue decomposition p = g+ p” of u into parts
absolutely continuous and singular with respect to v. A set J of measures is
called a g-ideal of measures if, together with the measure 4, there belongs to
J any measure absolutely continuous with respect to u and if for a given

o0
countable family {u,},-,,,... of measures from J also their supremum AV s
) n=1

is in J.
For any spectral measure E the set
Je = {p: xeH, py(o) L(E@x, x), o€ M}

is a o-ideal of measures. This ideal J; is o-generated by a family {Hs}ses Of
measures from J if for any measure u from J, there exist measures st

s,€8,n=1,2,..., such that u< \/ Hs,

4. ProposiTion 2. If for a given spectral measure E its o-ideal of measures
Jg has the following property:

(+)  there exists a family of measures {u)ses < Jg and a family {g}ses Of
measurable subsets of Q, each w, being a support set for the measure u,,
such that the family {u}, o-generates the ideal J gz and the sets {w,}yes
are pairwise disjoint,

then the algebra ofy is a commutative EW*-a{gebra
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Proof. Recalling Proposition 1, we only have to show that &/} is a W*-
algebra. We will show that it is closed in the strong topology. For this
purpose take a net {f, .4 Of measurable bounded functions on € such that
the spectral integrals A, = [ f.dE strongly converge to a bounded operator

A. We should find that 4 is of the form f/dE for some function f. The proof
of our theorem will consist in the constructlon of this function.

n
For any vectors yi, ..., y, in H, set u,, =3 My, Then:
k=t

£ fa=tol* duy,...p, Z =1l dpy,

k=1 Q

Z (| Ao v~ A/J.VA”

/1'1

because the net {A,),., strongly converges. This means that the net {f, .4
regarded as a net of functions from I? (Hy,....y,) is & Cauchy net there; hence
there is a function f, ., in r By (depending of course on the choice
of the vectors y,, ..., y,) such that the ‘net { fu}eeq converges to this function
in the space L:'"(,uylw )

5. Before going further, it will be useful to prove the following simple

Lemma 3. If p, < p, for some x, ye H, then the net {f,},cq converges to
the function f in the space I? (i) (in the space I (u,) it converges to f, by the
definition of f.).

To see this let us remdrk that f, ey fep in the space I?(u,,); hence
Jo == Sy 0 I (py) and also f, T»fxy in I?(u,). From the definition of the
function f, we know that f, — f, in the space L2 (u), and so we must have f
= fryae. . Similarly f, = f, ,a.e. u,. But we have p, < i, and so the equality f,
= f, is not only ae. u, but also a.e. u,, which gives f, =f, a.e. u, and thus
fo =/, in (), which is what was required.

6. Now we can define the function f; Q — C which we seek as follows,
Let {p;}yes be the family of measures and {w,},s the family of sets as in
condition (+) and let y, =pu., x,eH, seS. We set f(z) =f, (2) for zew,
s€S, and f(z) = O elsewhere. As the sets w, are disjoint, the funcllon Sis a
well-defined measurable function. As w, is a support set for the measure py,,
we have f =f. ae. p, for any index seS. This shows that the net {f,},.,
converges to the function f in each space I?(u,). The measures y,, S&S, are

pairwise singular, and so for any countable family of indices {s,},= . =S
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we have

xX
g, ~ 2 27 Il T e, =

n=1

<&
=

x
il
-

(see [2], Theorem 6.6), where x =Y 27"||x,/|~%x,

n=1

Xp =X, .

For such a vector x we get

1({z€Q: f(2) #fe(2)}) = Z 27"Ixl1 72y, ({2 €Q: £ () £ fu(D}) =

the reason is that the lemma implies f, =/, ae. u,, and the equality f =f,
ae. y, is obtained directly from the definition of our function f. Thus we
have obtained f =f, almost everywhere pu,, i.e, in other terms, we have
found that the net {f,},., converges to the function f in the space I*(w,).

Using the lemma once more and having in mind the o-generating
property of the family {u}.s, Wwe conclude that, for any vector z from H,
Jfo—zp/ in the space I?(u.). Thus f must be in each space I?(u.), which

means that any vector z from H is in the domain of the operator { f dE and

Q
(if we use the polarization formula) the net {4,},., weakly converges to the
operator | f dE. But this net converges to the operator 4, and so 4 is equal
n

to the operator [fdE and thus belongs to «#%. This ends the proof of
el
Proposition 2.

7. Remark 4. As for a separable Hilbert space, there exists a single
measure u,eJp generating just the ideal Jy, condition (+) is automatically
fulfilled, and so the algebra .=/ is always EW* in a separable space, as Brown has
already pointed out in [2], Theorem 10.1. For a non-separable space this is not
necessarily so, as is shown by the following example;

8. ExaMpLE 5. Let us take the square [0, 172 and the algebra of all Borel
subsets of this square as a measure space. Let 4, and v, denote the measures
defined as follows:

e (O’) g‘L my (U N au)s

where  a, = {a} x [0, 1],

V(o) Emy(cnby), where by =[0, 1]x{B}.
0<a,f<1,0 is a Borel subset of the square [0, 1]*> and m, is a one-

dimensional Lebesgue measure on vertical and horizontal segments a,, by.
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For a Hilbert space let
H=(® Ew)e( @, roy)

. 0€as1
and let E be the direct sum of standard spectral measures, i.e., let E (o) be the
operator of multiplication by the characteristic function of the set o, for any
Borel subset of the square [0, 1]

Then for the projection P on the first part of H, ie,on @ I*(u,), we

0gasgl
find that P belongs to #% (closure in the strong topology) since P is the
direct sum of projections onto I*(y,), each being of the form E(a,) and thus
belonging to the algebra +7%.
From the definition of P we also get the relations P(ta,) = Xay in I?(u,)
and P(x,,ﬂ)=0 in I*(vy) for the characteristic functions of the segments

ay, by. If P is of the form E(o) for some Borel set o, we should have

P(Xay) = XayXo = Xaray = Xa, 0 L (1)

and
P(Xhﬂ) = Aoy Ko = Xarby = 0 in LZ(Vp)s

ie, my(ena)=1and m(@nhby) =0 for 0<a, f<1.
Thus we get a contradiction:
1

1 1 1
l={lde=[mona)de=my(o) =[mocnbydf=[0df=0
0 0 o [¢]

(we have used the Fubini theorem, and m, denotes the two-dimensional
Lebesgue measure on the square [0, 173).

Thus d’g # QE and the algebra o/ is not an EW*-algebra.

9. An interesting property of EW*-algebras can be deduced from [7]
and [8]. In these papers the following problem is considered: given a spectral
measure E, what, properties an operator should have in order to be of the
form {fdE?

In both papers, in order to obtain a sufficient condition for that, some
assumptions are needed about the measure E. In [7] one assumes that for
the measure E there exists a countable set of vectors such that the values of
projections E (g) on these vectors are dense in the Hilbert space H, This leads
to our condition (+) with the additional assumption that the set of indices S
is countable and, owing to Proposition 2, the result of this assumption will
be that «f; is an EW*-algebra.

The assumption about the measure which is made in [8], ie., the
completeness of the lattice of subspaces {E(g) H},cy, is directly equivalent to
o/ § being an EW*-algebra (see [6], XVIL3, Corollary 8). The main theorem
of [8] says that for a spectral measure E such that the lattice of subspaces

e ©
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{E(0) H) ,ey is complete (i.e,, such that the algebra &/, is EW*) to the algebra
&y belongs any closed operator T such that:

(a) T leaves invariant any subspace of H that is invariant for all the
projections E (o), :

(b) T commutes with these projections, ie., E(o) T = TE(0).

But the inverse is also true. If, for a spectral measure E, to the algebra
& ; belongs any closed operator Tas above, then .y is an EW*-algebra. This
is obvious since properties (a), (b) are preserved when we take a strong limit
of bounded operators fulfilling these conditions (and such are the operators
from %), and so the bounded part s£% of the algebra «/; is closed in the
strong topology.

Thus we have obtained another characterization of EW*-algebras of
type &g

For a given spectral measure E the algebra .of; is EW* if and only if any
closed operator which leaves invariant every invariant subspace for E and
commutes with E belongs to .

3. General form of commutative EC*-algebras.

10. In this section we shall consider the inverse problem: can we find
such a spectral measure E, for a given commutative EC* or EW*-algebra,
that this algebra will be of the form /g?

The following corollary will be useful:

COROLLARY 6. For two spectral measures E, F defined on measure spaces
(2,, M,) and (R,, M,) respectively and acting into the same Hilbert space H
we set E < F if and only if for any €M, there exists an weM, such that
E(0) = F(w). Then the following conditions are equivalent:

(i) E<F,

(i) % < oF,

(i) g < Ly,

(iv) for any ce M, there is E(o)€ .

The proof is easy, and can be left to the reader as an exercise. In the

implication (i) = (ili) we can use the decomposition of the integral { fdE
2y

into the direct sum of its pieces on spaces E(c,)H, where o,= {zeQ,:
n=1<|f@)l <nj,
11. Now we can prove the main result of this section.

ProrosiTioN 7. For any commutative EC*-algebra sf there exists a
spectral measure E on Borel subsets of some compact space & such that:

(D &¢C:&IE
(i) b = s% (closure in the strong topology).
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Remark 8. The proposition implies that each commutative EC*-
algebra is a subalgebra of some EW*-algebra of the form .#/; and that for any
commutative EW*-algebra there is a biggest commutative EW*-algebra
which has the same set of bounded operators and is of the form ./ for some
measure E.

12. Proof of Proposition 7. As the algebra o is commutative, then

. each operator A from .« is normal (i.e., 4 is closed, densely defined and 4*A4
= AA*) and thus there exists a spectral measure E, associated with 4 such
that the operator 4 is of the form A4 = [ AdE(A).

For the bounded operators from .zi" since of" is a W*-algebra, the
values of their spectral measures all belong to o being approxm]able in the
strong topology by polynomials of 4, A*. (See also Proposition 4.75 of [5])
We will show that it is also valid for unbounded operators from «.

The algebra & is symmetric, and so, together with a fixed operator A
from o, the operator B = (I+A* A)~ ! belongs to ./, Thus we have in ", as
has been said above, all the values of the spectral measure Ej associated with
the operator B. There will also be all the operators of the form fudEj, where
u is any Eg-essentially bounded function, as they are approximable in the
norm topology by the linear combinations of the projections Eg.

Let C = AB. Using the property AA* = A*A, we can find that C*
= A*B. Thus we obtain two inclusions: AB = C = C** = (4* B)* o BA**
= BA and A*B = (* =(AB)* » BA* (the operator B is self-adjoint). Next
let us take sets o, = [1/4n+1), 1/n) and define functions u,(r), setting w,()
=t"! for tea, and u,(t) = 0 elsewhere, n =1, 2, ... From the definition of
these functions we get

Eglo,) =B [u,dEg =(jundEB)B.

We also have H = (—D H,, where H, = Ey(c,) H. Now, usmg the inclu-
n=1
sion obtained before, we obtain
AE,(0,) = AB VugdEg = C | u,dEp = _[u dEg)C

5 (f uydEy) BA = Ey(c,) A.

= (] u,dE) AB

We have used the commutativity of the algebra =, from which come the
operators B, [ u,dE,, C. Similarly we can find that A*Ey(c,) o Egz(c,) A*.
The operators AEg(a,) are bounded since they are equal to the product
C-{u,dE, of two aperators from . Thus the operator 4 is the direct sum
of its parts in the subspaces H, (reducing 4, which is what we have just
proved).

Let A, be the restriction of 4 to-the subspace H,. 4, is a bounded

e ©
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normal operator in H,. If E, is a spectral measure for A,, then the spectral

measure E, given by the formula E,(0) = @ E,(o) will be the spectral
=1

measure for the operator 4 = @ A4,.
n=1

What we have done is in fact a brief proof of the spectral theorem for
unbounded normal operators. We can easily reach our goal proceeding as
follows:

The operators AE(c,) and A* Ey(c,) are from the algebra ", and so in
this algebra will also be found any operator of the form p(A4, A*)Ez(c,),
where p is a complex polynomial of two variables. Hence we get
p(Am A:)Eﬂ(an) = p(A’ A*)EB(Un)e"Q(b~

Each measure E, has a compact support, and so for any Borel set ¢
there is a net of polynomials {p,}.s such that p,(4,, A:);—;E,‘(a) in the

strong topology. Therefore we have p,(4,, AF) Eg(c,)x —;»E,,(o) Egz(a,)x for

any vector x from H. We have proved that the operators p,(4,, 4%) Ez(c,)

are in the algebra 2 hence in #* will be found alo the projections
E,(0)Ep(0,)-

But E,(0)x = }: E,(0) Eg(o,)x for any xEH and so the
n=1

algebra ° contains any projection E 4 (o), o being a Borel set and E, the
spectral measure connected with some, perhaps unbounded, operator A from
the algebra /.

13. Before we go further, we will prove the following important lemma,
perhaps interesting in itself.

LemMaA 9. Let {E}s be a family of regular spectral measures on compact
spaces €, acting into the same Hilbert space H and commuting with one
another (i.e., their values commute) and ler © be a Cartesian product Q
=Pq,.

s
Then there is a unique regular spectral measure E on Borel subsets of Q
such that

E(wx P Q)=

s#L

E (w), teS, wisa Borel subset of Q,
(such a measure is called the product or amalgamate of E).
For such a measure we have jgopsdE— | gdE,, where p;: Q-0

the projection on Q; from the Carteszan product "Q and g is any measurable
complex function on €.

The proof of this lemma in the case of two measures the reader can find
in [1], Theorems 33 and 34. By means of induction it extends to the case of
a finite set of measures. When this set is uncountable, then the o-algebra of
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Borel sets in Q= P Q, is the union of the ¢-algebras of type By £ {ox

x P Q:0 — Borel subset of P Q.}, where Q is any countable subset of
seS\Q
S. Therefore if we prove the 1emma for a countable set of measures, we will

be able to define the measure E as follows: E(¢") EQ (0), where '€ By, o
=ox P Q, E, being the (countable) product of measures {E,},.o. The

5
deﬁniti;gn\awill be proper because of uniqueness of the product.
Thus it remains to prove the lemma for a family {E,},=1,2..
commuting spectral measures defined on compact sets £,.
Let us denote by B™ the o-algebra of all sets of the form o X

.. %2, and let B = U B,

of regular,

&
x P Q,, o being a Borel subset of Q; xQ, x.
k=n+1 =1
B bemg a ring of subsets of Q generating the g-algebra of all Borel subsets of

Q= P Q,. From the uniqueness of the finite product E™ of spectral
n=1

measures E,, E,, ..., E, the definition

P o

k=n+1

E()LE"(6), do'eB", o =0x
establishes a well-defined function E on the ring B. This function is additive
on disjoint sets, its values are projections in H and E (o N w) = E (o) E (w), for
the reason that the restriction of E to any o-algebra B™ is a spectral
measure. -

Let {6p}m=1,2.. be a family of sets from B such that o, < o,-; and
N o, = O. We can assume without loss of generality that ¢, B™. Fix a

m=1
positive ¢ > 0 and a vector x from H. The measures E™ are regular, and so
there exist compact sets K, such that K, <g,, K,eB™ and
(Elom\Kp)x, x) < & 2 " (we use the assumption of compactness of the sets
Q). Then we have ﬂ K, < ﬂ Oy =

m=1
N
there has to be a natural number N such that () K, = ©. But the function
m= 1

E is finitely additive on disjoint sets and hence we get, for any M = N,

M M .
(Eax, x) = (E(os\ ) Kn)x, )< (E(U (oK), 2)

O; so, since the sets K,, are compact,

M

M
< Y (E(0n\Kn)x, x)< Y 27" <,
m=1

Thus we have found that, for any xeH, lim (E{ow) x, x) =
m= o0

=0, ie., together

with what we have said previously, that E is a spectral measure on the ring
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B. It expands uniquely to a regular spectral measure on the o-algebra of
Borel subsets of Q which is generated by the ring B (see [1], Theorem 7, p.
15).

In this way we have proved the first part of the lemma. The second
states that [ gopdE = j' g dE and is an immediate result of the deﬁnmon of the

the product of measures and the definition of the spectral integral.

In our proof we have used the compactness of the sets €,. This
assumption can be replaced by the assumption that €, are Polish spaces, but
this makes the proof slightly more difficult.

14. Now we can continue the proof of Proposition 7. As the measure E
which we need let us take the product of all the measures {E,! 4o On Q

= P o(4). Its existence is ensured by the lemma, as all the values of these
Aesb —
measures belong to a commutative algebra «®. Q is compact because the

spectra o (A) are compact for the operators from the algebra =%, which are
bounded.

The second part of the lemma shows that for any operator 4 belonging
to =° we have g, = g, and thus we obtain o = Ay.

If an operator A is from the algebra ./ but is unbounded, we have
proved that all the projections E, (o) are in the algebra .<7® (contained in .o/ £)»
and so, using Corollary 6, we will get «/y, = ., in particular 4 € ;. Hence
we finally infer that the whole algebra .o is contained in oy, ie., we infer
condition (i) of Proposition 7. To get (ii) we have already found that = 5. Tt
remains to show the inclusion .«/% < IJ_”, but since «¢? is a W*-algebra it will be
sufficient to prove that any projection E (¢) is in &/® (other operators from =% are
approximable by the linear combinations of such projections in the norm
topology).

Let N denote the family of all Borel subsets o of Q2 that satisfy E (o) el Ko
is a Borel subset of g (4) for some A € o, then we have E,(w) = E(o,,)for the set

o, of the formo, =wx P  ¢(B). We have proved that E , () 2%, which

=X h
allows us to include in th'é fwarrmy N all the sets of the above form, and thus the
cylindric sets.
The properties of a

- E(oy),

spectral  measure:

E( (_Jl c,) =
gether with the fact that such operations do not lead outside the W*-algebra a#° ;

let us conclude that N is a o-algebra of sets. But in N are all the cylindric sets, and
so N must coincide with the family of all Borel subsets of Q.

This ends the proof of Proposition 7.

E(Q\o) =I—E(0),

E(;n...na,) =E(gy) Y E(6,), 0,0 =, to-
n=1
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4. Some relations to GB*-algebras.

15. Proposition 7 characterizes commutative EC*-algebras from the
point of view of spectral measures. Such algebras can also be characterized
from the algebraical point of view as presented in a paper of Dixon [3].

For a complete topological algebra « with a unit and involution take its
biggest subset B which has the following properties: B is closed, bounded,
contains a unit, B- B « B and B* = B. Following [3] the algebra .o/ is called a
GB*-algebra if this set B is absolutely convex and the subalgebra of s generated
by B is a B*-algebra under the norm induced by B (i.., the norm for which Bisa
unit ball). ‘

A commutative EC*-algebra # can be equipped with a topology in
which it is a GB*-algebra. We will briefly show how it can be done.
Proposition 7 allows us to regard .« as a subalgebra of the algebra ./ for a
certain spectral measure E on a measure space (2, M). The mapping
@: My(@)af — | fdE€ Ay is a *-isomorphism from the algebra M, (2) of all

2
measurable complex functions on Q (regarded up to E-almost everywhere
equality) onto the EW*-algebra Ap.
In the algebra M;(Q) we define topology by the family of semimetrics

0., ) & JT—'{—%Q-'

It is easy to show that with this topology the algebra M, (£2) becomes an algebra
with continuous multiplication, usually not locally convex. The involution f *(z)
. =f(z)is continuous in this topology. The biggest subset B, of this algebra which
fulfils the following conditions: B, is bounded, B, is closed, 1 € B;, B, - By < B,
Bf = B,, is the set

du,, xeH.

Bi = {feMg(Q): E-esssup |f] < 1]

and is absolutely convex. It generates the subspace

L3(Q) = {fe M, (Q): E-ess sup |f| < w0},

which with the norm induced by B, (i.e. the norm ||f|| = E-ess sup |f]) is
isometrically isomorphic (by the isomorphism ¢) with the W*-algebra %, If
B is a subset of our EC*-algebra s/ (we equip this algebra with the topology
induced from M;(Q)), which fulfils the same conditions as B,, then B
= AN @(B;). Hence B generates the algebra of N o (LE(Q) = o N b = o,
which is a C*-algebra. Thus we conclude that ./ with the topology induced from
Mg () is a commutative GB*-algebra.

16. For GB*-algebras Dixon has proved, with the additional assumption
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that they are locally convex, that they are isomorphic with EC*-algebras of
operators having a common dense reducing subspace (see [3], Theorem 7.11).

In our case the GB*-topology is not locally convex in general, and so we
can suspect operators from the algebra 7, not to have such a subspace.
Indeed, we have for a regular spectral measure E on a Polish space Q2

and a vector x in H: xe [\ D([fdE)if and only if for any '€ My (Q), we
JeME(D

have {|f|*dp, < oo (D(| fdE) denotes the domain of the operator |fdE).
The above is possible if and only if there is no countable family of disjoint
sets {o,),=1.2.. such that u.(s,) >0 for any n, because the function

=Y i, k(0,)"? would have the integral | |f|*du, equal to co. For the
1

n=
m
measure y, on the Polish space Q this is equivalent to u, = Y A 0., where z,
k=1

are certain points of Q, 4, are positive coefficients and 4., are Dirac measures,
ie., 52k(a) =1 if z,€0 and 6:k(a) =0 if z,¢0.
From the equation

(E(fzy, ...

we obtain

Za) X X) = (120 2 = (@) = 1)

x=E(lz,.

s S )X =

and this leads to the conclusion that

N\ D(A)=span {J E({4z})H.
Aedp zef?
The right-hand side does not have to be dense in H. In fact, there are
spectral measures for which it contains only zero, for example the spectral
measure of a normal operator having no point spectrum.
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Weak type inequalities for the maximal ergodic function
and the maximal ergodic Hilbert transform in weighted spaces

by

E. ATENCIA and F. J. MARTIN-REYES (Malaga, Spain)

Abstract. In this paper we show that the maximal ergodic function associated to an
invertible, measure preserving ergodic transformation on a probability space is of weak type (1,1)
with respect to wdy, where w is a positive integrable function, if and only if w satisfies
Muckenhoupt condition 4,. We also prove the same result for the maximal ergodic Hilbert
transform.

1. Introduction. Let (X, &, ) be a non-atomic probability space and. T an
ergodic, invertible measure preserving point transformation from X onto

itself. We will denote by f* the non-centered maximal ergodic function
m

(1.1) f*(x) = sup (n+m+1)~* Z If(T'x), n,meZ,
and by
h
Hf (x) = sup M, s, teZ,
5120 [s<fh| <t h

the maximal ergodic Hilbert transform.

In [1] and [2] it was shown that the operators f —f* and f — Hf are
bounded on E(wdy), p > 1, if and only if the positive integrable function w
satisfies the condition:

(A;) There exists a constant M such that for ae. x

k-1 k=1
(1.2) KUY w(Thx)- [kt Y (w(Tix)~ eVt g M
i=0 i=
for all positive integers k.
Condition A4, is the natural analogue of Muckenhoupt condition for the
Hardy-Littlewood maximal operator [4].
In this paper our main result is given by the following theorem.
(1.1) Tueorem. Let w be a positive integrable function. Then
(i) The operator f —f* is of weak type (1.1} with respect to wdp if and
only if wed,.
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