©

STUDIA MATHEMATICA, T. LXXVIII. (1984)

A functional calculus for Rockland operators
on nilpotent Lie groups
by
ANDRZEJ HULANICK1 (Wroclaw)

Abstract. Let G be a homogenous Lie group and let Lbe a positive Rockland operator.
Let

ILf = [ AdE(A)f
0
be the spectral resolution of Lon I*(G). It is shown that if me S (R*), then if

Tf = } m(A)dE()S,

0
then T, is of the form T, f =f*M, where Me % (G).
Let G be a nilpotent Lie group and let Lbe a hypoelliptic, positive, left-
invariant differential operator on G which satisfies a subelliptic ‘estimate:

For every left-invariant differential operator @ on G there exist an integer ¢(9)
and a constant C such that

©.1)  N9ull, 5, < ClI(L+ LY Ull 2, for ueDom(I?) and, consequently,
for an integer S and a constant C sup |u(x)] < C|[(1+ LY u||
xeG

Jor ue Dom(L5).

L2(G)

Let E(4) be the spectral resolution of a positive sclf-adjoint extension of
L, which in fact is unique and equal to the closure of L, and let

e
(0.2) T'f = [ e*dEQA)Sf, [fe(G),
0
be the semi-group of operators on I*(G) generated by —L.
Following the program of E. M. Stein formulated in [10] we investigate
operators

03) T.f = [ mAEWY,
0

where m is a bounded function R*, on other spaces of functions on G under
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suitable conditions on m. For instance, a Marcinkiewicz-Myhlin type
theorem has been proved by E. M. Stein and the author in the case when L
is the sublaplacian on a stratified nilpotent Lie group, cf. [2].

Also in [2] G. B. Folland and E. M. Stein proved that for positive
Rockland operators (see definition below) on graded nilpotent groups which
by [3] are hypoelliptic and satisfy (0.1) the semi-group (0.2) is of the form

(04) T'f =fx@p, where ¢ (0.

The aim of this paper is to show that for a positive hypoelliptic Lwhich
satisfies (0.1) and the semi-group (0.2) is of the form (0.4), me % (R™) implies
that the’ operator (0.3) is of the form

0.5) T.f =f*M, where Me¥(G).

As a matter of fact, we get an evaluation of the number of derivatives
and moments for m which guarantee that M has a given number of
derivatives and moments. '

The main method used in the paper is a C* functional calculus for I?
functions on a group of polynomial growth which decay at infinity as (1+
+|x|)"® for a fixed but rather large «, as in the previous papers (e.g. [4], [6],
[2]) a C* functional calculus for exponentially decaying functions has been
used.

Some corollaries follow.

If the semi-group satisfies (0.4), then ¢, depend holomorphically on ¢, ie.
R*ar- @,e#(G) extends to a holomorphic map {z: Rez>0}sz
- @, e%(G), which suggests that for Rockland operators the functions ¢,
should be real analytic, as they are if the group is R’

Using present functional calculus one can obtain the following
Marcinkiewicz—Myhlin multiplier theorem in the same way as it has been
done for the sublaplacian in [2].

If L is a positive Rockland operator, there exists a number k such that if

sup/mP(A) <o for j=0,1,...,k,

then T, (as defined by (0.3)) is of weak-type (1, 1) and thus bounded on every
I’(G),1<p<o0.

We should perhaps also mention that in apalogy with [1] and [6]
Riesz-Bochner and other summability methods for the expansions in eigen-
functions of Rockland operators are available.

1. Preliminaries. A simply connected nilpotent Lie group G is called
graded if its (left-invariant) Lie algebra g is endowed with a vector space
decomposition

(L1 g=a%V

- ©
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such that [V, V] < ¥, ;. Then g admits a family {4,},., of dilations which
are automorphisms of g:

if a=min{j: ¥;#0}
Putting

we define 6, X=r"X if XeV.
d,exp X =expd, X

we obtain a family of automorphisms — dilations — of G.
Let Q be the positive number (the homogeneous dimension of G) defined
by

S, x)dx =r~2 [ f(x)dx,

There exists a continuous function

el (G).

Gax —|xjeR"
such that |x| = 0 iff x = e, |x| =[x~ 1|, for a constant y, |xy| < y(}x|+[y]) and
[6, x] =r{x].
Let G be an arbitrary locally compact group and let U be a fixed

symmetric compact neighbourhood of e. If G is a graded nilpotent Lie group
we let '

U={xeG: |x] < 1}.
We define a subadditive function
t(x) =min {n: xeU"}.

The following lemma is used in [2].

Lemma 1.1. If G is a graded nilpotent group there exist positive constants
a, b, c, C such that

(1.2) cr(xP<x<Cr(xf for |x =1

Remark. It has been proved by Joe Jenkins [7] that a, b can be taken
as equal to 1 if and only if G is stratified, i.e. if the smallest Lie subalgebra of
g containnig V] is equal to g.

We write

w(x) =1+1(x).

Then for every o« 2 0 we have
=1

(13) wix) =1, wrE) =wxTh,  wHxy) < wHx)wH(y)
and also
(1.4) W (xy) < C, (w* (%) +w* ()
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Let M(G) be the Banach *-algebra of Borel measures on G and let
M, = {peM(G): [ w*(x)d|ul(x) =lplu, < oo}.
In virtue of (13 ) M, is a Banach *-algebra. We write

={fel(0): [IfIw*(x)dx =]|flg, < 0}.

L, is, of course, a Banach *-subalgebra of M,.
A locally compact group is called of polynomial growth, if for every
compact subset U the Haar measure |U" of U" satisfies

1.5 U =0(m") as n-o0.

By Lemma 1.1, if G is a graded nilpotent group, then G is of polynomial
growth and (1.5) holds for an R such that

[aQI <R <[bQ]+1.
Also,
(1.6) if G is of polynomial growth, then w™®~2 is integrable.

It ‘has been proved by T. Pytlik [9] that if G is of polynomial growth,
then L,, o > 0, is a symmetric Banach *-algebra. This implies that for every
commutative Banach *-subalgebra A of L, every multiplicative linear func-
tional on 4 is bounded on the C*-algebra generated by the operators

B(G)at »Exfe2(G), fed.

Let G be a nilpotent Lie group and let X, ..., X, be a basis of its Lie
algebra g. If G is graded, we assume that this basis is selected according to
(1.1). For a multi-index (iy, ..., i,) = I we write

X' =x. X
Let [I| =iy +...+1i,.
For a nilpotent, simply connected group G, if

(')xjf( f(exP(xl X +...+x,X))

with x = exp(x, X1+...+x,,X,,) and

& ) )

%) =) ()
o\

as() ((—5;) S,

we have

() X'fx= Y

17 <)

icm
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ay(exp(xy X;+ ... +x, X,)) being polynomials in x;, ..., X,. Consequently,

(1.8) la; ()] < Cyw()N, N=N{J)
(cf. eg. [2]).
For a function u we define
”u”zzkp ( Z leI x)‘”dx)””

The following lemma is an immediate consequence of (1.6), (1.7), (1.8)
and the ordinary Sobolev lemma.
LemMA 1.2. For every 1<p,q< oo and a,k there exist o', k' and a

constant ¢ such that
Ntllgep < € ttller,ir g

We define &, ,(G) as the space of functions f for which ||f ]|, is finite
and
FL(G)= {'l L (R
In virtue of Lemma 1.2, £(G) does not depend on p, 1 < p< o0.
We also note

(1.9) If ueM, and f€5,;.1(G),

By a Rockland operator on a graded Lie group G (cf. [2]) we mean a
differential left-invariant operator Lon G which is homogeneous with respect
to the dilations and for every irreducible unitary representation n of G the
operator 7, is injective on the space of C* vectors. It has been proved by B.
Helffer and J. Nourrigat [3] that such operators are hypoelliptic. Moreover,
if Lis positive, it satisfies (0.1).

Let Lbe a positive Rockland operator. As we have mentioned before, G.
B. Folland and E. M. Stein proved in [2] that the semi-group generated by
—Tis of the form (0.4). Moreover, if Lis homogeneous of degree D, then

o (x) =t~ ¢, (5, —ypX)

then f *xpe Lyy.1(G).

and consequently,
{@},~0 is an approximate identity in &, ,(G).
Finally we note that if Lsatisfies (0.1), then for every d and k there is a
positive number s(d, k) such that

L4+ LY X tl] 2,6, < CI(L+ LY

LG
for all |I | <

2. Functional calculus. Let B be a Banach *-algebra. We say that a
function F operates on an element f in B if the Gelfand transform of f with
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respect to the smallest commutative Banach subalgebra A containing f

is real and there exists a g in 4 such that Fof=g. We then write

g=F .
For fin B let
2 (if)
1;1 v

e(f) =

Suppose that
le(m)lls = O(nl)  as |n| - oo

and let |f(}) <a. Then for every FeC*[—a, a] with k> I+1 and F(0)
=0, F operates on f and

(21)  F-f=} F(me(nf), whence ||F-f|lz<C/||F||
neZ
cf. e.g. [8] for the details.
In the present paper functional calculus is used in the following way.
Suppose for some o >0 and all ¢ > 0 ¢, = ¢* &L, and, moreover, ¢,.,
=¢,*¢ and i {f «¢,— @il 55, = 0 for f in I}(G).

Let B be the smallest closed Banach *-subalgebra of L, containing all
@, t > 0. Then B is a commutative, semi imple, symmetric Banach *-algebra
and the Gelfand space of B can be iden..fied with R* in such a way that
@,(4) = e~ Moreover, there is a spectral measure on I?(G) such that for M
in B

C"[ a,a]

f*M = z M(3)dE(A)f,

where M is the Gelfand transform of M. Then, . clearly, if a function F
operates on M eB, then

o0
S*F M= | F(M()dEQS.
0
Tueorem 2.1. Suppose G is of polynomial growth, let U and R be defined
as in (0.5). Suppose o* = peL, N I}(G) with « > f+R/2+1, then
lemo)l, = O (nPC*RD+4) g5 n— oo,

Proof. First we note the following fact:
If a>p and geL, with supp g = G\ U, then

22 ligllz, < #~*llglly,
In fact,

lgle, = | lglw* = | lgl w* wh== < ligl|, 1P~
G\l Gt
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Since L, is a Banach algebra, e(¢) = y e L, and also y e I?(G). Moreover, for
nz=0 we have

e(ng) = (e+ /"~
where e is the unit element in M(G) — the delta measure at the unit element

of G.

Now we fix n and replacing ¢ by —¢, if necessary, we assume that
n>0.

Let
(2.3) f=¢1,2, g=y IG\U,,z.
Hence, since o > 1, by (2.2), we have
(24) e+ —e+11l,1, = lall1 6, < llgllz,n™ > < IWllg, 2

For a measure y in M(G) let

2 = sup {llixEllzg,: 1€l 26 = 1)-
Consequently, since

*j
ety = Z (l<o)
i=0
and @ = @*, by the spectral theorem, l(e-i—l//) =1, whence, by (24) we have
(2.5) Ae+f) < 1+ Wy, n™2
We write
@6 ety = [[((e+f)+9)*ls,

S T D) wg" w ke xg"llue

m=0 ab

where the inner summation extends over all sequences a =(ay, ..., a,),
b=(by, ..., b,) of zeros and ones such that a,+ ... +a,=m, b, +... +b,
= n—m.

Now we fix two such sequences ‘@ and b and we estimate

@7 e+ g™ (et g
T flletf) s xecox (et f )" sullagy lg™ (50 - lg"™ (sl s, - . ds,

ST [ etf Y sy w ool slhey g7 500 - lg™ () s, .. ds
g=0 2(g)

where for a measure u and M = G we write us(M) = u(Ms) and
Q@) = {(51 .--» $9€Gx ... X G: max T(S}’.) =q}.
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For a (s, ..., $,) in 2(q) we have
28) et st x s e+ Ml
{ T le+f )i A w1 S
nj=l

e, i
< .
lls '--Sn“Mﬁ < (1+ngf if
But, by (2.3),
supp(e-+f)"t $it w1 IR A s
curye. Ut U, Ut e U,
On the other hand, if £€I?(G) and supp & = U™, then

el = 169 < CLmP I Lz,

Consequently, by (2.5),

l(e+Sf) a‘s?‘* w(e+f)9 1 hJ 1*ﬁvyj...SZ"||Lﬂ
<+ +ngf Ale+f) n )| £l

u1+‘,.+aj_ 1 (
L2
S (Wl ™ 2 W2, (L1 +ng)?* 212

and so, by (2.8), for a constant C depending on G and  only
e+ s ww (/)" slagy < CL+ 2 @m0 TR
On the other hand, since )
5,): SPeUn\UI1,

Q@<= U sy
bj=1
by (2.2), we have
[ 16" 1) lg™ (sl ds - . ds,
Aq)

0, f b=0and g>1,
<41, if b=0and g=1,

(n=mllglly 7 lglle, @=1"% i b#0.

Thus, since o > f+R/2+1, for b 0 we have
ff le-+f)" 5% x(e+f)™ n”Mﬁlg (s

|c/ (s dlsy ... ds,

< ClWl IEEm L Q-+ PO+ (o) (14 B2 (g 1)

q=1

< C'“G”; (73) 1 n3([l+R/2)+2

1 ©
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where C' is independent of n, a and b.
Hence, by (2.6),

le+¥*llu, < C n@rR2T2 S (;)”gi p—

m=1 LI(G)
But, by (2.2),

ligll 16y < Il n ™2
whence

L R i o W ([

< TR (L g,

which completes the proof of Theorem 2.1.

CoroLLARY 2.2. Suppose ¢ = ¢*eL, "IZ(G) = Ly, Ag) <a, o> B+R/2+
+1, FeCk(—a, a) with k > 3(B+R/2+2) and F(0) = O, then F operates on ¢
in L and there exisis a measure y in My such that

F-o=q@x*p.

Proof. We write = e(¢p) and

(e+y)*"—e = x[e+(e+ )+ ...+ (e+P)* 1.
Of course,
o : *j
W =¢@+*v, where v=i z (j'lf)l)!EM’ =M,
Hence, if

ty=v*[e+ (e+ )+ ...+ (e+P)*" 1],

by Theorem 2.1,
g, < Cro0+ 27245,

whence, by assumption on F and (2.1), we obtain the result with

p=7y F(np,.

neZ
The following corollary is an immediate consequence of Corollary 2.2
and (1.8). -
COROLLARY 2.3, If ¢ = o*e ¥, 4 (G [2(G) with (@) <a, o> B+R/2
+1 and FeC¥(—a, a) with k> 3(B+R/2+2) and F(0) = 0, then F operates
on ¢ in Ly and F-@& ¥y, and the map

C*[—a, a]aF »F- Yy, s continuous.
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On a nilpotent Lie group G (or more generally a Lie group of
polynomial growth) let Lbe a hypoelliptic, left invariant differential operator
which satisfies (0.1). Moreover, let the semi-group T* defined by (0.2) satisfy
(0.4).

For a function meC*(R*) we write

[l i = sup {(1+ 4| mP(A): j = .k, AeR*}

and by &, (R*) we denote the space of functions m for which |m]|,, is
finite.

Let, finally, 7;, be the operator defined by (0.3) for a bounded function m
on R* and let § and s(d, k) be the numbers of (0.1) and (1.10).

Then the following theorem holds.

TueOREM 2.4. Given B and d. If k 2 3(B+R/2+2) and k' 2 2+3(B+R/2+

2)(s(2d, S)+S), then me%,, (R*) implies thar T,f =f«M, where

MeSLp,,1(G) and Mg < Climlly,, where C is independent of m in
S (RT) '

First we prove

Lemma 2.5. Let

29) K(x) = rj: e~ (x)dt.
0

Then for every o =0

(2.10) § 1K (9| w#(x) dx < 0
and, if 1= s(2d, S)+85,
2.11) K*eS,,, forall a>0.

Proof. It is easy to verify (cf. eg. [5], Lemma 5.1) that if a function
¢: R* — R* satisfies

@s+1) < Cle(s)+o(1),

e+ <o) e@),
sup {o(¢):

(2.12)
te(0, 1]} < w
then for constants C' and k
o< C' (141~
To verify (2.10) we note that by (1.3) and (1.4) the function
o(t) = o l, w*
satisfies (2.12). Hence

4]
Je " (l+nkdt < oo

o
FIK ()l w*(x)dx < af e”'Jol, wHdt<C'
]

and (2.10) follows.

icm°®
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To prove (2.11) we note first that by (2.9), in virtue of (0.2) and (0.4)
(1+LyuxK=u for wuweC>?(G).

From this it follows that

(2.13) X' K¥eI2(G) for |II< and I>s(,S).
In fact, by (0.1) and (1.10), since u % X’ K*‘ X (u* K*Y,
[<u*, XTK*] = jus XTK*(e)) < CI(1+ LY (u X' K 26,
< C 1+ Ly (u *K*l)HLz(G) < Clu¥ll L2y,

In particular, K*SeI?(G) and so

(2.14) X'K*el*(G) for I1=s(d,S)+S
We have to show that
(2.15)
[IXTK* (x| w*(x)dx <o for 1zs(2d, $)+S and |1 <d.
Let f be a fixed function in CX(G) such that f(x)=f(x"*) >0 and

[ fx)w™** (x)dx = 1. Let
w(x) = w** = f (x).
Then, by (1.3),
w'(x) = w(x) [w™ = ()f (D dy = w*(x),
w'(x) S wH(x) [ w () f (1) dy = Cw* ().
Also for Xeyg,
(217) [ Xw' (x)] = [w** s+ Xf| < wh(x) | w2 ()| XS ()] dy = Cxw*(x).

Now we proceed by induction on |I[. For |I| = 0 (2.15) is simply (2.10).
Suppose X' = X; X’ with |J| < d. We may also assume that « is so big that

(2.16)

[w 2 (x)dx < 0.
We have
YXTKH), w*S = (X K*| w3, whS
< <(Xl K*I)Z’ W40t>1/1 (J' W“Za(x) dx)llz_
But, by (2.16) and (2.17),
XT K2, Wiy < (XK, W'y = (XF K™, (X X7 K w')
< KXTK*, X, (X KM w))y|+[KXTK*, XTK* X w'|
C X, XK, X7 K¥) W+ Co, X K¥, 1X K*w'>

<
=
S CYX; XTKH, [ XTK*| w*y + Cij XK, | XT K*waey,
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Since 1+ |1] < 2d, by (2.14), both X; X K*' and X' K*' belong to L” (G) and,
by inductive hypothesis, | X’ K*|w* belongs to, I! (G). Thus (2.15) follows
and the proof of Lemma 2.5 is complete.

Proof of Theorem 24. Let

m(é~'~1) for
0 for

0<éxl,
-n<¢<0.

F(e>={

It is clear that F can be extended to a function in C*[~mn, n] if and
only if

meC*(R*) and  lim 14+ mP =0 for j=0,..,k

-+

By Lemma 2.5, if I > s(2d, S)+5, then K*' e, ,,(G) for all « > 0, and, by
Corollary 2.3, if k > 3(8+R/2+2), then F operates on K* and

M=F K*e%,,,(0).

In other words, if k' > 2+3(B+R/2+2)(s(2d, $)+85), then me ¥, (R*)
implies that Me %, ,(G). But an easy calculation shows that

M) =F(1+1)7")=m(),

which completes the proof.
Another application of the functional calculus is the following
THEOREM 2.6. Suppose on a Lie group of polynomial growth

Tf=f*p, o =0¢e¥(G)
is a semi-group of operators strongly continuous on I*(G). Then the mapping
R* 51— ¢,e #(G)
extends to a holomorphic map
{z: Rez > 0}3z = 9. Z(G).

Proof. For a fixed f# we let 4 to be the commutative *-subalgebra of L,

generated by ¢, t > 0. As we know, the Gelfand space of 4 is R" and &,(4)
= e“"l‘

For a fixed number a > 0 we let
C,={zeC: Rez > a}.
Let k> 3(8+R/2+2) and let
m = [k/a]+1.
For .z in C, we select a function F,eC¥[—m, n] in such a way that

F.(x)=x™ for 0<x<1

icm
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and the map

(2.18)

C,2z—F.eC*[-m, ] is continuous.

Since ¢, (G), by Corollary 23, F. 01m€Fp,1(G) for all 1 and,
moreover, by (2.18), the map

(2.19) C,5z:—>F, "Pym€F g1 =Ly is continuous.
We put
0. =F. @)
and we see that
(/32 ()-) =g~

which shows that ¢_ does not depend on the selection of m and the map z
— ¢, is an extension of t —¢,, t > a.
By (2.19), for every C* curve y in C, we have

| ¢.dzeSp,1(G) = Ly
7

and for every 4> 0

[ @.(dz=0, whence [q,dz=0
Y 7

which shows that Cioz > ¢.€%;,,(G) is holomorphic. Since a, I, B are
arbitrary, the proof is complete.
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An example of a continuum of pairwise non-isomorphic spaces
of C*-functions

by
MICHAEL TIDTEN (Wuppertal, FRG)

Abstract. There is given a family (K,) of compact sets K, in the Euclidean plane with t
ranging in a real interval such that the Whitney spaces #(K,) are pairwise non-isomorphic. A
successful distinction of the topological structures which is sufficient for this result is managed
by a certain topological property involving an increasing monotone function on R, . After
Zaharyuta had presented a continuum of pairwise non-isomorphic spaces of analytic functions
the open question for an analogous example in the frame of C=-functions is clarified by a
positive answer,

In papers [2], [3], [8] and [9], eg., linear topological invariants or
special properties of locally convex spaces were used to distinguish the
topological structures of (F)-spaces. Zaharyuta presented in his paper [9] a
continuum of pairwise non-isomorphic spaces of analytic functions, ie. a
family {G,} of domains G, such that t ranges in [0, 1], e.g, and @(G,) is not
isomorphic to 0(G,) for different ¢, 7. The existence of such a continuum of
spaces of C*-functions, however, is an open problem till now.

This paper gives an affirmative answer to this question by presenting a
family {K,| te[a, b]} of compact sets K, in R? which describes a continuum
of this kind consisting of Whitney spaces &(K,). The method applied in the
paper is different from Zaharyuta’s one and — due to an idea of D. Vogt —
makes use of certain properties of (F)-spaces called (DN,) here (cf. [1], [6])

The sets K, are given by the graphs of monotonically increasing (real)
analytic functions @, on R, such that the family {®,} is monotone in t. The
parameter t plays an essential role only in the boundary behaviour of &,
near the point 0. Larger values of t cause extremely faster convergence of
&, (x) to 0 with x — 0+. All the K, have not the extension property, i.e. there
exists no extension operator from &(K,) to &(R?) (see [4], Beispiel 2). This is
a necessary consequence if the K, shall have interior points. Since if K < R"
has at least one interior point and has the extension property, then &(K) is
isomorphic to the space s of rapidly decreasing functions (see [7], Satz 4.1).

DeriNniTioN 1 (cf. [6]). Let ¢: R, — R, be a monotonically increasing
function. An (F)-space E is said to have the properry (DN,) if the following
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