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An example of a continuum of pairwise non-isomorphic spaces
of C*-functions

by
MICHAEL TIDTEN (Wuppertal, FRG)

Abstract. There is given a family (K,) of compact sets K, in the Euclidean plane with t
ranging in a real interval such that the Whitney spaces #(K,) are pairwise non-isomorphic. A
successful distinction of the topological structures which is sufficient for this result is managed
by a certain topological property involving an increasing monotone function on R, . After
Zaharyuta had presented a continuum of pairwise non-isomorphic spaces of analytic functions
the open question for an analogous example in the frame of C=-functions is clarified by a
positive answer,

In papers [2], [3], [8] and [9], eg., linear topological invariants or
special properties of locally convex spaces were used to distinguish the
topological structures of (F)-spaces. Zaharyuta presented in his paper [9] a
continuum of pairwise non-isomorphic spaces of analytic functions, ie. a
family {G,} of domains G, such that t ranges in [0, 1], e.g, and @(G,) is not
isomorphic to 0(G,) for different ¢, 7. The existence of such a continuum of
spaces of C*-functions, however, is an open problem till now.

This paper gives an affirmative answer to this question by presenting a
family {K,| te[a, b]} of compact sets K, in R? which describes a continuum
of this kind consisting of Whitney spaces &(K,). The method applied in the
paper is different from Zaharyuta’s one and — due to an idea of D. Vogt —
makes use of certain properties of (F)-spaces called (DN,) here (cf. [1], [6])

The sets K, are given by the graphs of monotonically increasing (real)
analytic functions @, on R, such that the family {®,} is monotone in t. The
parameter t plays an essential role only in the boundary behaviour of &,
near the point 0. Larger values of t cause extremely faster convergence of
&, (x) to 0 with x — 0+. All the K, have not the extension property, i.e. there
exists no extension operator from &(K,) to &(R?) (see [4], Beispiel 2). This is
a necessary consequence if the K, shall have interior points. Since if K < R"
has at least one interior point and has the extension property, then &(K) is
isomorphic to the space s of rapidly decreasing functions (see [7], Satz 4.1).

DeriNniTioN 1 (cf. [6]). Let ¢: R, — R, be a monotonically increasing
function. An (F)-space E is said to have the properry (DN,) if the following
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assertion is true for an increasing system (| |,) of semi-norms describing the
topology of E:

3geNVkeN3j, neN,C>0Vr >0, | <[ |,+Cp(C/r}] |,

Remark. Obviously, this definition is independent of the choice of the
system (| |,) and thus property (DN,) is a topological invariant.

DeriNimion 2. Let @: [0, 17— R, be a monotonically increasing C!-
function with the property ®(x) < x for every x€]0, 1]. Then the appro-
priate generalized cone D is defined to be the following set:

Dg:={(x, )eR) 0<x<1; 0Sy < ®(x)}.

PropostTion 1. Let @: R, — R, be a convex monotone bijection which
has on the interval [0, 1] the properties of Definition 2. Then the (F)-space
&(Dg) has property (DN,) for the function ¢ = oL,

Proof. By the continuous differentiability of @, Whitney's condition is
satisfied by the compact set D, and so the following norms describe the
topology of &(Dg):

lflm = SuP |f(‘z)( I

falsm

m=0,1,2,...

In any case, let C(n) denote a suitable increasing function of the natural
numbers n. During a series of modifications of C(n) we do not change the
notation C(n).
(i) Let dy denote the following subset of Dg:
dp:={(x, y)eDqg| x < 1/2}
If ge &(dy) is such that |gl, <1 and 9|, < N = 1, then by Lemma 1 in
[5] (df. [4], Lemma 4.1) we have for p=1,..., m—l:

“#); xe]0, 3.

M = 1, then by the same

1) g (x, 0)] < C(m)(N¥™+®(x)

If fed(dy) admits the bounds 1flo <
lemma we have the estimates

@0 < ClmMAn,  1=1,..

In the following considerations we fix integers n, k and a pair o = (4, p) e N§
and assume O < |of < k < n with || defined as |0 ;= A+ pu. For later use, we
write Cy(n):= C(n)" with the C(n) obtained in this moment, assuming

further that C(m)=1. Let M >Cy(n) and fed(dy) admit the bounds
previously required. By the substitutions

f()- ,0)

1 and |f], <

Lh—1.

gi=—me fA0 N D m:=

= Clmy M "t

n) Mi./n

icm

©
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the estimate (I) reads

@ S 4 0)) < C(m) [C (n)=#im M= Hmwim . (3)=47].

Cn M’/”

Estimating the exponent of M

we draw from (2)
[fA8 (x, 0) < C(n)(M"/”+<l>(x)"‘M“’”)
with a new meaning for C(n), of course.

If MY"< ®(x)"Y, the term &(x)™* M*" is estimated by ®(x)7* in the
other cases M" > (15( x)™%, and the term is estimated by MU*#in < ppiin,
Thus, in both cases we obtain
(3) £ (x, O) < C(m) (MM + & (x) )7H).

(ii) In the notations of (i) we have k41 <
which gives the estimate

LF(0, 0=/ (x, 0) < xM.

n and therefore | f** 18] < M,

In connection with (3) the following estimate results for every x&]0, 4]

4) [F*(0, 0) < xM+C(n )(M"/"+¢(x)"‘).
For every positive x the inequality
M xM+x77, y:i=kin—k)

is valid. For if x < M~Y®*? the term x~7 majorizes MY *" = M*" and in
the other case, M*" = M1~ fia+n is majorlzed by xM.
By assumption n—k > 1 and x 7 < x~* < @(x)7* for xe]0, 1]. Thus (4)

gives
(5 170, 0) < C(n)(xM+®(x)7%.

Ifr> C(n)”"(l{(%)” with C(n) as in (5), then there exists x]0, 3] such
that

Cm)@(x) % =p
and so for this values of r the following is true for C = C(n):

(6) [/(0, 0)] < r* + CMep (CHe/r).

(i) Let f be an arbitrary element of &(dy). If |f], > C;(m)if]o the
function |f|5 ! f admits the bounds required in (i) with M :=|f|5!|/},. so (6)
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is valid for this function:

() f®, 0] < *Iflo+Co(CHMIfl 72 CHoR™
If, on the other hand, |f], < Cy(M|flo, for every r > Ci’* we have
@0, 0l <IfL < Culflo <T*Iflo

and so (7) is valid in any case for large r depending on n.

(iv) Let fe#(Dy) and assume first that (x, y)edy. By convexity of ]
there exists a translation d,p of dg such that the point (0, 0) proceeds to (x, y)
and d,  D,. We can apply the result of (iii) to the restriction of f to do,
yielding
® @ (x, I < *Iflo+CoCNIfly Vi =
with suitable C, = C,(n) and C = C(n), by monotonicity of .

There exist a linear transformation 4 of R* and a family (U,), of
orthogonal transformations of R* composed with translations such that all
the images P, = U,0A(Q) of the square Q := [0, 1]? are enclosed in Dy and
constitute a covering of Dg—dg. By simple estimations which reduce the
problem to the one-dimensional case we first see that for a suitable constant
C depending on n only '

Igle < Clgl§™" " lgly"

for all géd’(Q)‘and k=0, ..., n. By iterated application of the chain rule the
norm |f], can be estimated for every fe&(P,) by C,lgl with g =foU,04
and a constant C, = C(k, A). So we obtain for fe #(Dy), |0 € k, zeDp—dyp
by a choice of a v with zeP,:
If @) < Celgle < CClgl§ ™" |gli" < CC CY |15~ £ 1k,

using the same argument in the estimation of |g|,. With a new meaning for C
this gives . .
&) @@ < CIFIg=0m | f1im
for fe&(Dy), 26 Dg—dy, || < k .

By an elementary calculation the right-hand side of (9) can be estimated

by
C(r*Iflo+r*="111)
for every r > 0. For r > 1 we have by assumption &(1/r) < 1/r and

o (1/r).

rk n <r 1
So (9) turns to
(10) If @ x, Y < C(*|flo+@(C/MS 1)

for r > 1. By the substitution r+—C~** o and modification of C the estima-
tion (8) is generalized to all (x, y) € D. Further replacement of C generalizes the

icm
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estimation to all r > O yielding:
(11 If e < [flo+ Co(CMIf - .

Choosing =0, j =k, n=k+1 and C as in (11); property (DN,,) is proved.
ProrosiTioN 2. Let @ and Y be two functions belonging to C' [0, oc[ and
having the properties in the assumptions of Proposition 1. Assume further that
Vi, peN3x, >0Vxe]0, x,1 ¥(x) < d(xP™
Then &(Dy) does not have property (DN _,).
Proof. Let ¢ := "' and assume property (DN,) for the space & (D).

Thus, there exist natural numbers g,j and n>g+1 and a positive C such
that

(12) [flg+1 S PIfl+CE™ T/ f|a

for every r >0 and fe&(Dy).

Because of the density of &(Dy) in €"(D,) the inequality (12) is valid for
every fe&"(Dy) and r > 0.

We denote by P,ed"(R) and f,e&"(D,) the following functions, for
v=1,2,3,...,

! 1
— V)" <x <1y,
Pv(x):={('l+1)!(1 xv) if 0<x<1p

0 if

yrLP, ().

x> 1/,

Folx, y):=(q+1)!

Let = (1, weNE and f®(x, y) # 0; this causes the restrictions pu < g+

+1,A< n+1 and x < 1/v. Then we have
o yq+1—y. ]__vli.(l_vx)n+1—). B
6 Ml = ey o SYerT

= ()7 (v (x)) 7

In the case where |a} < g, the greatest possible value for u is |of; because of
W (x) S Y (x)/x <1 we have

1£2 (e, P W (0T (i ()™l s ()21 () S (1)

for arbitrary (x, y)eD, and a«eN§ with |o]

(13) filg < W (1)

results for v=1,2,3,...

< g, whence the inequality
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If g+1 < |of < n, the greatest possible value for u is g+1 and in this
case we have

A9 e, < v e

and the following estimation is valid for v=1, 2, 3, ...

(14 ol < a7,
Calculating £,®4*1(0, 0), we get from (12), (13), and (14):
(1 L <P +CO™ (!

(n+ 1!

for every » > 0, veN.
Choosing A =j+1 and p = n—g by hypothesis there exists a posltxve X1
such that for all v > x;' we obtain by (15)

1 j 1 e 1 n-g—1
< -1(C -1
(n 1)! s (p(v”_q) +C@ ( /VJV
Setting r=Co (]./\)"mq)"1 this estimation yields

1 1 1
< " P C-
(n+1)! ¢ (p(v""'q)+ v

and gives a contradiction letting v — oc.

In the sequel we will produce a great number of pairs (¥, ) as in
Proposition 2. Let log* denote the function logolog from Je, co[ onto R,
and, similarly, exp* the fourth iterate of exp from R into R,.

LemMA. For the functions

(16) $.(y):=exp*(tlog?y); y>e T2 1,

the following assertion is true:
1o every pair (p, ) of natural numbers p, A and ¢ >t > 1 there exists a
number yo > e such that the inequality

B0 < B,

is valid for every y = y,.

Proof. (i) F1rst we prove the

Claim. &.(y)* < .} for every A= 2l y=

From the 1ncquahty A < & we obtain by multlpllcallon with exp(rz) and
monotonicity of exp
(17) [exp? (r2)]* < exp?(zz+7 log )
for arbitrary 4, 7> 1 and zeR.
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By assumptions we have u:=exp?(r log? y) > y > 1 and
(18) log 2 < A< A(—1) < u(u—1) < wh—u.
Setting z = log? y, the estimation (17) yields

ut < ;)sz (t log? y+7 log 1) = exp?(r log® y%,
whence by (18) and (17) with r =1, z =u we obtain
&, (y)* = (exp? w)* < exp®(u+log 1) < ut < 6,04,

(i) Assume A = 1. Setting yo:=exp(p”“™?) we get for y > y,:
log? y > ——1log p,
o—1

o log? y = t(log? y+log p) = 7 log? y?,

whence the claim of the lemma follows in this case.
(iii) Since A is a natural number, 4 > 2 in the remaining cases.
-Setting yo := [exp((Ap)"" )] v A7, we get for y > y, by (i) and (ii):

&, (7 < &, () < &, ().

Remark. If we set

&, (x):=exp(—exp®(zr log? I/x)); xe]0, e[, 1> 1,

the relation @, (x) = &,(1/x)"! is valid for all x <e™! and &, is a convex
C*-function on the interval J0, e™*[.

Proof. Clearly, the @, are C*. The convexity is proved by an elemen-
tary calculation: The functions

g:(x) :=exp(— (log 1/xY), F(n):=exp(—e*"

have positive first and second derivatives on the interval 0, e™![ and g,
takes its values in this interval too. Thus the composition ¢, = Fog, has a
positive second derivative there.

CoroLLARY. There exists a continuum {K,| te[a, b]} of compact sets in
R* such that for each o, te[a, b] with o % © the (F)-spaces &(K,) and &(K.)
are not isomorphic.

Proof. Let 1 <a <b and let @, denote the functions as in the remark.
Clearly, beyond the conclusions of the remark, &.(x)< x for all positive
x < e !. Choose convex C™-extensions of the &, to all of R, also denoted
by @, and which further satisfy the assumptions of Definition 2 and
Proposition 1, :

If 7 <o, to every pair (p, 4) of natural numbers there exists by the
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lemma a positive y, such that
3.()* < 2, ()

for y > y,. By the relation in the remark for x < y{
P, (X" 2 P,(x). .

Applying Proposition 2 to @ := &, and y := @, we see that £(Dg ) does not
have property (DNy-1). But, due to Proposition 1, the space (D) has this
property and so the spaces are not isomorphic. Setting K,:= Dy for
t€[a, b] the corollary is proved.

! we get
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The canonical seminorm on Weak I*
by
MICHAEL CWIKEL* (Haifa) and CHARLES FEFFERMAN (Princeton)

Abstract. For each feWéak L' let g, (f) = sup ap({x] |/ (x)] >a}) and let g(f) be the
a>0

seminorm,

q(f) = inf i a (f))-

eyttt Sy =1
It is known that ¢ is equivalent to the seminorm I defined by
I(f)= lim {sup (log b/@)™" [  |f(a}du}.
" bla>n ixlas (| <5}
It is shown here that in fact g(f)=I(f) and also that the normed quotient space of WeakI!
generated by g is not complete.

0. Introduction. This note is a sequel to [1]. We shall assume familiarity
with the terminology and notation of that paper in which it was shown that,
for a non-atomic underlying measure space, the canonical seminorm g on the
space of measurable functions WeakL is equivalent to a more “concretely”
defined seminorm I. We shall show here that the seminorms g and I are in
fact equal, using a refinement of the argument in [1]. We also exhibit
another two seminorms which are equivalent to g and show that W, the
quotient space of WeakI! modulo the functions f satisfying q(f) =0, is not
complete, as incorrectly claimed in [1]. )

We gratefully acknowledge correspondence with Nigel Kalton who
expressed doubts about the claim in [1].

1. Equality of q and I. In order to establish that g(f) =1I(f) for all
feWeakI} it suffices to show that q(f) < I(f) for each function of the form

o
f=3 Pl Xr,» Where 4> 1, and I, are disjoint measurable sets of finite

kg.—
measure (cf. [1], pp. 151-152). In [1] the sets I, were taken as intervals on
the real line. However, for our purposes here it is a little simpler to consider
them as (disjoint) circles. More specifically we assume that the underlying
measure space (X, X, u) contains each I, and each Lebesgue measurable
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