A. Hulanicki

[9] T. Pytlik, On the spectral radius of elements in group algebras, Bull. Acad. Polon. Sci. 21 (1973), 899-902.

[10] E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Studies. Princeton Univ. Press, Princeton 1970.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES WROCŁAW, POLAND

266

Received June 21, 1983

(1772)

STUDIA MATHEMATICA, T. LXXVIII. (1984)

An example of a continuum of pairwise non-isomorphic spaces of C^{∞} -functions

by

MICHAEL TIDTEN (Wuppertal, FRG)

Abstract. There is given a family (K_τ) of compact sets K_τ in the Euclidean plane with τ ranging in a real interval such that the Whitney spaces $\mathscr{E}(K_\tau)$ are pairwise non-isomorphic. A successful distinction of the topological structures which is sufficient for this result is managed by a certain topological property involving an increasing monotone function on R_+ . After Zaharyuta had presented a continuum of pairwise non-isomorphic spaces of analytic functions the open question for an analogous example in the frame of C^∞ -functions is clarified by a positive answer.

In papers [2], [3], [8] and [9], e.g., linear topological invariants or special properties of locally convex spaces were used to distinguish the topological structures of (F)-spaces. Zaharyuta presented in his paper [9] a continuum of pairwise non-isomorphic spaces of analytic functions, i.e. a family $\{G_{\tau}\}$ of domains G_{τ} such that τ ranges in [0, 1], e.g., and $\mathcal{O}(G_{\tau})$ is not isomorphic to $\mathcal{O}(G_{\sigma})$ for different σ , τ . The existence of such a continuum of spaces of C^{∞} -functions, however, is an open problem till now.

This paper gives an affirmative answer to this question by presenting a family $\{K_{\tau} \mid \tau \in [a, b]\}$ of compact sets K_{τ} in \mathbb{R}^2 which describes a continuum of this kind consisting of Whitney spaces $\mathscr{E}(K_{\tau})$. The method applied in the paper is different from Zaharyuta's one and — due to an idea of D. Vogt — makes use of certain properties of (F)-spaces called (\mathbf{DN}_{φ}) here (cf. [1], [6]).

The sets K_{τ} are given by the graphs of monotonically increasing (real) analytic functions Φ_{τ} on R_{+} such that the family $\{\Phi_{\tau}\}$ is monotone in τ . The parameter τ plays an essential role only in the boundary behaviour of Φ_{τ} near the point 0. Larger values of τ cause extremely faster convergence of $\Phi_{\tau}(x)$ to 0 with $x \to 0+$. All the K_{τ} have not the extension property, i.e. there exists no extension operator from $\mathscr{E}(K_{\tau})$ to $\mathscr{E}(R^{2})$ (see [4], Beispiel 2). This is a necessary consequence if the K_{τ} shall have interior points. Since if $K \subseteq R^{n}$ has at least one interior point and has the extension property, then $\mathscr{E}(K)$ is isomorphic to the space s of rapidly decreasing functions (see [7], Satz 4.1).

DEFINITION 1 (cf. [6]). Let $\varphi: \mathbf{R}_+ \to \mathbf{R}_+$ be a monotonically increasing function. An (F)-space E is said to have the *property* $(\mathbf{D}\mathbf{N}_{\varphi})$ if the following

assertion is true for an increasing system $(| \cdot |_n)$ of semi-norms describing the topology of E:

$$\exists q \in N \ \forall k \in N \ \exists j, \ n \in N, \ C > 0 \ \forall r > 0, \qquad |\ |_k \leqslant r^j |\ |_q + C\varphi(C/r)| \ |_n.$$

Remark. Obviously, this definition is independent of the choice of the system $(| \cdot |_n)$ and thus property (DN_{φ}) is a topological invariant.

DEFINITION 2. Let $\Phi: [0, 1] \to R_+$ be a monotonically increasing C^1 -function with the property $\Phi(x) < x$ for every $x \in]0, 1]$. Then the appropriate generalized cone D_{Φ} is defined to be the following set:

$$D_{\Phi} := \{(x, y) \in \mathbb{R}^2 | 0 \le x \le 1; 0 \le y \le \Phi(x) \}.$$

PROPOSITION 1. Let $\Phi: \mathbf{R}_+ \to \mathbf{R}_+$ be a convex monotone bijection which has on the interval [0, 1] the properties of Definition 2. Then the (F)-space $\mathscr{E}(D_{\Phi})$ has property (\mathbf{DN}_{Φ}) for the function $\varphi := \Phi^{-1}$.

Proof. By the continuous differentiability of Φ , Whitney's condition is satisfied by the compact set D_{Φ} and so the following norms describe the topology of $\mathscr{E}(D_{\Phi})$:

$$|f|_m := \sup_{\substack{z \in D \\ |\alpha| \le m}} |f^{(\alpha)}(z)|; \quad m = 0, 1, 2, \dots$$

In any case, let C(n) denote a suitable increasing function of the natural numbers n. During a series of modifications of C(n) we do not change the notation C(n).

(i) Let d_{φ} denote the following subset of D_{φ} :

$$d_{\Phi} := \{(x, y) \in D_{\Phi} | x \leq 1/2\}.$$

If $g \in \mathscr{E}(d_{\mathbf{g}})$ is such that $|g|_0 \le 1$ and $|g|_m \le N \ge 1$, then by Lemma 1 in [5] (cf. [4], Lemma 4.1) we have for $\mu = 1, \ldots, m-1$:

(1)
$$|g^{(0,\mu)}(x,0)| \leq C(m) \left(N^{\mu/m} + \Phi(x)^{-\mu} \right); \ x \in]0, \frac{1}{2}].$$

If $f\in\mathscr{E}(d_{\phi})$ admits the bounds $|f|_0\leqslant 1$ and $|f|_n\leqslant M\geqslant 1$, then by the same lemma we have the estimates

$$|f^{(\lambda,0)}|_0 \leqslant C(n) M^{\lambda/n}, \quad \lambda = 1, \ldots, n-1.$$

In the following considerations we fix integers n, k and a pair $\alpha = (\lambda, \mu) \in \mathbb{N}_0^2$ and assume $0 < |\alpha| \le k < n$ with $|\alpha|$ defined as $|\alpha| := \lambda + \mu$. For later use, we write $C_1(n) := C(n)^n$ with the C(n) obtained in this moment, assuming further that $C(n) \ge 1$. Let $M > C_1(n)$ and $f \in \mathcal{E}(d_{\Phi})$ admit the bounds previously required. By the substitutions

$$g:=\frac{1}{C(n)M^{\lambda/n}}f^{(\lambda,0)}, \quad N:=\frac{M}{C(n)M^{\lambda/n}}, \quad m:=n-\lambda,$$

the estimate (1) reads

(2)
$$\frac{1}{C(n)M^{\lambda/n}}|f^{(\lambda,\mu)}(x,0)| \leq C(m)[C(n)^{-\mu/m}M^{(1-\lambda/n)\mu/m} + \Phi(x)^{-\mu}].$$

Estimating the exponent of M

$$\frac{\lambda}{n} + \left(1 - \frac{\lambda}{n}\right) \frac{\mu}{m} = \frac{1}{n} (\lambda + \mu) \leqslant \frac{k}{n},$$

we draw from (2)

$$|f^{(\lambda,\mu)}(x,0)| \leqslant C(n) \left(M^{k/n} + \Phi(x)^{-\mu} M^{\lambda/n} \right)$$

with a new meaning for C(n), of course.

If $M^{1/n} \leq \Phi(x)^{-1}$, the term $\Phi(x)^{-\mu} M^{\lambda/n}$ is estimated by $\Phi(x)^{-k}$, in the other cases $M^{1/n} > \Phi(x)^{-1}$, and the term is estimated by $M^{(\lambda + \mu)/n} \leq M^{k/n}$. Thus, in both cases we obtain

(3)
$$|f^{(\lambda,\mu)}(x,0)| \leq C(n) (M^{k/n} + \Phi(x)^{-k}).$$

(ii) In the notations of (i) we have $k+1\leqslant n$ and therefore $|f^{(\lambda+1,\mu)}|\leqslant M$, which gives the estimate

$$|f^{(\alpha)}(0, 0) - f^{(\alpha)}(x, 0)| \le xM.$$

In connection with (3) the following estimate results for every $x \in (0, \frac{1}{2})$:

(4)
$$|f^{(\alpha)}(0,0)| \leq xM + C(n)(M^{k/n} + \Phi(x)^{-k}).$$

For every positive x the inequality

$$M^{k/n} \leqslant xM + x^{-\gamma}, \quad \gamma := k/(n-k)$$

is valid. For if $x < M^{-1/(1+\gamma)}$, the term $x^{-\gamma}$ majorizes $M^{\gamma/(1+\gamma)} = M^{k/n}$ and in the other case, $M^{k/n} = M^{1-1/(1+\gamma)}$ is majorized by xM.

By assumption $n-k \ge 1$ and $x^{-\gamma} \le x^{-k} \le \Phi(x)^{-k}$ for $x \in]0, 1]$. Thus (4) gives

(5)
$$|f^{(\alpha)}(0, 0)| \leq C(n)(xM + \Phi(x)^{-k}).$$

If $r \ge C(n)^{1/k} \Phi(\frac{1}{2})^{-1}$ with C(n) as in (5), then there exists $x \in]0, \frac{1}{2}]$ such that

$$C(n)\Phi(x)^{-k}=r^k$$

and so for this values of r the following is true for C = C(n):

(6)
$$|f^{(\alpha)}(0,0)| \leq r^k + CM\varphi(C^{1/k}/r).$$

(iii) Let f be an arbitrary element of $\mathscr{E}(d_{\Phi})$. If $|f|_n > C_1(n)|f|_0$ the function $|f|_0^{-1}f$ admits the bounds required in (i) with $M := |f|_0^{-1}|f|_n$, so (6)

is valid for this function:

(7)
$$|f^{(\alpha)}(0,0)| \leq r^k |f|_0 + C\varphi(C^{1/k}/r)|f|_n, \quad r \geq C^{1/k} \Phi(\frac{1}{2})^{-1}.$$

If, on the other hand, $|f|_n \leq C_1(n)|f|_0$, for every $r \geq C_1^{1/k}$ we have

$$|f^{(\alpha)}(0, 0)| \le |f|_n \le C_1 |f|_0 \le r^k |f|_0$$

and so (7) is valid in any case for large r depending on n.

(iv) Let $f \in \mathscr{E}(D_{\Phi})$ and assume first that $(x, y) \in d_{\Phi}$. By convexity of Φ there exists a translation \tilde{d}_{Φ} of d_{Φ} such that the point (0, 0) proceeds to (x, y) and $\tilde{d}_{\Phi} \subseteq D_{\Phi}$. We can apply the result of (iii) to the restriction of f to \tilde{d}_{Φ} , yielding

(8)
$$|f^{(\alpha)}(x, y)| \le r^k |f|_0 + C\varphi(C/r)|f|_n \ \forall r \ge C_2$$

with suitable $C_2 = C_2(n)$ and C = C(n), by monotonicity of φ .

There exist a linear transformation A of \mathbb{R}^2 and a family $(U_{\nu})_{\nu}$ of orthogonal transformations of \mathbb{R}^2 composed with translations such that all the images $P_{\nu} = U_{\nu} \circ A(Q)$ of the square $Q := [0, 1]^2$ are enclosed in D_{Φ} and constitute a covering of $D_{\Phi} - d_{\Phi}$. By simple estimations which reduce the problem to the one-dimensional case we first see that for a suitable constant C depending on n only

$$|g|_k \leq C |g|_0^{(n-k)/k} |g|_n^{k/n}$$

for all $g \in \mathscr{E}(Q)$ and $k = 0, \ldots, n$. By iterated application of the chain rule the norm $|f|_k$ can be estimated for every $f \in \mathscr{E}(P_v)$ by $C_k |g|_k$ with $g = f \circ U_v \circ A$ and a constant $C_k = C(k, A)$. So we obtain for $f \in \mathscr{E}(D_{\Phi})$, $|\alpha| \leq k$, $z \in D_{\Phi} - d_{\Phi}$ by a choice of a ν with $z \in P_v$:

$$|f^{(\alpha)}(z)| \leqslant C_k |g|_k \leqslant C_k C |g|_0^{(n-k)/n} |g|_n^{k/n} \leqslant CC_k C_n^{k/n} |f|_0^{(n-k)/n} |f|_n^{k/n},$$

using the same argument in the estimation of $|g|_n$. With a new meaning for C this gives

(9)
$$|f^{(\alpha)}(z)| \leq C |f|_0^{(n-k)/n} |f|_n^{k/n}$$

for $f \in \mathscr{E}(D_{\Phi})$, $z \in D_{\Phi} - d_{\Phi}$, $|\alpha| \leq k$.

By an elementary calculation the right-hand side of (9) can be estimated by

$$C \cdot (r^k|f|_0 + r^{k-n}|f|_n)$$

for every r > 0. For r > 1 we have by assumption $\Phi(1/r) < 1/r$ and

$$r^{k-n} \leqslant r^{-1} \leqslant \varphi(1/r).$$

So (9) turns to

(10)
$$|f^{(\alpha)}(x, y)| \leq C \cdot (r^k |f|_0 + \varphi(C/r) |f|_n)$$

for $r \ge 1$. By the substitution $r \mapsto C^{-1/k} \varrho$ and modification of C the estimation (8) is generalized to all $(x, y) \in D_{\Phi}$. Further replacement of C generalizes the

(11)
$$|f|_{k} \leq r^{k} |f|_{0} + C\varphi(C/r)|f|_{n}.$$

Choosing q = 0, j = k, n = k+1 and C as in (11), property $(\mathbf{D}\mathbf{N}_{\varphi})$ is proved.

Proposition 2. Let Φ and ψ be two functions belonging to $C^1[0, \infty[$ and having the properties in the assumptions of Proposition 1. Assume further that

$$\forall \lambda, p \in N \exists x_1 > 0 \ \forall x \in]0, x_1] \ \psi(x) \leqslant \Phi(x^p)^{\lambda}.$$

Then $\mathscr{E}(D_{\psi})$ does not have property $(\mathbf{DN}_{\Phi^{-1}})$.

Proof. Let $\varphi:=\Phi^{-1}$ and assume property (\mathbf{DN}_{φ}) for the space $\mathscr{E}(D_{\psi})$. Thus, there exist natural numbers q,j and n>q+1 and a positive C such that

(12)
$$|f|_{q+1} \leq r^{j}|f|_{q} + C\Phi^{-1}(C/r)|f|_{n}$$

for every r > 0 and $f \in \mathscr{E}(D_{\psi})$.

Because of the density of $\mathscr{E}(D_{\psi})$ in $\mathscr{E}^{n}(D_{\psi})$ the inequality (12) is valid for every $f \in \mathscr{E}^{n}(D_{\psi})$ and r > 0.

We denote by $P_{\nu} \in \mathcal{E}^{n}(\mathbf{R})$ and $f_{\nu} \in \mathcal{E}^{n}(D_{\psi})$ the following functions, for $\nu = 1, 2, 3, \ldots$

$$P_{\nu}(x) := \begin{cases} \frac{1}{(n+1)!} (1-x\nu)^{n+1} & \text{if} \quad 0 \le x \le 1/\nu, \\ 0 & \text{if} \quad x > 1/\nu, \end{cases}$$
$$f_{\nu}(x, y) := \frac{1}{(q+1)!} y^{q+1} P_{\nu}(x).$$

Let $\alpha=(\lambda,\,\mu)\in N_0^2$ and $f_{\nu}^{(\alpha)}(x,\,y)\neq 0$; this causes the restrictions $\mu\leqslant q+1,\,\lambda\leqslant n+1$ and $x<1/\nu$. Then we have

$$|f_{\nu}^{(\alpha)}(x, y)| = \frac{y^{q+1-\mu}}{(q+1-\mu)!} \frac{|-\nu|^{\lambda} (1-\nu x)^{n+1-\lambda}}{(n+1-\lambda)!} \le \psi(x)^{q+1-\mu} \nu^{\lambda}$$
$$= \psi(x)^{q+1} \nu^{|\alpha|} (\nu \psi(x))^{-\mu}.$$

In the case where $|\alpha| \le q$, the greatest possible value for μ is $|\alpha|$; because of $\nu \psi(x) \le \psi(x)/x < 1$ we have

$$|f_{\nu}^{(\alpha)}(x, y)| \leqslant \psi(x)^{q+1} (\nu \psi(x))^{-|\alpha|} \nu^{|\alpha|} = \psi(x)^{q+1-|\alpha|} \leqslant \psi(x) \leqslant \psi(1/\nu)$$

for arbitrary $(x, y) \in D_{\psi}$ and $\alpha \in \mathbb{N}_0^2$ with $|\alpha| \leq q$, whence the inequality

$$|f_{\nu}|_{q} \leqslant \psi(1/\nu)$$

results for $v = 1, 2, 3, \dots$

If $q+1 \le |\alpha| \le n$, the greatest possible value for μ is q+1 and in this case we have

$$|f_{\nu}^{(\alpha)}(x, y)| \leq \nu^{|\alpha|-q-1} \leq \nu^{n-q-1}$$

and the following estimation is valid for v = 1, 2, 3, ...

$$|f_{\nu}|_{n} \leqslant \nu^{n-q-1}.$$

Calculating $f_{\nu}^{(0,q+1)}(0,0)$, we get from (12), (13), and (14):

(15)
$$\frac{1}{(n+1)!} \le r^{j} \psi(1/\nu) + C\Phi^{-1}(C/r) \nu^{n-q-1}$$

for every r > 0, $v \in N$.

Choosing $\lambda = j+1$ and p = n-q by hypothesis there exists a positive x_1 such that for all $\nu > x_1^{-1}$ we obtain by (15)

$$\frac{1}{(n+1)!} \leqslant r^{j} \Phi \left(\frac{1}{v^{n-q}} \right)^{j+1} + C \Phi^{-1}(C/r) v^{n-q-1}.$$

Setting $r = C\Phi(1/v^{n-q})^{-1}$ this estimation yields

$$\frac{1}{(n+1)!} \leqslant C^{j} \Phi\left(\frac{1}{v^{n-q}}\right) + C \cdot \frac{1}{v}$$

and gives a contradiction letting $v \to \infty$.

In the sequel we will produce a great number of pairs (Φ, ψ) as in Proposition 2. Let \log^2 denote the function $\log \log \operatorname{from} \mathbb{R}_+$, $\infty [$ onto \mathbb{R}_+ and, similarly, \exp^4 the fourth iterate of \exp from \mathbb{R} into \mathbb{R}_+ .

LEMMA. For the functions

(16)
$$\widetilde{\Phi}_{\tau}(y) := \exp^4(\tau \log^2 y); \quad y > e, \ \tau \geqslant 1,$$

the following assertion is true:

To every pair (p, λ) of natural numbers p, λ and $\sigma > \tau \geqslant 1$ there exists a number $y_0 > e$ such that the inequality

$$\tilde{\Phi}_{\tau}(y^p)^{\lambda} \leqslant \tilde{\Phi}_{\sigma}(y)$$

is valid for every $y \ge y_0$.

Proof. (i) First we prove the

Claim. $\tilde{\Phi}_{\tau}(y)^{\lambda} \leqslant \tilde{\Phi}_{\tau}(y^{\lambda})$ for every $\lambda \geqslant 2$, $\tau \geqslant 1$, $y \geqslant \lambda$.

From the inequality $\lambda \leq \lambda^{\tau}$ we obtain by multiplication with $\exp(\tau z)$ and monotonicity of \exp

(17)
$$[\exp^2(\tau z)]^{\lambda} \leqslant \exp^2(\tau z + \tau \log \lambda)$$

for arbitrary λ , $\tau \geqslant 1$ and $z \in \mathbb{R}$.

By assumptions we have $u := \exp^2(\tau \log^2 y) \ge y \ge \lambda$ and

(18)
$$\log \lambda < \lambda \leqslant \lambda(\lambda - 1) \leqslant u(u - 1) \leqslant u^{\lambda} - u.$$

Setting $z = \log^2 y$, the estimation (17) yields

$$u^{\lambda} \leq \exp^2(\tau \log^2 y + \tau \log \lambda) = \exp^2(\tau \log^2 y^{\lambda}),$$

whence by (18) and (17) with $\tau = 1$, z = u we obtain

$$\widetilde{\Phi}_{\tau}(y)^{\lambda} = (\exp^2 u)^{\lambda} \leqslant \exp^2(u + \log \lambda) \leqslant \exp^2 u^{\lambda} \leqslant \widetilde{\Phi}_{\tau}(y^{\lambda}).$$

(ii) Assume $\lambda = 1$. Setting $y_0 := \exp(p^{\tau/(\sigma - \tau)})$ we get for $y \ge y_0$:

$$\log^2 y \geqslant \frac{\tau}{\sigma - \tau} \log p,$$

$$\sigma \log^2 y \geqslant \tau (\log^2 y + \log p) = \tau \log^2 y^p,$$

whence the claim of the lemma follows in this case.

(iii) Since λ is a natural number, $\lambda \ge 2$ in the remaining cases.

Setting
$$y_0 := \left[\exp\left((\lambda p)^{\tau/(\sigma - \tau)} \right) \right] \vee \lambda^{1/p}$$
, we get for $y \ge y_0$ by (i) and (ii):

$$\widetilde{\Phi}_{\tau}(y^p)^{\lambda} \leqslant \widetilde{\Phi}_{\tau}(y^{p\lambda}) \leqslant \widetilde{\Phi}_{\sigma}(y).$$

Remark. If we set

$$\Phi_{\tau}(x) := \exp(-\exp^3(\tau \log^2 1/x)); \quad x \in]0, e^{-1}[, \tau > 1,$$

the relation $\Phi_{\tau}(x) = \tilde{\Phi}_{\tau}(1/x)^{-1}$ is valid for all $x < e^{-1}$ and Φ_{τ} is a convex C^{∞} -function on the interval $]0, e^{-1}[$.

Proof. Clearly, the Φ_{τ} are C^{∞} . The convexity is proved by an elementary calculation: The functions

$$g_{\tau}(x) := \exp(-(\log 1/x)^{\tau}), \quad F(\eta) := \exp(-e^{1/\eta})$$

have positive first and second derivatives on the interval]0, $e^{-1}[$ and g_{τ} takes its values in this interval too. Thus the composition $\Phi_{\tau} = F \circ g_{\tau}$ has a positive second derivative there.

Corollary. There exists a continuum $\{K_{\tau}|\ \tau\in[a,\ b]\}$ of compact sets in \mathbf{R}^2 such that for each $\sigma,\ \tau\in[a,\ b]$ with $\sigma\neq\tau$ the (F)-spaces $\mathscr{E}(K_{\sigma})$ and $\mathscr{E}(K_{\tau})$ are not isomorphic.

Proof. Let 1 < a < b and let Φ_{τ} denote the functions as in the remark. Clearly, beyond the conclusions of the remark, $\Phi_{\tau}(x) < x$ for all positive $x \leq e^{-1}$. Choose convex C^{∞} -extensions of the Φ_{τ} to all of R, also denoted by Φ_{τ} , and which further satisfy the assumptions of Definition 2 and Proposition 1.

If $\tau < \sigma$, to every pair (p, λ) of natural numbers there exists by the

M. Tidten

274

lemma a positive y_1 such that

$$\tilde{\Phi}_{\tau}(y^p)^{\lambda} \leqslant \Phi_{\sigma}(y)$$

for $y > y_1$. By the relation in the remark for $x < y_1^{-1}$ we get

$$\Phi_{\tau}(x^p)^{\lambda} \geqslant \Phi_{\sigma}(x).$$

Applying Proposition 2 to $\Phi := \Phi_{\tau}$ and $\psi := \Phi_{\sigma}$, we see that $\mathscr{E}(D_{\Phi_{\sigma}})$ does not have property $(\mathbf{D}\mathbf{N}_{\Phi_{\tau}^{-1}})$. But, due to Proposition 1, the space $\mathscr{E}(D_{\Phi_{\tau}})$ has this property and so the spaces are not isomorphic. Setting $K_{\tau} := D_{\Phi_{\tau}}$ for $\tau \in [a, b]$ the corollary is proved.

References

- [1] H. Apiola, Characterization of subspaces and quotients of nuclear $L_f(\alpha, \infty)$ -spaces, Preprint 1980.
- [2] B. Mityagin, Geometry of nuclear spaces II, Linear topological invariants, Sem. Analyse Fonct. (1978/79). Exposé No. 2.
- [3] -. Non-Schwartzian power series spaces, Math. Z. 182 (1983), 303-310.
- [4] M. Tidten, Fortsetzungen von C[∞]-Funktionen, welche auf einer abgeschlossenen Menge in Rⁿ definiert sind, Manuscr. Math. 27 (1979), 291-312.
- [5] -, Kriterien für die Existenz von Ausdehnungsoperatoren zu & (K) für kompakte Teilmengen K von R, Arch. Math. 40 (1983), 73-81.
- [6] D. Vogt, Tensorprodukte von (F)- mit (DF)-Räumen und ein Fortsetzungssatz, Preprint 1978.
- [7] -, Ein Isomorphiesatz für Potenzreihenräume, Arch. Math. 38 (1982), 540-548.
- [8] -, and M. J. Wagner, Charakterisierung der Quotientenraume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240.
- [9] V. Zaharyuta, Generalized Mityagin's invariants and a continuum of pairwise non-isomorphic spaces of holomorphic functions, Funkt. Analiz i ego pril. (Russ.) 11 (3) (1977), 24-30.

Received July 2, 1982 (1778)

STUDIA MATHEMATICA, T. LXXVIII. (1984)

The canonical seminorm on Weak L1

by

MICHAEL CWIKEL* (Haifa) and CHARLES FEFFERMAN (Princeton)

Abstract. For each $f \in \text{Weak } L^1$ let $q_1(f) = \sup_{\alpha > 0} \alpha \mu(\{x | |f(x)| > \alpha\})$ and let q(f) be the seminorm,

$$q(f) = \inf_{f=f_1+f_2+...+f_n} \sum_{j=1}^n q_1(f_j).$$

It is known that q is equivalent to the seminorm I defined by

$$I(f) = \lim_{n \to \infty} \left\{ \sup_{b|a>n} (\log b/a)^{-1} \int_{|x|a \le |f(x)| \le b} |f(x)| d\mu \right\}.$$

It is shown here that in fact q(f) = I(f) and also that the normed quotient space of Weak L^{t} generated by q is not complete.

0. Introduction. This note is a sequel to [1]. We shall assume familiarity with the terminology and notation of that paper in which it was shown that, for a non-atomic underlying measure space, the canonical seminorm q on the space of measurable functions Weak L^1 is equivalent to a more "concretely" defined seminorm I. We shall show here that the seminorms q and I are in fact equal, using a refinement of the argument in [1]. We also exhibit another two seminorms which are equivalent to q and show that W, the quotient space of Weak L^1 modulo the functions f satisfying q(f) = 0, is not complete, as incorrectly claimed in [1].

We gratefully acknowledge correspondence with Nigel Kalton who expressed doubts about the claim in [1].

1. Equality of q and I. In order to establish that q(f) = I(f) for all $f \in \operatorname{Weak} L^1$ it suffices to show that $q(f) \leq I(f)$ for each function of the form $f = \sum_{k=-\infty}^{\infty} \lambda^k \chi_{I_k}$, where $\lambda > 1$, and I_k are disjoint measurable sets of finite measure (cf. [1], pp. 151–152). In [1] the sets I_k were taken as intervals on the real line. However, for our purposes here it is a little simpler to consider them as (disjoint) circles. More specifically we assume that the underlying measure space (X, Σ, μ) contains each I_k and each Lebesgue measurable

^{*} Research supported by the Technion V. P. R. Fund.