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Abstract. The paper gives some generalizations of non-linear interpolation theorems of
Lions [4], Peetre [7], Tartar [&], Bona-Scott [2] and the author [5].
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Let A be any Banach space. We denote by I, (4) the quasi-Banach space of
all (classes of) functions a: (0, c0) - A strongly measurable with respect to the
measure dt/t for which the norm |ja(- )llLf‘ o is finite, where

(7 la@lE di/o, 0< p< co,
M 4l N, = { 0

ess sup [la(rl, p=co.
O<i<ew

If 4 is a real or complex number system, for L5, (4) we write briefly IL,.

Recall the K-method of interpolation [1]. Let A, and 4; be Banach spaces
such that A, = A4, (the symbol < denotes continuous inclusion). For ae A4,
and 1 > 0 define

(2) K(t,a)=K(t, a; Ay, A)) = inf-{|]a——b]|Ao—ljr]|b]I,,1: heA}.
For each fixed ac Ay, K(r, a) is a continuous non-decreasing concave func-
tion of 1.

For 0 <60 <1 and 0 < p < o0, we denote by (Ao, 41)s, = 4y, @ quasi-
Banach space with quasi-norm

€) llalle,, = e K (1, a)”,_i.
Then
@ Ay S Ay po S Asypy & Ao

provided that 6, > 8, or that 6, = 6, and po < p,. Finally we introduce the
convention that A4,, = A, for all p.
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ProposiTion 1 (Peetre, cf. [17], Theorem 3.12.1). Ler ac 4o, 0 <8 <1 and
0 < po, p1 < oc. Suppose that for all t >0 there are w(t)€A; such that a
= ug()+uy (1) with 6~0u, (Ve EL(4,) for i =0, 1.

Then ae A,, and

- 1-0 1-0
(8)] llalls,, < Cllr ™% uo () L:O(Ao)”r ”1(’”1, (A’

where 1/p =(1—0)/po+0/p, and 0 < py, py <O OF po=p; =p= 0.
ProposiTioN 2 (Density). Suppose that 0 <0 <1 and 0 <p <oo. Then
A, is dense in Ag,.
We now prove a result to be used to derive our main theorem.
LemMa 3. Ler £> 0, acd, and suppose a(f)e A, is such that

lla=a(ll o+ la(®lle, <A +0 K@) Vi>0.

Then, for any /. >0 and 0<0 <1, 0<p< 0, such that aedg,, we have

(6 lla(tllo,, < (2-+#)llalla,»
and
™  lla=a(tMlep < 2+8)lalla,-

Proof For 0 <8 <1 it is sufficient to prove that, for all s > 0,

(6" K(s,a(th) < 2+aK(s, a)
and
(7) K(s, a—a(rY) < (2+¢) K (min(s, 1*), a).
I 1°0<s<t, then
K(s, a(th) < slla(tMa, = st™* *lla(Mla,

<
SA+est™ K@ a) <1 +e)K (s, a)

and for all heA,
K (s, a—a() < |la—a()—=(b—a()ay+sllh—a(t)ll4,
< lla=bll 4o+ 1bllay +slla(tHlla,
ie.,
K(s,a—a() < K(s, a)+slla()l4,
< K(s, a)+(1+e)st™*K(t* a
=(2+8) K (s, a).

K(s, a)+(1+&) K (s, a)
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If 2° s> 1% then for all hed,

K (s, a(rh) < lla(t) = bllyg +sllblla, < lla(th) = al 4o +lla—bll g +s1iblL4,
ie.,
K(s, a(t) <lla(t—all 4o+ K (s, o) (1 +e) K (%, @) +K (s, )
< (246K (s, a)
and

K(s, a—a(th) <

For 0 =0 we have

la=a(llo <U+0K (% a

la (g < lla=a(tllg,+llalla, <

(2+e)llall 4,

1+e)K(t* a )+llallag

//\//\

and
lla—a (4, < 1+ K (% a) <

THEOREM 1. Let A; o Ay, Bio By and 0< p<1,0<r<

(1+&)llall4y-
0. Suppose

" T is a mapping such that

(i) T: A,,— By and for a, bed,,

1 Ta—Thllsy <f (lallyrs b1l lla—bll, ) lla =B,
and
(i) T A, — B, and for ac4,
| Talls, < g (lall,) Nl

where - RS — R, is continuous, non-decreasing in each variable and g: R,
— R, is continuous, non-decreasing. Then if 0 > p or 6 = y and p<r, T maps

Ay into B, and for aed,,
| Tally,, < Chllally.) llalls.p»
where
(8)
n=0ajo,, o=(l—nog+na;, p=oq and h(t)=F(t, 2, 2)* ""g(2)"

Proof. Let ae Ay, and ¢ > 0. For each t > 0 choose a(r)e 4, such that
lla—a(llag+1lla(dlla, <A+ K, @).
Putting
by (1) = T{a(th),

Ta = bo(f)+b, (1), Where
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X =nfboy = (1 —n)f{l—0)a; we have by Lemma 3
lIbo (s = || Ta— T (a(H)]a,
<f(”a”u,r’ Ha(tl)”u,r: “a_a(ti)”n,r)“a—'a(tl)”i%
<f (lallyys @+8) [l Q+2)llall,) (1 +8)° K (¢, a)*
b1 (Ola, = | T (a5, < g(lattMl,r)lla(t’) Wi,

< g(2+8) fall,,) 1+ 1K (1, a)f.
Hence
§ (= m1ibo (1) W”
0
» ® d
< (lallys @+2)llall, @+8)llall, )0 L+e)? | (¢ ”°Kaia»m§
0
=9§ﬂfwmwa+wwmna+mwuf“wmm
T(1Whmmf“d <(1+or m+swmﬂ“f A (& )?
0
=(1+f,)1’

T 0(2+a) lal,Y™ lalk,-
Applying Proposition 1, we have TaeB, , and

1 Tallyg < Clbo Ol gy 17~ by Oy

S C(+ey- 274 (lall,s Q46 ally (2+8) llall,,) ™" x
x g((2+8)llall, ) laffad ™" .
From the continuity of f and g we have the theorem.

This theorem, in particular cases, was obtained by many authors:

p#=0and f =g = const, Lions [4], Theorem 3.1, with ay = a;, = a = 1,
and Peetre [7], Theorem 3.1;

u=0 and f(u, v, w) = C(u, v), Tartar [8], Theorem 2;

Sfu, v, w) =C(u+v) and ay = o, =1, Bona and Scott [2], Theorem 1;

f(u, v, w) = C(u, v), Maligranda [5], Theorem 7.4.

Derinrion. Let 0 <6 <1 and 0 < p < co. We say that the pair Ao, 4,
has a (6, p) approximate identity if there is a family of continuous mappings
S Agp— A, for 0<r<1, such that

I° |IS, allg,p+1"~°|IS, all4, < Clldlle,, for all aed,, and te(0, 1],
and
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2 IIS,a—a]l,,_,,+r""l|S,a—aI[A0 —0as r]0for aeA,,, and uniformly on
compact subsets of A, ,.

ExampLE (Bona and Scott [2]). The pair I2(R), H™ (R), where mis a positive
integer, has a (0, 2) approximate identity.

TueoreM 2. Let Ay, Ay, By, By, i, v, 11, q and T be as in Theorem 1.
Assume additionally that the pair Ao, Ay has a (8, p) approximate identity {S,}
for some 0> p or 0 =p and p<r, and that

(il) T is continuous as a map of A, to B,.

Then T is a continuous map from Ay, to B,,.

Proof. (The proof of this theorem is analogous to that of [ 2], Theorem
2 or [5], Theorem 7.5.)

1° It is first demonstrated that TS,a — Tain B,,,
in compact subsets of A4,,.

For each s >0, let a(s)e A, be such that

as t | 0 uniformly for a

lla—a(sllag+sla(s)le, < (L+2)K (s, a).
For A= n/fua, and re(0, 1] we define b,(s) by
TS,a~Tla(sh), if s*<1,
bils) = % 0, if s>t
Then b, (s)e B, for each s > 0. Set by(s) = TS,a— Ta—b,(s). For s* <1,

lIbo (s = [| T(a(sh)—
For s* > 1,
llbo (S)sg = 1 TS, @~ Tallgy <£ (IS, allyrs Hallyrs 1S, a=all,,) 1S, a—all
<SCC lallg s Nallurs 2CC lallo, IS, a—allS,

Ta“ﬂo <f(”auu.r= 2Ha”u.n ,Znally.r)K(sla a)“o.

where C is constant in condition 1° of the definition of an approximate
identity and C’ is the norm of the inclusion A, S A4,,.
Thus for p < @

. w ) g A8
Mo := [ (s7"lIbo (Nlag)"™*® =
0
. 0 [ (=K (5, a)p St
<A™ (el 2lallrs 2Nl [(7OK (s P

+9t—;’; £(CC lallo,pr Nl 2CC liall, )" %2118, a—all5,
! .

My(t)—0 as )0, uniformly on compact subsets of Ag,.
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Now consider b, (s). For s* <1,
b1 (s, = || TS, a~T(a(sM)[s, <ITS,alls, +]|T(@(sh)e,
<g(IS,all,.) us allit +g(la ) laHIE,
< Cg(CC Nlallg, )17 flallsk, +g 2lall, s~ K (s, @)t

and

” ” d xy/p
M, (t):= <_( (s*="1lby (SN, )™ ‘f)
o
< C,-C"g(CC|\allo, Mallo:, +

! ds \'1"
+ C2 g (2 ”a”n,r) (‘ (SHGK (S’ a))p ?) M
0

Thus M, (f) is seen to be bounded on bounded sets in A, and hence
certainly on compact subsets of 4,,.
Proposition 1 permits the conclusion

TS, a~Tall,, < CMo () ™" M, (1)".

Thus TS,d—-» Ta in B,, uniformly on compact subsets of 4,,.
2> We prove the continuity of T.
Let {a,} < Ay, and a,~a in ||*|ly,. Then if ¢ > 0,

”Ta— Tan“n,q < ”Ta— TSI al‘q.q+ll TS: a-— TS, an”n.q+”TSl ay— Tan”n.q'
Let &> 0 be given. Since the set {a} U{a,: n=1, 2, ...} is compact in 4,,,
there is a f, such that
ITa—TS,yall,, <%e and ||Ta,~ TS, all,, <}e
for n=1, 2, ... Condition (iii) ensures that TS,, is continuous from 4,, to
B, ie, there is an N such that n > N 1mphes
TS,y a— TS, aplly, < CUlITS,ya~ TS, alls, < e,

where C” is the norm of B; < B,,. Thus if n> N,

”Ta— Tan”q,q e,

and so T is continuous as a mapping of A, to B,

TueoreM 3. Let A; S Ay, By o By and O<pu<1, 0<p, r< ».
Suppose T is a mapping such that

(@) T 4,,— B, and for a, bed,,
ITa—Thilg, <f(lla—bll,)lla— b3,
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and
(i) ' Ay =By and for a, be A,
I Ta—Thils, < g(la~"bll,..)lla—bI,

where f, g: R, — R, are continuous non-decreasing functions.
Then if 0 > por 0 = pand p<r, Tmaps A, into B, , and for a, be 4,,

ITa—Tbll,,, < Chla—bll,)la— b3,
where
O) n=0afu;, oa=(1-=mog+nu, p=ag and h@)=f(21)""g(20)"
Proof. For any fixed a,e4, we set for ac4d,,

Sa=T(a+a,)—Ta.
Then

1Sa—Shllg, = |IT(a+a)~T(b+ay)lls,
<flla=>bll,)lla=bl Ya,be4,,
ISallg, = IT(a+a,)—Tayllp, <9(||ﬂ||,;,r)”a“:11 Vaed,;.
From Theorem 1 we get
1ISally.q < Ch(lall,)lalloy ™™™
Hence
ITa—Tall,.q = IS(@—aplly,, < Ch(la—ayll,)la—ayls,.

Since p, r < 00, A; is dense in Ay, (Proposition 2). Taking any a, be4,,
there are sequences (a,), (b,) in A, convergent to a and b, respectively, in the
[|lls, quasi-norm. Hence

Ci | Ta— Thll,, < || Ta— Taplly + 11 Tay— Thylly,,+ 1 Ty — Thlly.,
< C[h(la=aflun) lla=alls ,+ h(llan—ballur) llan—bdlls p +
+ (16— bl 1By — bll5, 5]
Taking n — oo, we get
| T —Thll,.o < Cs h(lla—bll,)la~bilf,
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Removability of ideals in commutative Banach algebras
by
VLADIMIR MULLER (Praha)

Abstract. A countable family of removable ideals in a commutative Banach algebra is
removable, ; R

Introduction. Let 4 be a commutative Banach algebra with unit. An ideal
Iin A is called removable if there exists a superalgebra B> A (ie, B is a
commutative Banach algebra with unit and there is an isometric unit
preserving isomorphism f: A — B) such that I is not contained in a proper
ideal in B. A family {I;};., is called removable if there is a superalgebra B o 4
such that I; is not contained in a proper ideal in B for every jeJ.

These notion were introduced by R. Arens [1] where also the following
question was raised:” Is every (every finite) family of removable ideals
removable? )

In general the answer is negative as was shown by B. Bollobds [2]. He
presented an example of an uncountable family of removable ideals which is
not removable. There was also shown that we can adjoin inverses to any
countable. family of elements of A which are not permanently singular (ie.
which are not topological divisors of zero). .

Removable ideals were further studied, e.g. in [4] and [5].

For finite families the answer to the question of R. Arens is affirmative.
This was shown in [3] as a consequence of the characterization of non-
removable ideals: an ideal I is non-removable if and only if it consists of
joint topological divisors of zero (i.e., for every x;, ..., x,€l there exists a
sequence {z,}2, < 4, ||lzd| =1, klim ¥zl = 0).

—o =1

The aim of this paper is to fill the gap, namely to consider the countable
case (see also Problem 3 of [4]). We show that any countable family of
removable ideals is removable. )

THeorEM 1. Let A be a commutative Banach algebra with unit, ler py,
P2, ... be positive integers and K., K,, ... positive real numbers such that
2€p<I4+1, KPP, pit <4-1(1=1, 2, ..) (these conditions are only tech-
nical). Let ued, Jlu =1 (r=1,2,..., 1<s<p,) and

Pr
) I <K, 3 lteexl]  =1,2, ..., xeA).
s=1
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