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Weighted norm inequalities and Schur’s Lemma
by

MICHAEL CHRIST (Chicago)

Abstract. New proofs of known results on boundedness of the Hardy-Littlewood maximal
operator on weighted I spaces are given for both one and two weights. The proofs involve the
explicit construction of avxiliary functions ((2.9) and (3.3)) required for the application of Schur’s
Lemma, In contrast to recent work on this problem, the “reverse Holder™ property of 4, weights
arises quite naturally in this approach, The proof in the case of two weights rests upon what
may be viewed as a generalization of this “reverse H&lder” property.

1. Introduction. Coifman, Jones, and Rubio de Francia [3] have recently

‘given an easy proof of the factorization of A, weights, using a rather general

construction and relying only on the boundedness of the Hardy-Littlewood
maximal operator on weighted I spaces, with weight in A4,. They have also
used the same ideas to give a new real-variable proof of a weak version of
the Helson-8zegd Theorem. Here we show that the same circle of ideas leads
naturally to a new proof of the boundedness of the Hardy-Littlewood
maximal operator on weighted IZ spaces.

A non-negative function we L}, (R™ is an A4, weight for some 1 <p < w0
if ‘
(11 sup[|QI7t f w(x)dx]-[IQI7! f w(x)" "V ax]P~t < C < c0.

] . e

The supremum is taken over all cubes Q = R"; |Q| denotes the measure of
Q. wis an A, weight if there exist § >0 and &> 0 such that for any
measurable E < Q,

(1.2) |E| < 8-1Q]=w(E) <(1—¢) w(Q).
Here w(E) = jw It is well known and easily checked that wed,=wed,

if1<p<oo ([2])
We present new proofs of the following two theorems:
Turorem 1.1 [2]. we A, if and only if there exists C < o0 such that

| Mf (xPw(x)dx < C JIfNFwlx)dx  for all feli,.
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Tueorem 1.2 [6). Given w(x), v(x) 2 0 and 1 <p <, there exists C

< % such that | Mf(xfPw(x)dx <C JIf Po(x)dx for all fif and only if

there is A < oo such that

(13) [ M@ 7 o) (xPwx)dx < A | 177 (x)dx < oo for all cubes Q.
Q Q

Here and henceforth 1/p+1/p' = 1, x; is the characteristic function of Q,
and M denotes the Hardy-Littlewood maximal operator. Theorem 1.1 does
not follow at once from Theorem 1.2, since it must first be verified that the
A, condition implies (1.3) when v = w.

The basis for the proofs and the link between this paper and the ideas of
Coifman, Rubio de Francia and Jones is

Scuur Lemwma. Suppose Kf(x) = [ k(x, »f(y)dy, where k(x,y) is
measurable and non-negative. Suppose 1 <p <. Then K is a bounded
operator on I if and only if there exists a non-negative function u(x) finite
almost everywhere and satisfying

(1.4) K ¥)(x) < Cu (x)
and

(1.5) K*(wP)(x) < CuP(x) for almost all x.

(K* denotes the formal adjoint of K.)

We shall prove Theorems 1.1 and 1.2 by explicitly constructing the
auxiliary functions u(x).

An interesting feature of this approach in the case of two weights is a
generalization to this situation of the reverse Holder inequality. This prop-
erty of 4, weights and its corollary, the implication “4,=A4,_,", played a
crucial role in the approach of Coifman and Fefferman [2]. However,
Sawyer’s solution [6] to the two-weight problem relied on no such inequal-
ity, and indeed (1.3) may hold for any particular value of p without holding
for any smaller p. In this paper the reverse Holder inequality arises rather
naturally in the case of one weight, and we give a simple proof of its
validity. This proof is closely related to [1]. In the two-weight situation, the
main point of our proof is an inequality (embodied in Lemmas 3.1 and 3.2)
which when specialized to the case v = weAd,, is equivalent to the reverse
Holder inequality. Thus in a sense there is a weak analogue in the two-
weight situation of this reverse Holder inequality.

The author is grateful to Professors R. R. Coifman and P. W. Jones for
explaining their ideas,

2. One weight. As observed by Fefferman and Stein [4],"in the proof of
Theorem 1.1 it suffices to treat the dyadic maximal operator instead of the

icm

©

Weighted norm inequalities ' 311

Hardy-Littlewood maximal operator. Then it suffices to consider a fixed
linearization .# of the dyadic maximal operator. That is, for each x we
choose a fixed dyadic cube Q, containing x, and define

AMf (x) =107 | f(y)dy for all f.
Qx

With a fixed wed, and a fixed linearization .# we construct a Schur
auxiliary function u; this will be done in such a way that the constants
appearing in (14) and (1.5) depend only on the A4, bound of w (and the
dimension). This demonstrates that all linearized maximal operators are
uniformly bounded.

By considering the Calderén-Zygmund decomposition of an arbitrary
function in I! with compact support, we may suppose that there is a
collection {0k}, of dyadic cubes such that

(2.1) M (X) =Y (91057 [ S dy,

. Juk J Q}f

where )

(2.2) ‘ 0:ngt=0@ unless =],

(2.3) If 35~ Q4+ @ and k <1, then Q! & QF,
24) Ej = 0f\(Y U Qi)

(25) For fixed i and k, Y |04 <C27lgH

Joktlcgk
o :
(C depends only on the dimension n),
(2.6) If k>0, then each Q¥ is contained in some Q! '.

Without loss of generality we may assume that there are only finitely
many Q% (@ denotes the interior of a cube Q. '

Fix l<p<o and suppose wed,. The operator Kf(x)
=w(x)!” M (w"f)(x) has the same norm on IZ(dx) as does .# on
E(w(x)dx), and is of the type to which Schur’s Lemma applies. Hence it
suffices to construct u(x) > 0 such that

2.7 .W(W"“”'u”l) < Cw . #n’
and
(2.8) Wi (Wl/p.#p) < CW””',LL”,

where C depends only on p, n and the A, bound of w. Define

@9 ux=Y 2% Xgh(x)° [w ()™ 2w ()12 (w' 7)1 P (x)]
Sk

= g (X)+ pia (x),
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where # > 0 is a constant to be determined below. This construction succeeds
because of the linearized reverse Holder inequality:

LemMma 2.1. Suppose ve A,
< oo such that for any j, k,
-k,
j Y Z 2R z(x)v(x <C fk v(x)dx

l>k i Qj
Proof. If m is sufficiently large and & is the constant in (1.2), then
(U @™ n QY < 6104 by (2.5). Thus o((U Q™) N Q¥) < (1—e)-v(Q)), and
i i
iterating yields »(( Q) n @) < C-(1—g)'"*:
for all I > k.. Then

5 20N gdu(dx =T 2o @) 0)

QJ 1Zk
(Y 207R.C-(1—8 %) 0(@h) = C-v(Q)),

1Zk

. If n > 0 is sufficiently small, there exists C

v(Q}) for a smaller value of ¢,

if 2"-(1-¢)< 1. O
CoroLLARY (reverse Holder inequality) [2]. If veA,, then there exist
6> 0 aud C < oo such that for any Q,

(17" [ o2 < CloI™! [ olx)dx.
Q

Proof. We may assume that, J"v L,|g/=1 and Q is dyadlc (by

scaling and translating the dyadic gnd) Let M be the dyadlc max1ma1
operator, and let

{x: M(v~xa)>2"}=UQ§‘ for k>0.
Then majorizing v by Mv pointwise gives .
foi*tiidx<cC: IZZ 2%y k(x)v(x)dx C f v(x)dx
)

by Lemma 2.1, if § is sufﬁcxently small. [J

Using the linearized reverse Holder inequality it is easy to verify that
(27) holds with p defined as in (29). Recall that wed,=v
=w!""eA, c A,. Fix (, k). If xeE¥, then

=1gi™* | &2«
Qj il
< C-2m-071 5
of
the inequality follows from Lemma 2.1 apphed to whTFif g is sufﬁcwntly
small.

M w1 Y (x y) WP () dy

Y dy = Cowx) P g (0
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Similarly if xek%
'/ﬂ(‘v"lll’ 'Qﬂﬂ | Zznpl (lQl[ 1 ‘ w(z) 1 4 Li”’)dv
(. i Q',
<Igi™t ¥ 2wh [ w(gttrdz

it:0} =gk of

SCQIT 2 f wm) T dy = Cow(x)T ey (p
ot

! ! J

again by Lemma 2.1. Thus (2.7) holds.

. It remains only to verify (2.8); but the weighting factors 2 have been
introduced precisely to ensure that (2.8) will follow easily.

AW = T 10] [ 2w dy

so that if xeEk,

MEWHT ) ()= Y 10 Il 2Py (y)0dy.
il E;
of =of
<k there is at most one i so that Q% = Q!. Hence
MW ) () < Y 2 E] Q)T < Y 2wt €k =
Ik

I<k

For each I <
Cw()MP g (xp.
In the same way

ZIQ.’l tlwo WY@ [ W) dz)P'® dy
l Qi

= 2 2RI ] wOhb)-(en ™ | w T gy

MF (w ifp. :“2) X) = llp.znpl

il £
o<l
<C- ff‘ 2 = C-2% = Co ()P, (P, '
k

since weA,,. This completes the proof of Theorem 1.1.

3. Two weights. Notation is as in the preceding section. The construction
of the Schur function u is changed in only one essential way: in the case of one
weight the reverse Holder inequality allowed us to introduce auxiliary weights 2
which grow by a constant factor with each move from Q% %to Q' < Q¥ In the
two-weight situation these factors may no longer be taken to be constant.
Instead, at each transition from Q¥ % to a subcube Q¥*! we multiply by a factor
between 1 and 2", dependmg on the behavior of the paxr of weights (w, v) on Q.

7 Studia Mathematica LXXVIIL3
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In order to prove Theorem 1.2 we must construct u(x) such that

@1 wlp (x) A (v 2 ) (x) < C (%)
and
(3.2 o™ VP (x) M* (WP ) (x) < i ().
Let

a =[1gf7" ,\;‘W(X)ciX] % JL oI (0]

Ej J
by =108 | w0 dx,
Ej

and

= 11 (L+n (i + b)),
i<k
ok =0}

where 1 > 0 is a small constant to be specified below. Then define

03 H) = g Lo w0 0] |
i Q) .

= ity () + pa (%)-

Lemma 3.1. Suppose that (w, v) satisfies the two-weight condition (1.3).
Then there exist A, B < oo such that if n is sufficiently small, then for any QF,

[ 3 S0t T 0 g dy < Ayfy [ o'+ Byl [ AT W
Q.‘;' 15k i ' i st Q"‘

By the two-weight hypothesis, the second term on the right-hand side of
this ‘inequality is dominated by a constant times the first.: However, the
following argument does not go through if the second term is omitted.

Proof. The proof is by descending induction on k. It is no loss of
generality to assume that k = 0 and the lemma is true for k+1 = 1. Fix j and
let 0° =QY, E® =EJ and so on. Note that

(1+77'(au.j+bk,j))wp < 14+Cniay +by)),

since a,; and b,; are bounded as a consequence of the two-weight
hypothesis.

[T Ao ™7 0) a0 dy

Q0 il

=X j‘l Y ot TP (0 2 (N dy] + (L +n(ao+ o) P § ot =T+ 11,
N ! E9

icm°®
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I<(T+nlag+by)y'?-(4 [ v 7+B [ A )W)

0%\ Q0\£0
e .
<4 | vP+B [0 PYPwaConlao+boi(Ad | o774+
Q00 Qo0 Q0\£0
LB [ M),
O\

By (1.3), the term involving nis < C*n(ap+by) (4 + CB) [ »'=7. Observe

that since _|'0_v‘””' =1Q% M (' "¥)(y) for all yeEC, @
Q
o [ 07 = 1QU ([ 0P W)= | A6
Q0 Q° £0 £0 ’

Also by <(1Q°71 [ w)2+(1Q%t [ '~ 7)Y by Holder’s inequality so that as
above, £ 2

bo [ =P < 1= p\p. AP, -\ —p :
o é‘ov \(;éfo MTIY w0t (0! PYw+ | ot

£0 EO EO
Hence altogether
(34) (agtbo) | 0'7M <2 | MW Pw [ o177
Qo £O £O
‘Therefore
ISA [ v"F4B [ METPwt
Q0.0 00g0
+2C-(A+CB) [ [ M@ PP wt [ 0177,
E0 o

Using some of the above estimates we also have

U [ o' +Cn[2 | AW "P-wt [ v177]
E0 fY . £
S(142Cn) [ v*""+2Cn [ M@ PP w.

B0 EC

In order to complete the inductive step we therefore need to choose the
constants so that

14+2Cn+2Cn(A+CB) < A 2Cn-(1+A+CB) < B.
If B=1 and 4 = 2, this holds for sufficiently small n.-[]

and
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Lemma 3.2, If (w, v) satisfies (1.3), then there exist A, B < 20 such that for
sufficiently small u, for any QF,

[ 2 A g O) A @ TTY () w()dy
of i !
S AW, [ M@V w+ By fk vy,
- Q;‘( Qj
Proof. We proceed by descending induction on k as in the last lemma.
Again assume k =0. Then

I 2 B ag ) A (077 -w(p)dy
QO il !
ST [Tl H O Y0 WOl +
Qj b
+(1+ Cyp{ag+b): | A (>~ P)P-w=T+1I.

EO
By induction,

1< (1+Cnlag+bo) [A [ M@ 7P-w+B [ v-7].
Q0.0 QO\EO

Using the estimate (1.3) yields
I<SA [ MHEPPw+B | P4 [ MR wt

QON\EC Q0\E0 EO .
+Cn(ap+bo) (B+CA+C) | v*77.
Q0
By (34),
I<A | AH@7PP-w+B [ o'774Cp(B+CA+C)- [ o1 P +
QO\r0 QO\E0 £0
+(1+2C)1(B+CA+C)) ( MY W,
£0
In the same way
< f ./il(vl"”')”'w+C17(ao+bo) j vt
EO 00
< ARTPPw+Cne(2 | U B I 4
EO EC EO

=Cn [ o'"P(1+2Cn) | g.it’(ul"”')”"w.

EO E©
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Thus to conclude the proof we must choose the constants so that Cn-(B+
+CA+C+C)< B and 2+Cn4(2C+2(B+CA+C))<A, which is again
possible. []

Toese two lemmas play the role of the linearized reverse Hélder
inequality in the proof of (3.1). Suppose that xeE}. Since —1/p—p//p? =
1-p,

M (07 ) (x) = QY j;( V()Y AV dy

Qj Li
S AWy [ oI BY | MY
af of
S(A+CB)yfy [ 077 = (A+CB) - w!'P (x)- i (x).
Qj
Similarly

M) ) =107 |
Q)

2; i kgt ) [07 P (3)- WP () [QY = - [0 Ty,
b Qi
By Halder’s inequality this is dominated by the product of
[OH~" [ % A a0t (y) dy] 7
Qk i Ej
5

and

fei=" § ‘Z Wi 2gt ) M (077 P 3) - w(y) dy] .
Qj M

By Lemmas 3.1 and 3.2 and by (1.3), this is dominated by

Coylyr [ 077 = Cow V() g ().
Qj
This completes the proof of (3.1). As in the case of one weight, (3.2) follows
casily from the definition of v, ;. Indeed, suppose that xeEf For 0<I<k
there is a unique Qf containing Q¥. We write Q' = @}, E' = E, y,; = 7 and so
on. Then .

AW Y x) = 3 Q0T Wi () o P (y) dy

ISk gl
=Y b=Y (b TT (1+1-(@n+by))
1<k 1<k m<i

<C Y (@+b) I1 (147 (3, +by)),

0SSk osm<l
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since 1+47(a+b) < C by the two-weight hypothesis (1.3). We claim that

(3.5) ‘{Sk ((a,+b,)-"gl (L+7-(@ntba)) <77 vosfl]“ (1 +n(a+by).

This follows at once by induction. We thus have for xeEf,
(WP B (x) < Cn“l'll;lk (I+11'(a,+h,)) =Cn~ o' P (x) 1 (x).

In the same fashion

MW ) (x) = T 1Q1H [ A [IQT ot w () Wi () dy
1Sk gl o!

=Y W<y Hlath)
1<k i<k

Using (3.5) and (1.3) we see that this last expression 'is no larger than
C-n~ty2 = Cn 10" (x)- 1 (x). This completes the proof of (3.2) and hence
of Theorem 13. [0

Definition (3.3) of the Schur auxiliary function u(x) is easily motivated.
One begins with the function w®(x) =v~1"*(x) (since this leads to a
relatively simple x in the case of ome weight). The requirement
A PPy < Cowm VP u? forces the modification

M) = o7 () W (x)- QY | 0t
Qj
- M(O) +wie. g (v~ 1p .(#(0)),7‘)

Next calculating .#*(w'/-(u")?} leads to the further modification

H2 () =y (x)+ % X,_-;s(x)'( Y (@ +bh) 1V ().
ki

(4]
Qj =i

k
on Ej.

By considering infinitely many iterations of the operator
[~ Y7 * (WP P17 one is finally led to our definition of p(x).
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