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A result on the isomorphic embeddability of I*(I')
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T. ZACHARIADES (Athens)

Abstract. It is proven that the isomorphic embeddability of I* (I) into a Banach space X is
equivalent to the existence of a certain operator from X to L®{—1, 1}",

Applying the theorem we get some results for the isomorphic structure of Banach spaces
related to L' () spaces.

Introduction. In this paper we prove a criterion on the isomorphic em-
beddability of [*(I') into B-spaces and using this we get some results on the
isomorphic structure of non-separable B-spaces. So we prove the following:

THEOREM A. Assume Martin's axiom and the negation of the continuum
hypothesis. Then for any B-space X and any infinite cardinal o the following
are equivalent:

(a) I'(I) is isomorphic to a subspace of X for some set I' with cardinality
of T equal to .

(b) There is a bounded linear operator T: X — L® () for a finite measure
 such thar for some uniformly bounded family {x;: € <o} of elements of X we
have || Ty, — Tg,lly >0 >0 for & <& <a.

(c) There is a bounded linear operator T: X — L® {—1, 1}* such that for
some uniformly bounded family {xs: ¢ <a} of elements of X we have
1Ty, = T, lly >0>0 for all & <&, <a.

In cases (b) and (¢) ||||; denotes the norm in the spaces L!({u),
L' 1, 1}%, respectively, and L {~1, 1}* denotes the space L*(u,) where ,
is the Haar-measure on the compact group {0, 1}%

The above theorem for the countable case (x = w) is a well-known
consequence of Rosenthal's criterion of isomorphic embeddings of I' into B-
spaces [12].

Haydon in [7] and [8] proved this result for certain categories of
cardinals.

The essential part of our proof is devoted to the implication (c)=(a).
For this we distinguish two cases. The case of cardinals greater than »* and
the case of the cardinal w*. In the last case we make use of the additional
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set-theoretical hypothesis, namely of Martin’s axiom and the negation of
continuum hypothesis (MA + "JCH). The proofs of these cases are given in
Sections 1 and 2, respectively. Finally, Section 4 contains two consequences
of Theorem A.

Tucorem B (4.1). Assume MA+ 71CH. Let X be a B-space and W
= (ba [X*], w*). Then for cardinals o with uncountable cf(a) the following are
equivalent:

(a) I} is isomorphic to a subspace of X.

(b) There is a map f* W—[0, 1% continuous and onto.

(c) & is isomorphic to a subspace of C(W).

Talagrand in [16] has proved that (a) is-equivalent to (b) for regular
uncountable cardinals without any set-theoretical assumption®. Qur result
extends Talagrand’s result into the class of singular cardinals with uncoun-
table cofinality.

THeOREM C (4.4). Assume MA+ TICH. If « is an uncountable cardinal
and p an o-homogeneous probability measure, then the existence of a semi-
embedding of L'(u) into a conjugate B-space X* implies the existence of an
isomorphic embedding of L*(u) into X*.

For the case o =, this result has been proved by Bourgain and
Rosenthal [13].

Acknowledgment. The first author thanks Dr. Haydon for valuable
discussions and suggestions on the material of the last paragraph of this
paper.

0. Preliminaries. We consider an ordinal as the set of smaller ordinals. A
cardinal is an ordinal not in one-to-one correspondence with any smaller
ordinal. We denote by w the first infinite cardinal and by w* the first
uncountable cardinal. The cofinality of a cardinal « is denoted by cf () and it
is the smaller cardinal 8 such that there is a cofinal subset of & with
cardinality B. A cardinal o is said to be regular if a = of(x), otherwise it is
singular. For a set A we denote by |4| the cardinality of 4 and by 2, (A) the
set of all finite subsets of A.

0.1. Lemma (Shanin [15]). If a is an uncountable regular cardinal and f is
a function from o to ,(a), then there is A —a subset of o with |A| = o and N
—a finite set such that f (&) nf (€)= N for all distinct &, é,6 A.

Next lemma is an application of Hajnal's theorem [6] and a proof of it
can be found in [2].

* In a revised version of his paper M. Talagrand also proves the non-regular case. An
alternative proof of Talagrand’s result is given in [1].
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0.2. Lemma. Let « be cardinal greater than w* and let {Ny: ¢ <a,
{Ag & <a) be families of countable and finite sets, respectively, with
Ay N A, = for & <&, <a. Then there is A—a subset of a, with |A| =,
such that for all distinct £, &, elements of A, A ANg, = 0.

Let (P, <) be a partially ordered set. Two elements p,, p, e(P, <) are
said to be compatible if there is ge P with g < p, and g < p,. A subset & of
P is a filter if any finite subset of & is compatible. The partially ordered set
(P, <) satisfies c.c.c. if every uncountable family of elements of it has at least
two compatible elements.

The following proposition is a consequence of Martin’s axiom. A proof
of it can be found in [14].

0.3. PrROPOSITION, Assume MA and let o be regular cardinal with w <«
< 2% Then for each (P, <) partially ordered set satisfying ccc. and each
family H = {ps: & <a} of elements of P there is F —a filter of elements of P
containing a subfamily of the family H with cardinality equal to a.

For a set I let I'(I") be the Banach space of all real-valued functions f
satisfying the condition

Il = Zrlf(y)l <o

and we denote by I“(I") the conjugate of I*(I).

In the rest of the paper u always denotes a finite measure and LF(u) is
the corresponding B-space of all p-integrable functions. We also connect
L*“(u)y with the conjugate of L'(u).

Let I be a non-empty set; for finite 4 being a subset of I, let

Mg {=1, 1 - {=1,1}

be the function defined by
(@) M (x)=1 for all xe{—1, 1} in the case 4 =0, and
(b) =[]
EeAd
i.e. 11 is the function product of the projections IT; for all &eA.

The set {11,: AeP, (1)} is said to be the Walsh functions of the group
{0, 1} and it consists of a biorthogonal system for the space I? (y;) where H
is the Haar measure on the group {0, 1}, In the rest of the paper we will
connecl {0, 1)7 with {—1, 1}/ by the usual way and by I’ {-1, 1}' we will
denote the space L' (u,).

Let | S p< oo, felr{~1,1}, éel. We say that the function f depends
on the clement & of the set I iff there is the set A—a finite subset of I, such
that
teA.

{fMdp#0 and


GUEST


80 S. Argyros, J. Bourgain, T. Zachariades

It is a consequence of the Stone-Weierstrass Theorem that for each
1< p<coand each fel?{~1,1}!, f depends on a countable subset of I.

Let I be a set and 4 a non-empty subset of I; then for each 1 < p < o
by &% LP{—1,1¥ > L7{—1, 1}4 we denote the corresponding conditional
expectation. This is a linear contractive projection and we have that, for
l<p €p; <0,

aN () =82 for all fel™|~1,1}.

04. Lemma [2]. Let I be a set and A a subset of I If fel?|~1, 1}
depends on the set N—a subset of I, then the function 8% (f) is depending on
a subset of the set 4 N.

1. 11. Lemma. Let fe I {~1, 1} and ¢ > 0. Then there is A < I, with A
finite, such that

164 ()=l <.

Proof. There is feL! {—1, 1}/, depending on a finite set N, of coor-
dinates, such that ||f—gl|l; <¢/2. Then

€8, (N =glly = 15, ()~ Ex, @l S I =gl <o/2;
hence
15, (N =Sl =168, (N =Sl < N8N, (N =glle+llg=/lly <.

1.2. TaeoreM. Let o be a cardinal number, o >w*, let {fi1 & <a] be
subset of L® {—1, 1}* such that

flle <M for all £<a,

and there is 0 >0, with || fy—fll; > 0 for ¢ <{ <.

Then there is A <o, with |A| =a, such that the family {f;: EeA)} is
equivalent to the I} —a basis in L®{—1, 1%,

Proof.

Cramv 1. There are Ay < «, with |4, =a, and a family {I;: E€A,) of

finite subsets of w such that, setting Jy = L<) I, we have
da
185 = 5y () > 0/5.

Proof of Claim 1. We proceed by transfinite induction. Let ¢ < a, and

suppose that we have defined {i;, { < &}, {I,, { < ¢} to be finite subsets of a,
such that

1652 () = B il > 075,

where we have set J, = | I,. We define i, o We set Jy= |J I, and T,
n<g ; . r<d
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= sup{iy: { <&}, Assume that for every { > 7, and every finite subset 4 of I
we have

62 (S = E5ns (Sl < 0/5.
From Lemma 1.1 for every { > 17, there is a finite set 4, = such that
165 (R~ < 0/5.
Hence, for {y, {; >, {4 # {;, we have
8%, ()= 5%, ()ls > 0/2,
and thus

165, g ey~ €5

nae Uil > 078,

a contradiction to the facts that |/, <a, and that L' {~1,1}’¢ has (func-
tional) dimension less than «. The proof of the claim is complete.
CraM 2. For every Ec Ay there is dse L™ {—1, 1}'4‘ with

||d¢”m<1: J’f;:dg>6/10, fngIS:O

Jor all finite subsets S < J,.

Proof of Claim 2. By Claim 1, there is gyeL®{~1, 1}1’5, such that
gl <1, and

(852 (13) 09~ 852 s (D ag) > /5.
We have that

gr= Y aglly with og=[g, I
L
and thus, setting
di Z aSHSa di = Z dSHSa
Selyindg scly
S‘FJE

we have gy = di+d} and
0/5 <1687, (S (@) + E1 () (@) — By, (S D)= sy () (@)

Observing that (inside the absolute value) the first and third terms are equal
while the fourth is zero, we conclude that
[ fedsl = 167, (f) (@8)] > 0/5 lldsl] < 2.
We finally set dy = +d3/2 where the sign is chosen so that
[fudy > 6/10..
It is clear that [d,ITg =0 if S is finite and § = J,.

with
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We set
Ay =1I\Jy for {ed,

and we have that {4,: {€A,} is a pairwise disjoint family of finite subsets of
a. We also choose a countable set Ny of coordinates so that f; depends on N,
and I, c Ny for {ed,.

It follows from Lemma 0.2 that there is A < 4, with |A| = «, such that
(*) NnA; =0 for & led S#(.

Cram 3, For all &, ..., Eed, & <... <&,

(i) fdgy ... dy, =0,

(i) if £eA and _ff,;d“ cody #0, then r=1 and &) =¢.

Proof of Claim 3. (i) The function dy , ..., d; _, depends on the set
Jy, and d,:y:Z{aSHS: Scly,S<=Jg}. By Claim 2, we have that

é e gr = .
1(ii): Case 1. £, #¢. Let Ny be a countable set such that f; depends on

Ng. Then fe-dg, ..., de,_, depends on NywlJe . Il S< 1, and S ¢ J,, then
S ¢& Nyl (since S J, and by property (+). We now use Claim 2,
Case 2. ¢, =¢&,r>1. Since Iy = Ng, fyday, ..., dy,_,-dy, depends on
Nyl _,, and d; | plays the same role that dy plays in Case 1.
Cramv 4. The family {fi: E€A} is equivalent to the usual Ii-basis.
Proof of Claim 4. Let &, < ... < ¢, <o, &y, ..., 6 ed and ¢y, ..., c, R
for some natural number r 2 1. Weset & =1 if ¢, 20 and ¢;= —1if ¢, <0
for 1 €i<r, and set

g=Tl0-ed)-1.
i=1

Thus geL' {—1, 1}* and ¢ depends on a finite set of coordinates. We note
that

liglly <2

since 1~¢dg, >0 for 1<i<r and ‘[lﬁl(lﬂ:, dg) =1, using Claim 3 (i).

Hence

lles fog+ oo e fella 2 dles S )+ o0+ i, (9)
=%(e; ¢y ./,'h(clhi—i- o fe (dg)  (by Claim 2)
2 0/20(e ¢+ ... +e0) = 0/200(lc )|+ ... +]ed)

Since in addition || fy|l., < M for all £€4, the claim follows.

(using Claim 3)

2. 21. THEOREM. Assume MA + ’“|CH.+ If {fir E< @) is a (uniformly
bounded) family of elements of L*{ -1, 1)@ satisfying the property: there is
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e >0 such that ||fy~flly > ¢, for all £ <{ <w*, then it contains a subfamily
with the same cardinality equivalent to the usual basis o l(lo+.

Proof. The proof goes along similar steps as the proof of Theorem 6.11
in [2]. Namely, a partially ordered set (P, <) will be constructed, with
uncountable elements satisfying c.c.c. Then using MA we will get a filter of
elements of (P, <), with uncountable elements and this will give us im-
mediately the desired family.

We start with some refinements of the original family fir E<o™).

Step 1. There is By—a subset of w*, with |B,| =w™*, and a family
{As: €eBy} of [inite subsets of w™ such that:

(i) j'/}:ITM #0 for all éeB,,

(i) if for £ By, N, is the countable subset of w* on which the function
Je depends and My = (J N, then A,\M, is non-empty.

]

The existence of the set B, follows from the fact that the family { fer &
< w*] forms a non-separable set in the L!'-norm.

Without the loss of generality, passing if necessary to a subfamily with
the same cardinality, we assume that there is a finite set A4 with
Ay N Ay, = A for all &, &reBy, & # &,

We assume that 4 # Q. Also, because of property (ii), A 3 Ag for all
¢eB;. (It may be necessary to except one element of B;.) Now
{1 T 4,du # 0 for all { & By . Therefore for each ¢ B, the function f; depends
essentially on the whole set Ay; namely, if we consider the function é”fg (5o,
we can find eye{—1, 1}4, r,, &, rationals with §; >0 such that

(64 ()" (—o0, A (leg) x {1,114 = @,
(84, ()™ (re 485, 0] (feg) x [ =1, 116 2 0.

Since cardinal ™ is regular uncountable, we can find a subset B, of B, with
[Byl =w* and r, é, ¢ such that

€ = ey,

r=ry, 0=0
for all £eB,.

Step 2. Definition of partially ordered (P, <). Our partially ordered set
will consist of all finite sets F satisfying the following properties:

(i) Fis a subset of B,,

(i) if Ay = ) A, then for all ¢eF there are 4f, Ej such that

el

A < (85 (17 (=20, 1),

Ef < [8%,(f)]7" (r+8, ),
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(b) sets 4%, EY depend on the set Ay and
pa(Ef) = pa(d}) = e.

We notice that from properties of the family B, it follows that for all
EeB,, {¢} belongs to the set P.

Step 3. Partially ordered set (P, <) satisfies c.c.c. We consider P ordered
by the usual set-theoretical inclusion. Let {F,: o < ®™}. be a given family of
elements of (P, <). Using Erdds-Rado theorem we find 4—a subset of w*
and F—a finite set such that |4 = w™ and for oy, o;—distinct elements
of 4, F, A F,, = F. We consider the case F # Q. (In case F = () the proof
is similar.)

" We set

Ap = A4y, Ap, = U A, for all ced,
ser saly

Np= | Ny NF,,: U Ne.
ser deF,

We choose, inductively, a set 4, — a subset of 4 such that
(i) there is natural number ve N such that

|[4p,| =v for all sed,
(i) NpnAp, =4y for all ced,
(il) for every o, < 0,, 0y, 0,64,
NF”l ﬁAF’z < Ap.

We choose oged; with the property that the set A = {oed;: 0 <oy} is
infinite.
Properties (ii) and (jiii) ahd Lemma 0.6 imply that

) 88 ur, 1) = E5,(f)

holds for %11 geA and {eF,. Here &7 (f) is regarded as an element of
o“la

L{-1,1} 9 by the usual way.

We will prove now that for every ¢ > 0 there is I(£)—a finite subset of
A such that for every oeA\I(g) we have

(%) EF, , () — €5, ur, (Dl <&
for all {eF, )
If this has been proved setting

Eqo = min {2 {€F, 0}

where r v
g = min {inf (¥, (f)[E:"*1~(r+0), r—sup&F, (f)[4,"°]}
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and choosing oed\I (::,,o), then from (*) and (x%) immediately follows that
F,UF,, belongs to the partially ordered set and so (P, <) satisfies ccc.
Therefore we have to prove (wx),

Let ¢>0 b? given. For each {eF,, the function f; is bounded,
consequently L2-integrable, and so we can express it in L%mnorm as

Se=2Adh [Ty Me2,(0")}.
Also, for every 4—a subset of w*, the function &7 (f;) has in L*norm the
expression &5 (fy) =Y {ofy s Me#,(A)}. From this and the fact that
FoynFy, = F, for oy, 0,e4, it follows that vectors
{ﬁ"?"‘,up,,o(,f&)-éfﬁ;o(ﬁ)i sed}
are orthogonal. This implies that there is finite I(s) = A such that we have
187, o, (f—ER (U3l <e/2°
for every {eF, and for all o A\I(g). Since IF,LJF,OI < 2, it follows that

o0 g o0 1/24F gl | el 0

“(fﬂ,w,o(.f‘:)"ﬂpm (<2 ’0 N7, or,, (f:)—éppao(fe)”z <e
for all {eF,  and ceA\I(s).

Proof of theorem completed. Since the partially ordered set (P, <)
satisfies c.cc, it follows from MA that there is a filter % containing
uncountable elements of the family {{¢}: £eB,}. It is easy to check that the
family {f;: {¢}e#} is equivalent to the usual basis of ! ... The proof is now
complete.

3. Proof of theorem A. (c)=>(a); Theorems 1.2, 2.1 and 3.1 that have
been proved above give essentially the proof of the implication (c)=(a)

" for all uncountable cardinals «. Case a =w is well known and follows

from the fact that a uniformly bounded sequence {f,: n <} of elements
of L*{—1, 1}* satisfying property ||/, —fulls > > 0 does not contain weak
Cauchy subsequence. This holds because of Dunford-Pettis property of
L*{~1,1}“. Therefore, by Rosenthal’s criterion [12] it contains a subse-
quence equivalent to the usual basis of I*.

(a)=>(c): Il {x,: € <o} is a family of a Banach space X equivalent to
the usual basis of I, then since L“{~1, 1}* is an injective B-space, it follows
that there is bounded linear operator

T: X »L®{~1, 1}
such that T (x,) = IT, for all & <a. This proves the implication since ||[T,—
~Ifl; = /2 for all ¢ <{<a.

(¢) =>(b): It is obvious,
(b) == (c): This is an immediate consequence of the next proposition.


GUEST


86 S. Argyros, J. Bourgain, T. Zachariades

3.1. ProrosiTioN. Let (X, &, 1) be a probability measure space and o an
infinite cardinal. Then for every uniformly bounded family {gs: & <o} of
elements of L*(u) with |lgs—gl, >0 >0 for all {<{<a there is a
bounded linear operator from L®(y) to L®{—1,1}* and & >0 such that
||7;“:—- 7214”1 > &' > 0 holds for all distinct &, { elements of a set 4y —a subset of
o with |4] = a.

Proof. By Maharan’s decomposition theorem [9] there is sequence
{Viy ..., V, ...} (finite or infinite) of clements of the sigma algebra &
pairwise disjoint, with Y u(V,) =1, and the restriction u|V, is o,

n
homogeneous for some cardinal a,.

We choose n such that ¥ u(¥) < /4. We may assume that ||g, <1

k>n

n
for all ¢ <a; therefore if V= {J ¥, then
i=1.

llge V=g, Vily > /2.
Let D={i <n: o >a}. By passing (if necessary) to a subfamily we can
assume that

llge|W=g,| W1y > 8/2
for all distinct &, {. Here W denotes the set |J V. For each ie D we choose
&, sigma subalgebra of #|V], such that g,| l&l@l;)e ¥, measurable function and

&#; be a-homogeneous. Then it is immediate that the sigma algebra ¢,

=) & is a sigma algebra a-homogeneous on the set W. Therefore the
leD

probability measure space
(W, &1, ulW/u(W) = 3)
is homeomorphic-to ({—1, 1}%, &, u,) [10]. Now if we consider the induced
linear bounded operators T, L
Lo(w) 5 L2 ()5 L= | =1, 1),
it is easy to check that the composition of them defines the desired linear
operator.

3.2. PROPOSITION. Assume MA + ~ICH. Let a be a cardinal with uncoun-
table cofinality and Z a closed subspace of L !—1, 1M such that the set

4 ={¢{: 3zeZ depending on &)

has cardinality greater than or equal to «. Then Z contains isomorphically a
copy of I}.
Proof. We will prove that there is § > 0 and family {2t £ed) of norm-
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one elements of Z with |A] =« such that llzg~zdl; > 6 for all &, {—distinct
elements of «. If this has been proved, then we get the result from Theorems
1.2 and 2.1.

Using transfinite induction we choose family {z: ¢ <a} of norm-one
elements of Z satisfying the property: for every ¢ <o there is M, —a finite
subset of I with [z;"ITy,du+0 and Mj is not contained in the set W,
= |J N, where N, denotes the countable set on which the function z
deéetids.

Since of () > w, there is 6 >0 and A—a subset of a with |A| =« such
that ||z, 1Ty, du > 6 for all e A. By our construction it follows that if { < ¢,

then [z Ny, dp = 0, therefore for {, & ~elements of 4, &+ {
llzg—zll, > 6
as we required.
3.3. THEOREM. Assume MA+ TJCH. If « is a cardinal with uncountable

“cofinality and X is a Banach space generated by a family {x;: iel} and I} is

isomorphic to a subspace of X, then there is a subfamily {x, : ceJ} equivalent
to the usual I} basis.

Proof. Since |} is isomorphic to a subspace of X, there is T: X —
L*{—1,1]* —a linear bounded operator such that T(X), regarded as a sub-
space of L' {—1, 1}%, has dimension a. Since the family {x;: i1} generates
the space X, it follows that the set

4 ={¢ <q: Aiel with Tx; depending on ¢}

has cardinality equal to o.
Therefore {x;: ieI} has a subfamily equivalent to the usual basis of I;
(Proposition 4.2).

4. 4.1. TueoreM. Assume MA + "ICH. Let X be a Banach space and W
= (ha [X*], w*). Then for cardinals o with cf(a) > the following are
equivalent:

(@) I is isomorphic to a subspace of X,

(b) there is « map f2 W—[0, 11 continuous and onto,

(c) I} is isomorphic to a subspace of C(W).

Proof. (a)=s(b): If T: I} = X is an isomorphism, then T*: X* — [ is
w*.continuous and onto. The result follows from the fact that (bo [17°], w*]
=[-1, [T

(b) = (c): Obvious.

(c)=>(a): Since {} is isomorphic to a subspace of C(W), it follows that
L' {—1, 1}* is isomorphic to a subspace of M (W) [11]. Therefore there is
&M (W) a-homogeneous. That means that the algebra of Borel subsets of W
modulo p-null sets is homeomorphic to the algebra of Borel sets of {—1, 1}*
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modulo p,-null sets. Therefore there is T: C(W)— L®{~1, 1}* such that
T(C(W)) is a w*-dense subalgebra of L™ {—1, 1. Consequently, the set

= {¢{: 3xe X such that x depends on ¢}

has cardinality o since X u {1} generates a dense subalgebra of C(W). Now
the result follows from Proposition 4.2.

4.2. Remark. Implication (a)<>(b) has been proved by Talagrand in
[16] for all uncountable regular cardinals without any additional set-
theoretical assumption. Our proof makes use of Martin’s axiom only for the
cardinal @™ . Therefore our result extends Talagrand’s result into the class of
cardinals « greater than w™ and with uncountable cofinality.

4.3. DEFINITION. A B-space X semi-embeds into a B-space Y if there is a
linear bounded one-to-one operator T from X to Y with T[ba[X]] being a
closed subset of Y.

We will prove that

4.4, THEOREM. Assume MA + ~ICH. If « is an uncountable cardinal and
& an a-homogeneous probability measure, then semi-embedding of L' (1) into a
conjugate B-space X* implies actually isomorphic embedding of L' (u) into X*,

4.5. Remark. This result extends an analoguous one for a = @ that
have been proved by Bourgain-Rosenthal [13]. Some techniques which will
be used in the proof of the above theorem are closely related to methods
developed by Bourgain and Rosenthal in the study of semi-embeddings of
L'[0, 1] into B-spaces.

4.6. Remark. For uncountable cardinals o with uncountable cofinality
the assumption “u is an a-homogeneous measure” can be replaced by “u is a
probability measure and dim L' () = ™. However, in the case of uncountable
cardinals % with countable cofinality, the weaker condition does not imply
the corresponding result. Indeed, if {x,: n<w} is a strictly increasing
sequence of cardinals with supa, ==, then there is qem1-embcddmg of

(): @ L'{-1,1)™), into the conjugate of the space Z G {~1,1}M),

bul no isomorphic embedding can be found.

First we give some auxiliary results.

4.7. ProprosITION [8). Let X be a Polish space and Y a metric space. If
S X = Yis an F,function (ie. {1 (V) is F ,set for all V —open subsets of Y),
then, for each K —a closed subset of X, TlK K = Y has a point of continuity.

4.8. PrOPOSITION. Let X be a subspace of a weakly compuctly generated
B-space and T. X — Y a linear bounded one-to-one operator. Then

dim T'(X) = dim X.
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Proof. Assume the contrary. Then letting Z be the closure of T(X), we
have that dimZ is smaller than dim X. Therefore (bx[Z*], w*) has a dense
subset with cardinality less than dim X, and since T*(Z*) is w*-dense into
X*, it follows that (b [X*], w*) has a dense subset with cardinality less than
dim X. But this contradicts to the fact that (bo [X*7], w*) is Eberlein-compact
set and so every dense subset must have cardinality equal to dim X.

4.9. COROLLARY. Let X be a subspace of a weakly compactly generated
B-space and T: X ~ Y be a semi-embedding of X. Then for each K —a closed
separable subset of the set ba[X],

"' T(K)—K
has a point of continuity.

Proof. Let K be a separable closed subset of the ho[X]. Then letting Z
be the B~a space generated by the set K, it follows that Z is separable. Let W

(T(boz [/]) This is a subset of the unit ball of X. Also W is closed
:md by the previous proposition W is separable.
We prove now that T~ !: T(W)— Wis an F,function. Indeed, if ¥V is
open subset of W, then there is a sequence {B,: n <w} of closed balls such

that V= (B UIT(B,,)r\T(W).
Therefore for each A—a closed subset of T'(W),
T e A= X

W) and since T is one-to-ome, T(V) =

has a point of continuity. Now setting A = T(K) and choosing a point c?f
continuity Tx, in A, we have that x, €K since K is a closed set and T(K) is
dense into the set A. Therefore

T rwy: TK)—~K

has a point of continuity.

4.10. ProrosrrioN. [3]). If (X, d),(Y; o) are metric spaces with (X, d)
complete and f2 X ~+ Y a function satisfying the property: for every compact
subset K of X, flg: K =Y has « point of continuity, then f has a point of
continuity.

Next corollary follows from the above proposition and Corollary 58.

4.11. CoroLLARY. Let X be a subspace of a W.CG. B-space Z and
T: X > Y be a semi-embedding of X into a B-space Y. Then

TV T(ha [X]) ~ bo[X]

has « point of continuity

Proof of Theorem 4.4. By Maharam’s theorem follows that if u is
probability a-homogeneous measure, then L!(y) is isometric to L'{—1, 1}
So we will deal with L'{~1, 1}*
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Case 1. cf(fx) > . Since L' {—1, 1}* is mapped one-to-one into X*, it
follows that X is mapped by the conjugate map w*-dense into L* { —1 f'"‘
Consequently the set o

D={¢: 3xeX with T*x depending on &)

has cardinality equal to «. So Proposition 3.2 implies that I} is isomorphic to
a subspace of X and by a known result of Pelezynski (110, {1, 1} 4
isomorphic to a subspace of X*. Y
Case 2. cf(x) = w.
Cram, There is function @ in L*{—~1,1} such th
) , K at |loll, < 1, and
ol <4 and |T(@-1)| >e>0 for so/(ne ¢ >}O and fe 4 N Ji
e I ! ) Jor all Eea—N for
. Proolg. By Corollary 4.1 there is f—an eclement of the unit ball of
L 1——1,114 , sucin that T(f) be a point of continuity for the map T~
T(a[L {~1, 1}]) +ba[L' {~1,1}*]. So there is 126 >0 such that
/=gl > 1/2 implies | T(f)—T(g)| > 5.
Let peL* {~1, 1}* depending on a finite set N be such that llol <1,

/=l <e =min(5/4(1+f|TH). Since ¢ d d a finit i
boanten oL o ) ¢ depends on a finite set N, ¢ is

Let {ea—N. We will prove now that

IT(p- T > & = 5/2.
Indeed, since 17, does not depend on the set N, it follows that

le—e@- Il = llgll - 11 =11 = 1,
and so

WT ()= T(9)+ T(p 1| = 6.
So
IT(o- I 2 6~ IT(f)— T(@)| > 6-5/4 > §/2,
as we required, and that is the proof of the claim.

Inductively we choose a family {x,: e A ents of i
X onductiy y {xs: Ee A} of elements of the unit ball of

() 14 =a,
‘ (1) if Ny is the countable set on w
CEUINg: Led, ¢ <),
(iit) T{p Iy (xg) > ¢/2.
Now it is easy to establish that for &y, &y —elements of
A]lT*x{1 = T*xg[ly > 8y =¢/2),
and the result follows from Theorem A.

hich the function Tx} depends, then
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