A result on the isomorphic embeddability of $l^1(\Gamma)$

h

S. ARGYROS (Athens), J. BOURGAIN (Brussel)

T. ZACHARIADES (Athens)

Abstract. It is proven that the isomorphic embeddability of $l^1(\Gamma)$ into a Banach space X is equivalent to the existence of a certain operator from X to $L^{\infty}\{-1,1\}^{\Gamma}$.

Applying the theorem we get some results for the isomorphic structure of Banach spaces related to $L^1(\mu)$ spaces.

Introduction. In this paper we prove a criterion on the isomorphic embeddability of $l^1(\Gamma)$ into B-spaces and using this we get some results on the isomorphic structure of non-separable B-spaces. So we prove the following:

THEOREM A. Assume Martin's axiom and the negation of the continuum hypothesis. Then for any B-space X and any infinite cardinal α the following are equivalent:

- (a) $l^1(\varGamma)$ is isomorphic to a subspace of X for some set \varGamma with cardinality of \varGamma equal to $\alpha.$
- (b) There is a bounded linear operator $T\colon X\to L^\infty(\mu)$ for a finite measure μ such that for some uniformly bounded family $\{x_\xi\colon \xi<\alpha\}$ of elements of X we have $\|Tx_{\xi_1}-Tx_{\xi_2}\|_1>\theta>0$ for $\xi_1<\xi_2<\alpha$.
- (c) There is a bounded linear operator $T: X \to L^{\infty} \{-1, 1\}^{\alpha}$ such that for some uniformly bounded family $\{x_2: \xi < \alpha\}$ of elements of X we have $\|Tx_{\xi_1} Tx_{\xi_2}\|_1 > \theta > 0$ for all $\xi_1 < \xi_2 < \alpha$.

In cases (b) and (c) $\|\cdot\|_1$ denotes the norm in the spaces $L^1(\mu)$, $L^1\{-1,1\}^{\alpha}$, respectively, and $L^{\alpha}\{-1,1\}^{\alpha}$ denotes the space $L^{\infty}(\mu_{\alpha})$ where μ_{α} is the Haar-measure on the compact group $\{0,1\}^{\alpha}$.

The above theorem for the countable case $(\alpha = \omega)$ is a well-known consequence of Rosenthal's criterion of isomorphic embeddings of l^1 into B-spaces [12].

Haydon in [7] and [8] proved this result for certain categories of cardinals.

The essential part of our proof is devoted to the implication (c) \Rightarrow (a). For this we distinguish two cases, The case of cardinals greater than ω^+ and the case of the cardinal ω^+ . In the last case we make use of the additional

set-theoretical hypothesis, namely of Martin's axiom and the negation of continuum hypothesis ($MA + \neg CH$). The proofs of these cases are given in Sections 1 and 2, respectively. Finally, Section 4 contains two consequences of Theorem A.

THEOREM B (4.1). Assume MA+ \neg CH. Let X be a B-space and W = (ba[X*], w*). Then for cardinals α with uncountable cf(α) the following are equivalent:

- (a) l_{α}^{1} is isomorphic to a subspace of X.
- (b) There is a map $f: W \to [0, 1]^{\alpha}$ continuous and onto.
- (c) l_{α}^{1} is isomorphic to a subspace of C(W).

Talagrand in [16] has proved that (a) is-equivalent to (b) for regular uncountable cardinals without any set-theoretical assumption*. Our result extends Talagrand's result into the class of singular cardinals with uncountable cofinality.

Theorem C (4.4). Assume MA+ \neg CH. If α is an uncountable cardinal and μ an α -homogeneous probability measure, then the existence of a semi-embedding of $L^1(\mu)$ into a conjugate B-space X^* implies the existence of an isomorphic embedding of $L^1(\mu)$ into X^* .

For the case $\alpha = \omega$, this result has been proved by Bourgain and Rosenthal [13].

Acknowledgment. The first author thanks Dr. Haydon for valuable discussions and suggestions on the material of the last paragraph of this paper.

- **0. Preliminaries.** We consider an ordinal as the set of smaller ordinals. A cardinal is an ordinal not in one-to-one correspondence with any smaller ordinal. We denote by ω the first infinite cardinal and by ω^+ the first uncountable cardinal. The cofinality of a cardinal α is denoted by $\mathrm{cf}(\alpha)$ and it is the smaller cardinal β such that there is a cofinal subset of α with cardinality β . A cardinal α is said to be *regular* if $\alpha = \mathrm{cf}(\alpha)$, otherwise it is singular. For a set Λ we denote by $|\Lambda|$ the cardinality of Λ and by $\mathscr{P}_{\omega}(\Lambda)$ the set of all finite subsets of Λ .
- 0.1. Lemma (Shanin [15]). If α is an uncountable regular cardinal and f is a function from α to $\mathscr{P}_{\omega}(\alpha)$, then there is Λa subset of α with $|\Lambda| = \alpha$ and N a finite set such that $f(\xi_1) \cap f(\xi_2) = N$ for all distinct $\xi_1, \xi_2 \in \Lambda$.

Next lemma is an application of Hajnal's theorem [6] and a proof of it can be found in [2].

0.2. Lemma. Let α be cardinal greater than ω^+ and let $\{N_\xi\colon \xi<\alpha\}$, $\{A_\xi\colon \xi<\alpha\}$ be families of countable and finite sets, respectively, with $A_{\xi_1}\cap A_{\xi_2}=\emptyset$ for $\xi_1<\xi_2<\alpha$. Then there is $\Lambda-a$ subset of α , with $|\Lambda|=\alpha$, such that for all distinct $\xi_1,\,\xi_2$ elements of $\Lambda,\,A_{\xi_1}\cap N_{\xi_2}=\emptyset$.

Let (P, <) be a partially ordered set. Two elements $p_1, p_2 \in (P, <)$ are said to be *compatible* if there is $q \in P$ with $q < p_1$ and $q < p_2$. A subset \mathscr{F} of P is a *filter* if any finite subset of \mathscr{F} is compatible. The partially ordered set (P, <) satisfies c.c.c. if every uncountable family of elements of it has at least two compatible elements.

The following proposition is a consequence of Martin's axiom. A proof of it can be found in [14].

0.3. PROPOSITION. Assume MA and let α be regular cardinal with $\omega < \alpha < 2^{\omega}$. Then for each (P, <) partially ordered set satisfying c.c.c. and each family $H = \{p_{\xi}: \xi < \alpha\}$ of elements of P there is $\mathscr{F} - a$ filter of elements of P containing a subfamily of the family H with cardinality equal to α .

For a set Γ let $l^1(\Gamma)$ be the Banach space of all real-valued functions f satisfying the condition

$$||f|| = \sum_{\gamma \in \Gamma} |f(\gamma)| < \infty$$

and we denote by $l^{\infty}(\Gamma)$ the conjugate of $l^{1}(\Gamma)$.

In the rest of the paper μ always denotes a finite measure and $L^p(\mu)$ is the corresponding *B*-space of all *p*-integrable functions. We also connect $L^{\infty}(\mu)$ with the conjugate of $L^1(\mu)$.

Let I be a non-empty set; for finite A being a subset of I, let

$$\Pi_A: \{-1, 1\}^I \to \{-1, 1\}$$

be the function defined by

(a) $\Pi_A(x) = 1$ for all $x \in \{-1, 1\}^I$ in the case $A = \emptyset$, and

(b)
$$\Pi_A = \prod_{\xi \in A} \Pi_{\xi}$$
,

i.e. Π_A is the function product of the projections Π_{ξ} for all $\xi \in A$.

The set $\{II_A: A \in \mathscr{P}_{\omega}(I)\}$ is said to be the Walsh functions of the group $\{0, 1\}^I$ and it consists of a biorthogonal system for the space $L^2(\mu_I)$ where μ_I is the Haar measure on the group $\{0, 1\}^I$. In the rest of the paper we will connect $\{0, 1\}^I$ with $\{-1, 1\}^I$ by the usual way and by $L^P\{-1, 1\}^I$ we will denote the space $L^P(\mu_I)$.

Let $1 \le p \le \infty$, $f \in L^p \{-1, 1\}^I$, $\xi \in I$. We say that the function f depends on the element ξ of the set I iff there is the set A-a finite subset of I, such that

$$\int f \cdot \Pi_A d\mu \neq 0$$
 and $\xi \in A$.

^{*} In a revised version of his paper M. Talagrand also proves the non-regular case. An alternative proof of Talagrand's result is given in [1].

It is a consequence of the Stone-Weierstrass Theorem that for each $1 \le p \le \infty$ and each $f \in L^p \{-1, 1\}^I$, f depends on a countable subset of I.

Let I be a set and Δ a non-empty subset of I; then for each $1 \le p \le \infty$ by \mathscr{E}^p : $L^p \{-1, 1\}^I \to L^p \{-1, 1\}^\Delta$ we denote the corresponding conditional expectation. This is a linear contractive projection and we have that, for $1 \le p_1 \le p_2 \le \infty$,

$$\mathscr{E}_{A}^{p_1}(f) = \mathscr{E}_{A}^{p_2}(f)$$
 for all $f \in L^{p_2}\{-1, 1\}$.

- 0.4. Lemma [2]. Let I be a set and Δ a subset of I. If $f \in L^p \{-1, 1\}^I$ depends on the set N-a subset of I, then the function $\mathscr{E}_{\Delta}^{\omega}(f)$ is depending on a subset of the set $\Delta \cap N$.
- **1.** 1.1. LEMMA. Let $f \in L^{\infty} \{-1, 1\}^{I}$ and $\varepsilon > 0$. Then there is $A \subset I$, with A finite, such that

$$\|\mathscr{E}_A^{\infty}(f)-f\|_1<\varepsilon.$$

Proof. There is $f \in L^1$ $\{-1, 1\}^I$, depending on a finite set N_g of coordinates, such that $||f-g||_1 < \varepsilon/2$. Then

$$\|\mathscr{E}_{N_a}^1(f) - g\|_1 = \|\mathscr{E}_{N_a}^1(f) - \mathscr{E}_{N_a}^1(g)\|_1 \le \|f - g\|_1 < \varepsilon/2;$$

hence

$$||\mathscr{E}_{N_{q}}^{\infty}(f) - f||_{1} = ||\mathscr{E}_{N_{q}}^{1}(f) - f||_{1} \leq ||\mathscr{E}_{N_{q}}^{1}(f) - g||_{1} + ||g - f||_{1} < \varepsilon.$$

1.2. THEOREM. Let α be a cardinal number, $\alpha > \omega^+$, let $\{f_{\xi}: \xi < \alpha\}$ be subset of $L^{\infty}\{-1, 1\}^{\alpha}$ such that

$$||f_{\xi}||_{\infty} \leq M$$
 for all $\xi < \alpha$,

and there is $\theta > 0$, with $||f_{\xi} - f_{\zeta}||_{1} > \theta$ for $\zeta < \zeta < \alpha$.

Then there is $A \subset \alpha$, with $|A| = \alpha$, such that the family $\{f_{\xi} \colon \xi \in A\}$ is equivalent to the $l_{\alpha}^{1} - a$ basis in $L^{\infty} \{-1, 1\}^{\alpha}$.

Proof.

CLAIM 1. There are $A_1 \subset \alpha$, with $|A_1| = \alpha$, and a family $\{I_{\xi}: \xi \in A_1\}$ of finite subsets of α such that, setting $J_{\xi} = \bigcup_{\substack{\xi < \xi \\ \xi \in A_1}} I_{\xi}$, we have

$$\|\mathscr{E}_{I_{\mathcal{E}}}^{\infty}(f_{\xi}) - \mathscr{E}_{I_{\mathcal{E}} \cap J_{\mathcal{E}}}^{\infty}(f_{\xi})\|_{1} > \theta/5.$$

Proof of Claim 1. We proceed by transfinite induction. Let $\xi < \alpha$, and suppose that we have defined $\{i_{\zeta}, \zeta < \xi\}$, $\{I_{\zeta}, \zeta < \xi\}$ to be finite subsets of α , such that

$$\|\mathscr{E}_{I_r}^{\infty}(f_{i_r}) - \mathscr{E}_{I_r \cap J_r}^{\infty}(f_{i_r})\|_1 > \theta/5,$$

where we have set $J_{\zeta} = \bigcup_{n < \zeta} I_n$. We define i_{ζ} , I_{ζ} . We set $J_{\zeta} = \bigcup_{\zeta < \zeta} I_{\zeta}$ and \overline{i}_{ζ}

= $\sup\{i_{\xi}: \zeta < \xi\}$. Assume that for every $\zeta > \overline{i}_{\xi}$ and every finite subset A of I we have

$$\|\mathscr{E}_{A}^{\infty}(f_{\xi}) - \mathscr{E}_{A \cap J_{\xi}}^{\infty}(f_{\zeta})\|_{1} \leq \theta/5.$$

From Lemma 1.1 for every $\zeta > \overline{i}_{\xi}$ there is a finite set $A_{\zeta} \subset I$ such that

$$\|\mathscr{E}_{A_{\zeta}}^{\infty}(f_{\zeta})-f_{\zeta}\|_{1}<\theta/5.$$

Hence, for ζ_1 , $\zeta_2 > \overline{i}_{\xi}$, $\zeta_1 \neq \zeta_2$, we have

$$\|\mathscr{E}_{A_{\zeta_{1}}}^{\infty}(f_{\zeta_{1}}) - \mathscr{E}_{A_{\zeta_{2}}}^{\infty}(f_{\zeta_{2}})\|_{1} > \theta/2,$$

and thus

$$\|\mathscr{E}_{A_{\zeta_1}\cap J_{\zeta}}^{\infty}(f_{\zeta_1}) - \mathscr{E}_{A_{\zeta_2}\cap J_{\zeta}}^{\infty}(f_{\zeta_2})\|_1 > \theta/8,$$

a contradiction to the facts that $|J_{\xi}| < \alpha$, and that $L^1 \{-1, 1\}^{J_{\xi}}$ has (functional) dimension less than α . The proof of the claim is complete.

CLAIM 2. For every $\xi \in A_1$ there is $d_{\varepsilon} \in L^{\infty} \{-1, 1\}^{I_{\xi}}$ with

$$||d_{\xi}||_{\infty} \leqslant 1$$
, $\int f_{\xi} \cdot d_{\xi} > \theta/10$, $\int d_{\xi} \Pi_{S} = 0$

for all finite subsets $S \subset J_{\xi}$.

Proof of Claim 2. By Claim 1, there is $g_\xi\!\in\!L^\infty\{-1,1\}^{I_\xi}$, such that $\|g_\xi\|_\infty\leqslant 1$, and

$$|\mathscr{E}_{I_{x}}^{\infty}(f_{\xi})(g_{\xi}) - \mathscr{E}_{I_{x} \cap J_{x}}^{\infty}(f_{\xi})(g_{\xi})| > \theta/5.$$

We have that

$$g_{\xi} = \sum_{S \in I_S} \alpha_S \Pi_S$$
 with $\alpha_S = \int g_{\xi} \cdot \Pi_S$

and thus, setting

$$d_1^{\xi} \sum_{S \subset I_{\xi} \cap J_{\xi}} \alpha_S \Pi_S, \quad d_2^{\xi} = \sum_{\substack{S \subset I_{\xi} \\ S \neq I_{\xi}}} \alpha_S \Pi_S,$$

we have $g_{\varepsilon} = d_1^{\varepsilon} + d_2^{\varepsilon}$ and

$$0/5 < |\mathscr{E}_{I_{\xi}}^{\infty}(f_{\xi})(d_{1}^{\xi}) + \mathscr{E}_{I_{\xi}}^{\infty}(f_{\xi})(d_{2}^{\xi}) - \mathscr{E}_{I_{\xi} \cap J_{\xi}}^{\infty}(f_{\xi})(d_{1}^{\xi}) - \mathscr{E}_{I_{\xi} \cap J_{\xi}}^{\infty}(f_{\xi})(d_{2}^{\xi})|.$$

Observing that (inside the absolute value) the first and third terms are equal while the fourth is zero, we conclude that

$$|\int f_{\xi} d_{2}^{\xi}| = |\mathscr{E}_{I_{\mu}}^{\infty}(f_{\xi})(d_{2}^{\xi})| > \theta/5 \quad \text{with} \quad ||d_{2}^{\xi}|| \leq 2.$$

We finally set $d_{\xi} = \pm d_{2}^{\xi}/2$ where the sign is chosen so that

$$\int f_{\xi} d_{\xi} > \theta/10$$
.

It is clear that $\int d_{\varepsilon} \Pi_{S} = 0$ if S is finite and $S \subset J_{\xi}$.

83

We set

$$A_{\xi} = I_{\xi} \setminus J_{\xi}$$
 for $\xi \in A_1$

and we have that $\{A_{\xi}: \xi \in A_1\}$ is a pairwise disjoint family of finite subsets of α . We also choose a countable set N_{ξ} of coordinates so that f_{ξ} depends on N_{ξ} and $I_{\xi} \subset N_{\xi}$ for $\xi \in A_1$.

It follows from Lemma 0.2 that there is $A \subset A_1$, with $|A| = \alpha$, such that

(*)
$$N_{\xi} \cap A_{\zeta} = \emptyset$$
 for $\xi, \zeta \in A, \xi \neq \zeta$.

CLAIM 3. For all $\xi_1, \ldots, \xi_r \in A, \xi_1 < \ldots < \xi_r$,

- (i) $\int d_{\xi_1} \ldots d_{\xi_r} = 0$,
- (ii) if $\xi \in A$ and $\int f_{\xi} d_{\xi_1} \dots d_{\xi_r} \neq 0$, then r = 1 and $\xi_1 = \xi$.

Proof of Claim 3. (i): The function $d_{\xi_1},\ldots,d_{\xi_{r-1}}$ depends on the set J_{ξ_r} , and $d_{\xi_r}=\sum \left\{\alpha_S \Pi_S\colon S\subset I_{\xi_r},\,S\subset J_{\xi_r}\right\}$. By Claim 2, we have that $\int d_{\xi_1}\ldots d_{\xi_r}=0$.

(ii): C as e 1. $\xi_r \neq \xi$. Let N_{ξ} be a countable set such that f_{ξ} depends on N_{ξ} . Then $f_{\xi} \cdot d_{\xi}, \ldots, d_{\xi_{r-1}}$ depends on $N_{\xi} \cup J_{\xi_r}$. If $S \subset I_{\xi_r}$ and $S \not\subset J_{\xi_r}$, then $S \not\subset N_{\xi} \cup J_{\xi_r}$ (since $S \not\subset J_{\xi_r}$ and by property (*)). We now use Claim 2.

Case 2. $\xi_r = \xi$, r > 1. Since $I_{\xi} \subset N_{\xi}$, $f_{\xi} \cdot d_{\xi_1}$, ..., $d_{\xi_{r-2}} \cdot d_{\xi_r}$ depends on $N_{\xi} \cup J_{\xi_{r-1}}$, and $d_{\xi_{r-1}}$ plays the same role that d_{ξ_r} plays in Case 1.

CLAIM 4. The family $\{f_{\xi}: \xi \in A\}$ is equivalent to the usual l_{α}^{1} -basis.

Proof of Claim 4. Let $\xi_1 < ... < \xi_r < \alpha, \xi_1, ..., \xi_r \in A$ and $c_1, ..., c_r \in R$ for some natural number $r \ge 1$. We set $\varepsilon_i = 1$ if $c_i \ge 0$ and $\varepsilon_i = -1$ if $c_i < 0$ for $1 \le i \le r$, and set

$$g = \prod_{i=1}^{r} (1 - \varepsilon_i d_{\xi_i}) - 1.$$

Thus $g \in L^1 \{-1, 1\}^{\alpha}$ and g depends on a finite set of coordinates. We note that

$$||g||_1 \leq 2$$

since $1-\varepsilon_i\,d_{\xi_i}\geqslant 0$ for $1\leqslant i\leqslant r$ and $\int\prod_{l=1}^r\left(1-\varepsilon_l\,d_{\xi_l}\right)=1$, using Claim 3 (i).

$$||c_1 f_{\xi_1} + \dots + c_{\xi} f_{\xi_r}||_{\infty} \ge \frac{1}{2} |c_1 f_{\xi_1}(g) + \dots + c_r f_{\xi_r}(g)| \quad \text{(using Claim 3)}$$

$$= \frac{1}{2} (c_1 c_1 f_{\xi_1}(d_{\xi_1}) + \dots + c_r c_r f_{\xi_r}(d_{\xi_r}) \quad \text{(by Claim 2)}$$

$$\ge \theta/20 (c_1 c_1 + \dots + c_r c_r) = (\theta/20) (|c_1| + \dots + |c_r|).$$

Since in addition $||f_{\xi}||_{\infty} \leq M$ for all $\xi \in A$, the claim follows.

2. 2.1. THEOREM. Assume MA+ \neg CH. If $\{f_{\xi}: \xi < \omega^{+}\}\$ is a (uniformly bounded) family of elements of $L^{\infty}\{-1, 1\}^{\omega^{+}}$ satisfying the property: there is

 $\varepsilon > 0$ such that $||f_{\xi} - f_{\xi}||_1 > \varepsilon$, for all $\xi < \zeta < \omega^+$, then it contains a subfamily with the same cardinality equivalent to the usual basis of $l_{\omega +}^1$.

Proof. The proof goes along similar steps as the proof of Theorem 6.11 in [2]. Namely, a partially ordered set (P, <) will be constructed, with uncountable elements satisfying c.c.c. Then using MA we will get a filter of elements of (P, <), with uncountable elements and this will give us immediately the desired family.

We start with some refinements of the original family $\{f_{\xi}: \xi < \omega^{+}\}$.

Step 1. There is B_1-a subset of ω^+ , with $|B_1|=\omega^+$, and a family $\{A_{\xi}: \xi \in B_1\}$ of finite subsets of ω^+ such that:

- (i) $\int f_{\xi} \Pi_{A_{\xi}} \neq 0$ for all $\xi \in B_1$,
- (ii) if for $\xi \in B_1$, N_{ξ} is the countable subset of ω^+ on which the function f_{ξ} depends and $M_{\xi} = \bigcup_{\substack{\zeta = \xi \\ \zeta = \xi}} N_{\zeta}$, then $A_{\xi} \setminus M_{\xi}$ is non-empty.

The existence of the set B_1 follows from the fact that the family $\{f_{\xi}: \xi < \omega^+\}$ forms a non-separable set in the L^1 -norm.

Without the loss of generality, passing if necessary to a subfamily with the same cardinality, we assume that there is a finite set A with $A_{\xi_1} \cap A_{\xi_2} = A$ for all ξ_1 , $\xi_2 \in B_1$, $\xi_1 \neq \xi_2$.

We assume that $A \neq \emptyset$. Also, because of property (ii), $A \neq A_{\xi}$ for all $\xi \in B_1$. (It may be necessary to except one element of B_1 .) Now $\int f_{\xi} \Pi_{A_{\xi}} d\mu \neq 0$ for all $\xi \in B_1$. Therefore for each $\xi \in B_1$ the function f_{ξ} depends essentially on the whole set A_{ξ} ; namely, if we consider the function $\mathscr{E}_{A_{\xi}}^{\infty}(f_{\xi})$, we can find $e_{\xi} \in \{-1, 1\}^A$, r_{ξ} , δ_{ξ} rationals with $\delta_{\xi} > 0$ such that

$$\left[\mathscr{E}_{A_{\xi}}^{\lambda}(f_{\xi})^{-1}(-\infty, r_{\xi}) \right] \cap \left(\left\{ e_{\xi} \right\} \times \left\{ -1, 1 \right\}^{A_{\xi} \setminus A} \right) \neq \emptyset,$$

$$\left[\mathscr{E}_{A_{x}}^{\lambda}(f_{\xi})^{-1}(r_{\xi} + \delta_{\xi}, \infty) \right] \cap \left(\left\{ e_{\xi} \right\} \times \left\{ -1, 1 \right\}^{A_{\xi} \setminus A} \right) \neq \emptyset.$$

Since cardinal ω^+ is regular uncountable, we can find a subset B_2 of B_1 with $|B_2| = \omega^+$ and r, δ , e such that

$$e = e_{\xi}, \quad r = r_{\xi}, \quad \delta = \delta_{\xi}$$

for all $\xi \in B_2$.

Step 2. Definition of partially ordered (P, <). Our partially ordered set will consist of all finite sets F satisfying the following properties:

- (i) F is a subset of B_2 ,
- (ii) if $A_F = \bigcup_{\xi \in F} A_{\xi}$, then for all $\xi \in F$ there are A_{ξ}^F , E_{ξ}^F such that

$$\Delta_{\xi}^{F} \subset \left[\mathscr{E}_{A_{F}}^{\infty}(f_{\xi})\right]^{-1}(-\infty, r),$$

(a)
$$E_{\varepsilon}^{F} \subset \left[\mathscr{E}_{A_{P}}^{\infty}(f_{\varepsilon})\right]^{-1}(r+\delta, \infty),$$

(b) sets Δ_{ξ}^{F} , E_{ξ}^{F} depend on the set A_{ξ} and

$$p_{\mathcal{A}}(E_{\xi}^F) = p_{\mathcal{A}}(\Delta_{\xi}^F) = e.$$

We notice that from properties of the family B_2 it follows that for all $\xi \in B_2$, $\{\xi\}$ belongs to the set P.

Step 3. Partially ordered set (P, <) satisfies c.c.c. We consider P ordered by the usual set-theoretical inclusion. Let $\{F_{\sigma}: \sigma < \omega^+\}$, be a given family of elements of (P, <). Using Erdös-Rado theorem we find Δ -a subset of ω^+ and F-a finite set such that $|\Delta| = \omega^+$ and for σ_1, σ_2 -distinct elements of Δ , $F_{\sigma_1} \cap F_{\sigma_2} = F$. We consider the case $F \neq \emptyset$. (In case $F = \emptyset$ the proof is similar.)

We set

$$\begin{split} A_F &= \bigcup_{\xi \in F} A_{\xi}, \quad A_{F_{\sigma}} &= \bigcup_{\xi \in F_{\sigma}} A_{\xi} \quad \text{ for all } \sigma \in A, \\ N_F &= \bigcup_{\xi \in F} N_{\xi}, \quad N_{F_{\sigma}} &= \bigcup_{\xi \in F_{\sigma}} N_{\xi}. \end{split}$$

We choose, inductively, a set Δ_1 – a subset of Δ such that

(i) there is natural number $v \in N$ such that

$$|A_{F_{\sigma}}| = v$$
 for all $\sigma \in \Delta$,

- (ii) $N_F \cap A_{F_{\sigma}} = A_F$ for all $\sigma \in \Delta$,
- (iii) for every $\sigma_1 < \sigma_2, \, \sigma_1, \, \sigma_2 \in \Delta_1$,

$$N_{F_{\sigma_1}} \cap A_{F_{\sigma_2}} \subset A_F$$
.

We choose $\sigma_0 \in \Delta_1$ with the property that the set $\Lambda = \{ \sigma \in \Delta_1 : \sigma < \sigma_0 \}$ is infinite.

Properties (ii) and (iii) and Lemma 0.6 imply that

(*)
$$\mathscr{E}^{\infty}_{F_{\sigma} \cup F_{\sigma_0}}(f_{\xi}) = \mathscr{E}^{\infty}_{F_{\sigma}}(f_{\xi})$$

holds for all $\sigma \in \Delta$ and $\xi \in F_{\sigma}$. Here $\mathscr{E}_{F_{\sigma}}^{\infty}(f_{\xi})$ is regarded as an element of $L^{\infty}\{-1,1\}^{F_{\sigma} \cup F_{\sigma_0}}$ by the usual way.

We will prove now that for every $\varepsilon > 0$ there is $I(\varepsilon) - a$ finite subset of Λ such that for every $\sigma \in \Lambda \setminus I(\varepsilon)$ we have

$$||\mathscr{E}_{F_{\sigma_0}}^{\infty}(f_{\xi}) - \mathscr{E}_{F_{\sigma_0} \cup F_{\sigma}}^{\infty}(f_{\xi})||_{\infty} < \varepsilon$$

for all $\xi \in F_{\sigma_0}$.

If this has been proved setting

$$\varepsilon_{\sigma_0} = \min \left\{ \varepsilon_{\xi} \colon \ \xi \in F_{\sigma_0} \right\}$$

where

$$\varepsilon_{\xi} = \min \left\{ \inf \left(\mathscr{E}^{\infty}_{F_{\sigma_0}}(f_{\xi}) \left[E^{F_{\sigma_0}}_{\xi} \right] - (r + \delta), \, r - \sup \mathscr{E}^{\infty}_{F_{\sigma_0}}(f_{\xi}) \left[\Delta^{F_{\sigma_0}}_{\xi} \right] \right\} \right\}$$

Let $\varepsilon>0$ be given. For each $\xi\in F_{\sigma_0}$ the function f_ξ is bounded, consequently L^2 -integrable, and so we can express it in L^2 -norm as

$$f_{\xi} = \sum \{ \alpha_{M}^{\xi} \Pi_{M} \colon M \in \mathscr{P}_{\omega}(\omega^{+}) \}.$$

Also, for every $\Delta - a$ subset of ω^+ , the function $\mathscr{E}^\infty_{\Delta}(f_\xi)$ has in L^2 -norm the expression $\mathscr{E}^\infty_{\Delta}(f_\xi) = \sum \left\{ \alpha^{\xi}_{M} \, \Pi_{M} \colon M \in \mathscr{P}_{\omega}(\Lambda) \right\}$. From this and the fact that $F_{\sigma_1} \cap F_{\sigma_2} \subset F$, for $\sigma_1, \, \sigma_2 \in \Lambda$, it follows that vectors

$$\left\{\mathscr{E}_{F_{\sigma}\cup F_{\sigma_{0}}}^{\infty}(f_{\xi})-\mathscr{E}_{F_{\sigma_{0}}}^{\infty}(f_{\xi})\colon \ \sigma\in\Lambda\right\}$$

are orthogonal. This implies that there is finite $I(\varepsilon) \subset \Lambda$ such that we have

$$\|\mathscr{E}_{F_{\sigma}\cup F_{\sigma_0}}^{\infty}(f_{\xi}) - \mathscr{E}_{F_{\sigma_0}}^{\infty}(f_{\xi})\|_2 < \varepsilon/2^{\nu}$$

for every $\xi \in F_{\sigma_0}$ and for all $\sigma \in \Lambda \setminus I(\varepsilon)$. Since $|F_{\sigma} \cup F_{\sigma_0}| \leqslant 2v$, it follows that

$$||\mathscr{E}_{F_{\sigma}\cup F_{\sigma_{0}}}^{\infty}(f_{\xi})-\mathscr{E}_{F_{\sigma_{0}}}^{\infty}(f_{\xi})||\leqslant 2^{1/2\cdot|F_{\sigma}\cup F_{\sigma_{0}}|}\cdot||\mathscr{E}_{F_{\sigma}\cup F_{\sigma_{0}}}^{\infty}(f_{\xi})-\mathscr{E}_{F_{\sigma_{0}}}^{\infty}(f_{\xi})||_{2}<\varepsilon$$

for all $\xi \in F_{\sigma_0}$ and $\sigma \in \Lambda \setminus I(\varepsilon)$.

Proof of theorem completed. Since the partially ordered set (P,<) satisfies c.c.c., it follows from MA that there is a filter $\mathscr F$ containing uncountable elements of the family $\{\{\xi\}:\ \xi\in B_2\}$. It is easy to check that the family $\{f_\xi\colon\ \{\xi\}\in\mathscr F\}$ is equivalent to the usual basis of $l^1_{\omega^+}$. The proof is now complete.

- 3. Proof of theorem A. (c) \Rightarrow (a): Theorems 1.2, 2.1 and 3.1 that have been proved above give essentially the proof of the implication (c) \Rightarrow (a) for all uncountable cardinals α . Case $\alpha = \omega$ is well known and follows from the fact that a uniformly bounded sequence $\{f_n: n < \omega\}$ of elements of $L^{\infty}\{-1, 1\}^{\omega}$ satisfying property $||f_n f_m||_1 > \delta > 0$ does not contain weak Cauchy subsequence. This holds because of Dunford-Pettis property of $L^{\infty}\{-1, 1\}^{\omega}$. Therefore, by Rosenthal's criterion [12] it contains a subsequence equivalent to the usual basis of l^1 .
- (a) \Rightarrow (c): If $\{x_{\xi}: \xi < \alpha\}$ is a family of a Banach space X equivalent to the usual basis of l_{α}^{1} , then since $L^{\infty}\{-1, 1\}^{\alpha}$ is an injective B-space, it follows that there is bounded linear operator

$$T: X \to L^{\infty}\{-1, 1\}^{\alpha}$$

such that $T(x_{\xi}) = \Pi_{\xi}$ for all $\xi < \alpha$. This proves the implication since $\|\Pi_{\xi} - \Pi_{\zeta}\|_{1} = \sqrt{2}$ for all $\xi < \zeta < \alpha$.

- (c) \Rightarrow (b): It is obvious.
- (b) ⇒ (c): This is an immediate consequence of the next proposition.

3.1. Proposition. Let (X, \mathcal{S}, μ) be a probability measure space and α an infinite cardinal. Then for every uniformly bounded family $\{q_x: \xi < \alpha\}$ of elements of $L^{\infty}(\mu)$ with $||g_{\xi}-g_{r}||_{1} > \delta > 0$ for all $\xi < \zeta < \alpha$ there is a bounded linear operator from $L^{\infty}(\mu)$ to $L^{\infty}\{-1,1\}^{\alpha}$ and $\delta'>0$ such that $||T_{qx}-T_{qr}||_1>\delta'>0$ holds for all distinct ξ,ζ elements of a set Δ_1-a subset of $\alpha \text{ with } |\Delta| = \alpha.$

Proof. By Maharan's decomposition theorem [9] there is sequence $\{V_1, \ldots, V_n, \ldots\}$ (finite or infinite) of elements of the sigma algebra \mathscr{S} pairwise disjoint, with $\sum \mu(V_n) = 1$, and the restriction $\mu | V_n$ is α_n homogeneous for some cardinal α_n .

We choose n such that $\sum_{k>n} \mu(V_k) < \delta/4$. We may assume that $||g_{\xi}||_{\infty} \le 1$

for all $\xi < \alpha$; therefore if $V = \bigcup_{i=1}^{n} V_i$, then

$$||g_{\xi}|V - g_{\zeta}|V||_1 > \delta/2.$$

Let $D = \{i < n: \alpha_i \ge \alpha\}$. By passing (if necessary) to a subfamily we can assume that

$$||g_{\xi}|W - g_{\xi}|W||_1 > \delta/2$$

for all distinct ξ , ζ . Here W denotes the set $\bigcup_{i\in D} V_i$. For each $i\in D$ we choose \mathcal{S}_i , sigma subalgebra of $\mathcal{S}|V_i$, such that $g_{\varepsilon}|V_i$ be \mathcal{S}_i measurable function and \mathcal{S}_1 be α -homogeneous. Then it is immediate that the sigma algebra \mathcal{S}_1 $= \bigcup \mathscr{S}_i$ is a sigma algebra α -homogeneous on the set W. Therefore the probability measure space

$$(W, \mathcal{S}_1, \mu | W/\mu(W) = \lambda)$$

is homeomorphic to $(\{-1, 1\}^{\alpha}, \mathcal{B}, \mu_{\alpha})$ [10]. Now if we consider the induced linear bounded operators T, L

$$L^{\infty}(\mu) \xrightarrow{T} L^{\infty}(\lambda) \xrightarrow{L} L^{\infty} \{-1, 1\}^{\alpha},$$

it is easy to check that the composition of them defines the desired linear operator.

3.2. Proposition. Assume MA+ TCH. Let a be a cardinal with uncountable cofinality and Z a closed subspace of $L^{\infty}\{-1,1\}^{T}$ such that the set

$$\Delta = \{\xi : \exists z \in Z \text{ depending on } \xi\}$$

has cardinality greater than or equal to α . Then Z contains isomorphically a copy of l_{π}^{1} .

Proof. We will prove that there is $\delta > 0$ and family $\{z_{\xi}: \xi \in \Delta\}$ of norm-

one elements of Z with $|A| = \alpha$ such that $||z_{\xi} - z_{\xi}||_1 > \delta$ for all ξ, ζ -distinct elements of a. If this has been proved, then we get the result from Theorems 1.2 and 2.1.

Using transfinite induction we choose family $\{z_{\xi}: \xi < \alpha\}$ of norm-one elements of Z satisfying the property: for every $\xi < \alpha$ there is $M_{\xi} - a$ finite subset of I with $\int z_{\xi} \cdot \Pi_{M_{\xi}} d\mu \neq 0$ and M_{ξ} is not contained in the set W_{ξ} = () N_{ℓ} where N_{ℓ} denotes the countable set on which the function z_{ℓ} depends.

Since $cf(\alpha) > \omega$, there is $\delta > 0$ and $\Lambda - a$ subset of α with $|\Lambda| = \alpha$ such that $|\int z_{\xi} \Pi_{M_{\lambda}} d\mu| > \delta$ for all $\xi \in A$. By our construction it follows that if $\zeta < \xi$, then $\int z_{\zeta} \Pi_{M_{\lambda}} d\mu = 0$, therefore for ζ , ξ -elements of Λ , $\xi \neq \zeta$

$$||z_{\xi}-z_{\zeta}||_1>\delta$$

as we required.

3.3. THEOREM. Assume MA+ \neg CH. If α is a cardinal with uncountable cofinality and X is a Banach space generated by a family $\{x_i: i \in I\}$ and l_n^1 is isomorphic to a subspace of X, then there is a subfamily $\{x_i : \sigma \in J\}$ equivalent to the usual l_{π}^{1} basis.

Proof. Since l_n^1 is isomorphic to a subspace of X, there is $T: X \to \mathbb{R}$ $L^{\alpha}\{-1,1\}^{\alpha}$ -a linear bounded operator such that T(X), regarded as a subspace of $L^1 \{-1, 1\}^{\alpha}$, has dimension α . Since the family $\{x_i : i \in I\}$ generates the space X, it follows that the set

$$\Delta = \{ \xi < \alpha : \exists i \in I \text{ with } Tx_i \text{ depending on } \xi \}$$

has cardinality equal to α .

Therefore $\{x_i: i \in I\}$ has a subfamily equivalent to the usual basis of l_n^1 (Proposition 4.2).

- **4.** 4.1. THEOREM. Assume MA+ \neg CH. Let X be a Banach space and W $=(b\alpha \lceil X^* \rceil, w^*)$. Then for cardinals α with $cf(\alpha) > \omega$ the following are equivalent:
 - (a) l_n^1 is isomorphic to a subspace of X,
 - (b) there is a map $f: W \to [0, 1]^{\alpha}$ continuous and onto,
 - (c) l_{∞}^{1} is isomorphic to a subspace of C(W).

Proof. (a) \Rightarrow (b): If $T: l_{\alpha}^1 \to X$ is an isomorphism, then $T^*: X^* \to l_{\alpha}^{\infty}$ is w*-continuous and onto. The result follows from the fact that $(b\alpha [l_{\alpha}^{\alpha}], w^*]$ $= \lceil -1, 1 \rceil^{\alpha}$.

- (b) \Rightarrow (c): Obvious.
- (c) \Rightarrow (a): Since l_n^1 is isomorphic to a subspace of C(W), it follows that $L^{1}\{-1,1\}^{\alpha}$ is isomorphic to a subspace of M(W) [11]. Therefore there is $\mu \in M(W)$ α -homogeneous. That means that the algebra of Borel subsets of W modulo μ -null sets is homeomorphic to the algebra of Borel sets of $\{-1, 1\}^{\alpha}$

modulo μ_{α} -null sets. Therefore there is $T: C(W) \to L^{\infty} \{-1, 1\}^{\alpha}$ such that T(C(W)) is a w^* -dense subalgebra of $L^{\infty} \{-1, 1\}^{\alpha}$. Consequently, the set

$$D = \{\xi \colon \exists x \in X \text{ such that } x \text{ depends on } \xi\}$$

has cardinality α since $X \cup \{1\}$ generates a dense subalgebra of C(W). Now the result follows from Proposition 4.2.

- 4.2. Remark. Implication (a) \Leftrightarrow (b) has been proved by Talagrand in [16] for all uncountable regular cardinals without any additional settheoretical assumption. Our proof makes use of Martin's axiom only for the cardinal ω^+ . Therefore our result extends Talagrand's result into the class of cardinals α greater than ω^+ and with uncountable cofinality.
- 4.3. DEFINITION. A B-space X semi-embeds into a B-space Y if there is a linear bounded one-to-one operator T from X to Y with $T[h\alpha[X]]$ being a closed subset of Y.

We will prove that

- 4.4. THEOREM. Assume MA + \neg CH. If α is an uncountable cardinal and μ an α -homogeneous probability measure, then semi-embedding of $L^1(\mu)$ into a conjugate B-space X^* implies actually isomorphic embedding of $L^1(\mu)$ into X^* .
- 4.5. Remark. This result extends an analoguous one for $\alpha = \omega$ that have been proved by Bourgain-Rosenthal [13]. Some techniques which will be used in the proof of the above theorem are closely related to methods developed by Bourgain and Rosenthal in the study of semi-embeddings of $L^1[0, 1]$ into B-spaces.
- 4.6. Remark. For uncountable cardinals α with uncountable cofinality the assumption " μ is an α -homogeneous measure" can be replaced by " μ is a probability measure and dim $L^1(\mu) = \alpha$ ". However, in the case of uncountable cardinals α with countable cofinality, the weaker condition does not imply the corresponding result. Indeed, if $\{\alpha_n \colon n < \omega\}$ is a strictly increasing sequence of cardinals with $\sup \alpha_n = \alpha$, then there is semi-embedding of $\left(\sum_{n=1}^{\infty} \bigoplus L^1 \left\{-1, 1\right\}^{\alpha_n}\right)_1$ into the conjugate of the space $\left(\sum_{n=1}^{\infty} \bigoplus \left(C \left\{-1, 1\right\}^{\alpha_n}\right)_2\right)_2$ but no isomorphic embedding can be found.

First we give some auxiliary results.

- 4.7. PROPOSITION [8]. Let X be a Polish space and Y a metric space. If $f: X \to Y$ is an F_{σ} -function (i.e. $f^{-1}(V)$ is F_{σ} -set for all V-open subsets of Y), then, for each K-a closed subset of X, $T|K: K \to Y$ has a point of continuity.
- 4.8. Proposition. Let X be a subspace of a weakly compactly generated B-space and $T: X \to Y$ a linear bounded one-to-one operator. Then

$$\dim T(X) = \dim X$$
.

Proof. Assume the contrary. Then letting Z be the closure of T(X), we have that $\dim Z$ is smaller than $\dim X$. Therefore $(b\alpha [Z^*], w^*)$ has a dense subset with cardinality less than $\dim X$, and since $T^*(Z^*)$ is w^* -dense into X^* , it follows that $(b\alpha [X^*], w^*)$ has a dense subset with cardinality less than $\dim X$. But this contradicts to the fact that $(b\alpha [X^*], w^*)$ is Eberlein-compact set and so every dense subset must have cardinality equal to $\dim X$.

4.9. COROLLARY. Let X be a subspace of a weakly compactly generated B-space and $T: X \to Y$ be a semi-embedding of X. Then for each K-a closed separable subset of the set ba [X],

$$T^{-1}$$
: $T(K) \to K$

has a point of continuity.

Proof. Let K be a separable closed subset of the $b\alpha[X]$. Then letting Z be the B-a space generated by the set K, it follows that Z is separable. Let $W = T^{-1}(\overline{T(b\alpha[Z])})$. This is a subset of the unit ball of X. Also W is closed and by the previous proposition W is separable.

We prove now that T^{-1} : $T(W) \to W$ is an F_{σ} -function. Indeed, if V is open subset of W, then there is a sequence $\{B_n \colon n < \omega\}$ of closed balls such that $V = \bigcup (B_n \cap W)$ and since T is one-to-one, $T(V) = \bigcup_{n=1}^{\omega} T(B_n) \cap T(W)$. Therefore for each A-a closed subset of T(W),

$$T^{-1}|_A: \Lambda \to X$$

has a point of continuity. Now setting $\Lambda = \overline{T(K)}$ and choosing a point of continuity Tx_0 in Λ , we have that $x_0 \in K$ since K is a closed set and T(K) is dense into the set Λ . Therefore

$$T^{-1}|_{T(K)}: T(K) \to K$$

has a point of continuity.

4.10. PROPOSITION. [3]. If $(X, d), (Y, \varrho)$ are metric spaces with (X, d) complete and $f: X \to Y$ a function satisfying the property: for every compact subset K of X, $f|_{K}$: $K \to Y$ has a point of continuity, then f has a point of continuity.

Next corollary follows from the above proposition and Corollary 5.8. 4.11. COROLLARY. Let X be a subspace of a W.C.G. B-space Z and $T: X \rightarrow Y$ be a semi-embedding of X into a B-space Y. Then

$$T^{-1}$$
: $T(b\alpha [X]) \rightarrow b\alpha [X]$

has a point of continuity

Proof of Theorem 4.4. By Maharam's theorem follows that if μ is a probability α -homogeneous measure, then $L^1(\mu)$ is isometric to $L^1\{-1, 1\}^{\alpha}$. So we will deal with $L^1\{-1, 1\}^{\alpha}$.

Case 1. $cf(\alpha) > \omega$. Since $L^1 \{-1, 1\}^{\alpha}$ is mapped one-to-one into X^* , it follows that X is mapped by the conjugate map w^* -dense into $L^{\omega} \{-1, 1\}^{\alpha}$. Consequently the set

$$D = \{\xi : \exists x \in X \text{ with } T^*x \text{ depending on } \xi\}$$

has cardinality equal to α . So Proposition 3.2 implies that l_{α}^{1} is isomorphic to a subspace of X and by a known result of Pełczyński [11], $L^{1}\{-1,1\}^{\alpha}$ is isomorphic to a subspace of X^{*} .

Case 2.
$$cf(\alpha) = \omega$$

CLAIM. There is function φ in $L^{\alpha}\{-1,1\}$ such that $\|\varphi\|_1 \leq 1$, and $\|\varphi\|_{\infty} \leq \lambda$ and $\|T(\varphi\cdot\Pi_{\xi})\| > \epsilon > 0$ for some $\epsilon > 0$ and for all $\xi \in \alpha - N$ for some finite set N.

Proof. By Corollary 4.11 there is f-an element of the unit ball of $L^1\{-1,1\}^\alpha$, such that T(f) be a point of continuity for the map T^{-1} : $T(b\alpha[L^1\{-1,1\}^\alpha]) \to b\alpha[L^1\{-1,1\}^\alpha]$. So there is $1 \ge \delta > 0$ such that ||f-g|| > 1/2 implies $||T(f) - T(g)|| > \delta$.

Let $\varphi \in L^1$ $\{-1, 1\}^\alpha$ depending on a finite set N be such that $||\varphi|| \leqslant 1$, $||f-\varphi|| < \varepsilon_1 = \min(\delta/4(1+||T||))$. Since φ depends on a finite set N, φ is bounded and let $||\varphi||_{\infty} = \lambda$.

Let $\xi \in \alpha - N$. We will prove now that

$$||T(\varphi \cdot \Pi_{\varepsilon})|| > \varepsilon = \delta/2.$$

Indeed, since Π_{ξ} does not depend on the set N, it follows that

$$\|\varphi - \varphi \cdot \Pi_{\xi}\| = \|\varphi\| \cdot \|1 - \Pi_{\xi}\| = 1,$$

and so

$$||T(f)-T(\varphi)+T(\varphi\cdot\Pi_{\delta})|| \geq \delta.$$

So

$$||T(\varphi \cdot \Pi_{\xi})|| \ge \delta - ||T(f) - T(\varphi)|| \ge \delta - \delta/4 \ge \delta/2$$

as we required, and that is the proof of the claim.

Inductively we choose a family $\{x_{\xi}: \xi \in \Lambda\}$ of elements of the unit ball of X such that

- (i) $|A| = \alpha$,
- (ii) if N_{ξ} is the countable set on which the function Tx_{ξ}^* depends, then $\xi \notin \bigcup \{N_{\xi}: \zeta \in A, \zeta < \xi\}$,
 - (iii) $T(\varphi \cdot \Pi_{\xi})(x_{\xi}) \geqslant \varepsilon/2$.

Now it is easy to establish that for ξ_1, ξ_2 -elements of

$$\Lambda \| T^* x_{\xi_1} - T^* x_{\xi_2} \|_1 > \delta_1 = \varepsilon/2\lambda,$$

and the result follows from Theorem A.

References

- [1] S. Argyros, A short topological proof of a combinatorial result, (to appear).
- 2] On non-separable Banach spaces, Trans. Amer. Math. Soc. 270 (1982), 193-216.
- [3] S. Argyros, S. Negropontis, Universal embeddings of l_x^1 into C(X) and $L^\infty(\mu)$, Coloq. Math. Soc. Janos Bolyai Topology (23) Budapest 1978.
- [4] J. Bourgain, D. A. Fremlin, M. Talagrand, Pointwise compact sets of Baire measurable functions, Amer. J. Math.
- [5] W. W. Comfort, S. Negrepontis, Chain-conditions in Topology, to appear in Cambridge University Press.
- [6] A. Hajnal, Proof of a conjecture of S. Ruziewicz, Fund. Math. 50 (1961), 123-128.
- [7] R. Haydon, On Banach spaces which contain l¹(t) and types of measures on compact spaces, Israel J. Math. 28 (1977), 313-324.
- [8] On-dual I! spaces and injective bidual Banach spaces, Israel J. Math. 31 (1978), 142–152.
- [9] F. Hausdorff, Set Theory, Chelsea, New York 1962.
- [10] D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. USA 28 (1942), 108-111.
- [11] A. Pelezyński, On Banach spaces containing L1(µ), Studia Math. 30 (1968), 238-246.
- [12] H. P. Rosenthal, A characterization of Banach spaces containing l¹, Proc. Nat. Acad. Sci. USA 71 (1974), 2411-2413.
- [13] Lecture in Functional Analysis Seminar, Spring 1981, Austin, TX.
- [14] M. E. Rudin, Martin's axiom, in: Handbook of Mathematical Logic, North-Holland, Amsterdam 1977, 481-502.
- [15] N. A. Shanin, A theorem from the general theory of sets, Comptes Rendues (Doklady) de l'Academie des Sciences de l'URSS 53 (1946), 399-400.
- [16] M. Talagrand, Sur les espaces de Banach contenant l¹(τ), Israel J. Math. 40 (1981), 324 330.

Received April 27, 1981 (1683)

Revised version August 4, 1982