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contained in a paper of Mocanu [7]. Some further corollaries which belong
to this context and which can be proved by an application of the above
results can be found in [1] and [5].

Via completion, the theorem and all the subsequent corollaries are also
valid for normed complex algebras.
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Multivariate spline functions, B-spline bases and
polynomial interpolations II*
by
HAKOP HAKOPIAN (Yerevan)

Abstract, In this paper a new notion for the spline functions of several variables is
introduced and two constructions of B-spline bases for multivariate $pline function space are
given. We construct a multivariate analogue of Hermite interpolation, which in [2] and [3] was
constructed only for k = 2. At the end another natural multivariate analogue of the Lagrange—
Hermite type interpolation is constructed.

1. Introduction. We begin this paper by giving a natural definition of
multivariate spline functions in the case where the knot sequence
{x% ..., x"} = R¥ is in general position, that is, every subset of k-+1 points
forms a proper simplex (this in one dimension corresponds to the case of
distinct knots). This motivates our definition of a multivariate spline function
in the general case.

We construct bases for the linear space Sk, .0 _,r (of all k-variate splines
with a knot sequence {x° ..., X"} < R¥ of order m) consisting of B-splines
with m+k knots from {x° ..., x"}. The first direct construction works only
in the case of some restrictions on knot configuration. Instead of this the
second one is inductive, works in the general case and seems to be more
flexible.

Then we present Hermite’s interpolation multivariate analogue in the
general case, which in [3] was considered only for k= 2.

Finally we give another generalization of Lagrange and Hermite inter-
polations to the multivariate case, which preserves their pointwise nature.

2. On muitivariate spline functions.

DerNiTion. Let x9 ... ,x"eR* be in general position, that is, let every
subset of k+1 points form a proper simplex. A k-variate spline with a knot
sequence |x% ...,x") of order m (m = 2) or of degree m~1 is a function of the

* This paper is part of my doctoral thesis prepared under the supervision of prof.
Z. Ciesielski and submitted at the Gdarisk University during 1981.
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class C™2(R¥) with support in the convex hull of {x° ..., x"} which reduces
to a polynomial of total degree not exceeding m—1 in each region bounded
but not intersected by the convex hull of k points from {x° ...,x"}.

Let us denote by Sk .0, . the linear space of all k-variate splines with
knot sequence {x°, ..., X"} of order m. The following theorem gives the first
construction of a B-spline basis for S% .0

TueoreM ‘1. Let x% ..., x"eR* be in general position, mz2 and let
0<ig, ..., iy— 1 < r be distinct. Then

{M(x}x‘o, rany Xi'""l, ij, ceey Xjk'l)I 0 Sjo,,...,./‘k_l <r

=0)

are distinct and {jg, ..., ju-11 040, .-

" im—l
is a basis for Sk 0 ..

" r—m+1
CoroLLAry. dim % 0 .n =( )

) if x°% ..,x" are in general
position.

First we shall prove the following lemmas. Lemma 1 is due to Micchelli
[5]. Here we give another proof.

Lemma 1. Let x°, ..., x" e R, vol, [x9, ..., xM] # 0,vol, [{x°, ..., x"}\[x}]
#0 for i=0,...,n, where [A] is the convex hull of A. Then

=Y Axti, ¥ k=1
i=0 =0

i
force

)] Mx{x% o XN\ = 3 A M(x[{X0 .., X\ (xH).
. i=0
Proof Let

n
x=Y pxi+ux' with
i=0

> omtu=1, pu#0.
i=0

Then by Micchelli’s recurrence relation (see Th. 4 of [5])
n

D M@Xx% ..., x)= .;o He M, oy X)) 4 M () (X0, L, P X)L
n

. n
But we have also x= Y (y;+pd)x" and of course ¥ (w+pdy) =1, hence
i=0 i=0

Gy MG LX) = Y () M({XC, L, xR,
=0

Now (2) and (3) readily give (1).
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LemMa 2. A function on R* which is zero on one side of a k—1
dimensional hyperplane L and is a polynomial of total degree not exceeding
m—121 on the other side, belongs to C™ 2(R¥ iff it is of the form
et (x, L).

Here g (x, L) denotes the distance from xeR* to L if x is on the (+) side
of L((+) is the side where f is not zero) and zero otherwise.

Proof. Consider a perpendicular line (I) to L. Of course the function on
this line is of the form ¢; 0% !(x, L). And since on the (+) side it is a
polynomial of total degree not exceeding m—1, ¢; is independent of /.

LemMmA 3. Let x° ..., x'eR* be in general position. Then
S¥ ok 1,50,y = (M (%[0, ..., X")| ceR]}.

Proof. We shall prove this by induction on k. The case k=1 is
familiar. Assume that the lemma is true for k—1. Let x"¢[x° ..., x"~!].

Also, let Lbe a k—1 dimensional hyperplane which intersects [x", x'] at
x" s x%for i =0, ..., r—1. Then the inductive assumption shows that every
feS* (i1x0... oOn the hyperplane L reduces to the form of
c-M@Ix°, ..., x™" Y, x'eL.

On the other hand, on each line / passing through x° and x'e L, for all
xe[x", x7] f reduces to the form of c¢-g™ *(x, x"), where o(x, x) is the
distance between x and x". Therefore, if f}, f5€5F_ 41,40, .. then f; = Af;
in some neighbourhood of x" and with the help of Lemma 2 we obtain
fi—AfeSE 1,00, r~1;. Proceeding in this way we obtain f;—1f;

wwwww

note that

M(x[xo, feey x’)eSL‘-H 1,4x0,...,x"}-

Proof of Theorem 1. We divide the proof into three steps.

Step one will show that every B-spline of order m, M (x|x0, ..., x'm+k-1),
where 0< Iy, ..., Lysr—1 < r are distinct, is in the span of the “basis” (just
until the end of the proof).

Let the knot sequence {x'0, ..., x'm+k-1} have o <m common points
with {x'o, ... xim=1}, Then there are k+1 points in
Ixlo, ..., xlmtk~1]\Ixlo | xi"‘“} and Lemma 1 shows that
M(x|x'o, ..., x'm+k=1) is a linear combination of B-splines of order m with a
distinct knot sequence having a+1 points from {x'c, ..., x'm-1}. Hence it is
a linear combination of B-splines having m+k distinct knots from
{x°% ..., x"} and including x'°, ..., x'm~1, that is, M(x|x'o, ..., x'm*k-1) is in
the span of the “basis”.

Step two will show that every spline f from 8% .0, is in the span of

all B-splines haying m+k distinct points from “{x", v, X'}, Let x
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¢[x%, ..., "] and let [x, x'1, ..., x’¢~1] be an internal side of [x°, ..., x"].
Then Lemmas 2 and 3 show that there is a number 4 such that
FO—AM (x}x", X1, ..., %=1, xI0, .. , x'm-1) (where M is a B-spline with
distinct knots) is zero in every reglon bounded but not intersected by the
convex hull of k points from {x° ..., x"} and neighbouring on the side
[x, x'1, ..., x*=1]. Proceeding in thjs way we find a linear combination

fi=2 A M(
@

such that f—f,eSk o -1, Hence we have f—f,—f,—
Sk 1x0,..ck+m=1,. Now it remains to apply once more Lemma 3.

In step three we shall prove the linear independence of the “basic”
functions. If we apply the recurrence relation (see (6) in [4])

(@) Da_ Mxx% ..., x)+(r—k) M(x|x°, ..

x)x", X', ..., ximtk=1)

—'ﬁﬂ-me

LX)
=rMdx0, .., XL X LX),
then it is sufficient to show only the linear independence of the functions

{M (x|, xJ0, ..., X*=1)|0 < jg, .-, Jym1 ST

are distinct and {jo, ..., ju1}N{i0s - sim—1} = @}

Of course the above holds since if

f= % Agy Mo, xlo, ..., x=1) and Ay, = ljgm_‘ 0

o 0

then f is discontinuous at the points of the side [x’g, ..., Xk=17, Therefore
f#0. This completes the proof of Theorem 1.

From the point of view of Theorem 1 it is natural to introduce the
following

DerINrmioN. Let x°, ..., x"eR¥ and vol, [x°,
Sk, 0.2, of k-variate splines with a knot sequence {x°,
the linear span of the set

{M(x|x', ...,

x"]# 0. The space
., X'} of order m is

xim+k—1)l 0 < iO’ ey im-Ht*-l <7’

are distinct, vol [x0, ..., x'm+k=1] 3£ 0}.

The first construction of a B-spline basis can work here if there are
r—m+1 points from {x° ..., x"} which are in general position, Otherwise we
can use the following construction.

Let us denote a B-spline basis for S

L by B* o . Herein

0
fxY, ..,x
" g J,-}

o 'Uow wip §

,

Xy is X

the knot set { v } J; is the multlphclty of x, i=0,...,r and
Jos - Jy

{x°% ..., x"} are distmct knots.
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We shall construct B"l _____ . Using induction on k. The basis
'l]o wip S
B! x0... x,‘ is familiar.
M'UO ]‘
(i) First we shall construct a basis for S“ %0 v,,. Let
. I
x'¢[x% ..., x!" 1], I=p,...,r, where p is determined by the condltlons
voly_([x% ..., x"]#0 and Vol [x% ..., xP"1]=0. Also let L, be a

(k—l)-dimensional hyperplane which intersects [x, x'] at x{#x' for all
i=0,..., [—1. Denote

BY ooty = MOl oo X X0, XM (et o X € BE T 0 oty
'"'Uo Wl H " "Uol ALy
: iy 4 . . .
and X' = Ax'+(1-2)x% 0 <1< 1, 1 <s<q forces iefi, ..., i)}
Then
. r min(jpm—1) ”
(5) B (x0,...,x") U U B'ero Laly e
P geeendy 3 1=p =1 1 geeenndy )

That is, the left-hand side is a B-spline basis for S (x0,. )
gy erendy
The following lemma, which is crucial in the proof of (5), seems to be a

useful recurrence relation,

LemMa 4. Ler y° ..., y™ x% ..., x"eR¥, vol, [°, ..., y™, X90, ..‘,xf"'] #0,
i=0,..,p, 0 j;,, ces ji <. Then if volk[xf"’, ...,xj:'] #0, i=0,...
o P or if x°% ..., x" belong to some I-dimensional hyperplane, 1<k and
vol, [xJO . xf"] # 0,
L4 i i
Yo AMYS, .y X0, L, X =0

i=0

is equivalent to

i AIM(xli{), s x’ﬁ) =0.

i=0

Proof. Without loss of generahty we can prove omly the case
of | =k—1 and m = 0. Now, if x% ..., x" belong to some (k— '1)-dimensional
hyperplane L,..,, we need only apply Theorem 5 from [4] and the equival-
ence is obvious. Otherwise we can assume that x° ..., x" belong to a k-
dimensional hyperplane L,(=R*) in R**!, If we now assume y°eR**'\L,,
the problem reduces to the above case.
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The case y, €L, can readily be obtained by a continuity argument. Now
let us prove by relation (5) that B* { e is a basis. First we show the

J0v ~Jyl
. . : 1-1
linear independence of the “basis”. Since x P [xO, x' 1, I=p,...,r, the
linear independence of B" (0, ) reduces to the linear independence of
110 S

min(jpm-—1)
j=1
This in turn reduces to the linear independence of B*, o 1 because of the
M j e p
recurrence relation (4). Of course the above holds (Lemma 4).
Now take an m-order k-variate B-spline. We can wrne it in the
form of M(x]x! ..., x', X't x'7), where xi¢{x!, ..., "} i=1...r,
J
p<I<r, j<m. We show now that
M (x| x4 ") e Bh US
Y ’{Jo Wy J
Lemma 4 allows us to assume that j=1 and that
=Ix'+(1-4)x* 0<l<l,1<s<q forces

L xt x,...
fieq S

iefiy, ..., i}
This completes the proof since the restriction of M (x|x} x'!, ..., X9 to the
hyperplane L; is M(x|x;*, ..., x).

The second construction of a B-spline basis is more flexible and prefer-
able since it allows us to make the supports of basic functions “small”,

(i) I x° ..., x" are in general position, we have
m x0..... z Bml(.x ‘):
where
i I i
Bf"‘u = {M(x|x!, X", ..., x9| M(x]x;ll, o \1 )eB,,, 1 0.l NS

2. Multivariate divided difference and interpolation.

DerFINITION. Let x% ..., x e R%, vol [x%, ...,x"] 5 0, a = (0ty, ..., o), lo]
=o+ ... +o4 =r—k+1 and let f be sufficiently smooth. Then the k-variate
a-divided difference of the function f at x°, ..., x" is

[x° ..., P f: =£—' jk M(x|x°, ..., x") - D* f (x)dx,
R

S (6; s
DP=f—1) . |l=—], ad=ad... 0!
(33‘1) ka) : &

where
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and

[x o X1 = (k= 1)1 Ith =f{x% .., ¥

1x0,....xk]
Above we have denoted, as in [5]
§ fi=[fox’+ .. +v,x)dv, ... dv,,
"] .
where

Q' = {(vl’ T vr)l i ‘;i < 1
i=1

If vol, [x°,

r
vo=1-— % v.

i=1

v20,j=1,.., r} and

.» X' % 0 we have (see [4], [5])
3 S= LM,

']

Taking p=0 in (6) of [3], we obtain (see also [6]) Micchelli’s recurrence
relation

.o XN dx.

- (6 | Dyf=—% m f f
[x0,....x"] IS0 0, Li-1 i+l n
if
y=3y wx, Y =0
i=0 i=0
Now if we take x", ..., x*e{x° ..., x’} such that vol, [, ..., x"] % 0, then
k k
y=12 Mx" and ) ;=0
i=0 i=0
force of course
lo -t b+t "
get|? ¥ x x X
- _ 01 1 1 1
(7 Wy = ot o L i T
1 11 1
where
X1 N1 2y
det [x ’ z} = |
« B oy Xk Y Zx
a B . y

7 ~ Studia Mathematica LXXIX.1
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Hence, if g is given by (7), then

k
8 Df=—- 3% w § S
® [xo}«x"] ’ i=0 [xo,....xli‘l,x'i+1.----=¢’]

Now we give a quick proof of Theorems 1 and 2 of [3].

Tueorem 2. Let x° ..., X" € R be in general position, « = (xty, ..., &), |o|
=r—k+1. Then
0 [x% ..., xS

_ r! (oo ig-1
= (_l)r k+1 7 (k___—l)l o Zi . C?Ovm-lk-lf X s ey X }’
. * 0Sigy g~y SF

k e X0 ... X% IJT’
I [det[o 0 .. 1 |
)] 070,.“,;,:_1: ot o xio xi,c_l '
[I Rl B U T

i guernni—

where

(ii) For any real numbers vy, . _, (0<ig, ..., G~y <r being distinct)
there exists a unique k-variate polynomial P of total degree not exceeding
r—k+1 such that

i e . . ,
P{x ., x* Y =y i, Jor all distinct 0<io, ..., Gy <7

Proof. First we shall prove (ii). Denote by IT,_,. (R the class of k-
variate polynomials of total degree <r—k+1. Since dim II,_,,(R¥

1 N
= (r: ), it is enough to prove that

Vigroip-1=0=0 VO<ig, ...,y <r forces P=0.

The above holds. Indeed, from Micchelli’s recurrence relation (6) it l'olllowg
that [x% ..., x"*P for all «, |o| =!—k+1, and k—1<I<r is a linear
combination of
| P:=P{x°, ..., x* 1) = Vigedgm 1
(0,4 = 1
Now let us prove (). As we mentioned above [x°, ..., x']*f is a linear
combination of

i i . N
S X 1oy ey ST

Let us find ¢ From (i) there exists a polynomial

&
Ty —1°
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Prgyiyey € e 1 (RY such that Py (¥ ..., x* 1) = Land P, _, _

Jo fk—1 . . . . .
OO X T =0 Loy oo q) # Loy oo it—1}. Then we have

0 ria — r -1
Do X P = (k——1> c

iguenig—1"

1

Now if we choose for the recurrence relation in 8)
X0 ..., X1 o, i¢fio, ..., 5y} and y=¢ =(0...1...0), ¢, > 0, we find
]

g — 12

(10) T ooy X Pryy, = C I, o ¥4 6%, P,
€ xio

-1
C=*Ldet[0 1 :,

X'

1
o x X0 ... x*1
det[1 1.1 J

since all the other summands are equal to zero. If we apply relation (10) r—
—k+1 times, we obtain (9). This completes the proof.

The above polynomial interpolation (when x% ..., X" R¥ are in general
position) in one dimension corresponds to interpolation of distinct knots, that
is, to the Lagrange interpolation. .

Now we are going to present the general case, that is, an analogue of
the Hermite interpolation in higher dimension. Let x% ..., xXeR* and
vol [x% ..., x'T#0. Also let &, =1L}, ..., L;p} be the set of all p-
dimensional hyperplanes, 1 < p<k—1, which are spanned by > k points

from {x° ..., x'}. Let us choose YiRy, ..., y¥*eR* such that

span {L3n{x%, ..., XFO{yEEy, ..., yE}) = R,

Remember also that By, 0, . is a B-spline basis for %0 ..

Then we define for the set {x°, ..., '} and a sufficiently smooth function
f the following interpolating parameters:
(i) corresponding to each Lie.%,,

a a
pt1 k
AR A
[xlo....,xi‘] .

where
M(xx'®, ..., x*yeB?
(x}x L a,L‘,I‘n(xo,...,x")’

=0yt ... o Sr—k+1,

d=# {Lin{x° ..., x}} —r+k+a—1—p,
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(ii) corresponding to each knot x' with multiplicity m; > k,
a"l+"'+°‘k "
e oy F ... oy < m—k.
X ... ot ! '
Now the recurrence relation (6) shows that [x° ..., x"J%f for all @, [l
—r—k+1 is a linear combination of the interpolating parameters. It is not

difficult to prove by induction on k that there are exactly parameters.

Hence considerations similar to those in the proof of Theorem 2 (ii) provide:

To every set of (rﬂ numbers (values of interpolating parameters) there
k

is exactly one polynomial Pell, . (R*) whose parameters coincide with
those numbers.

3. Another multivariate analogue of Lagrange and Hermite interpolations.
The interpolation presented below preserves the pointwise nature of
Lagrange and Hermite interpolations.

Let Ly, ..., L, be (k—1)-dimensional hyperplanes in R* such that, for
every k, the hyperplancs Ligs--s Ly 0 <ig, ..., k-1 < 1, have exactly one

k-1’ N
common point X, ; This means that if the equation

k1

A AT+ F AN =0

determines L; , m = 0,..., k=1, then
det A £0, m=0,..., k=1,j=1,...k |
Let the point x;, ., _, belong to m ; _, hyperplanes. Also denote by
o(x, L;;) the signed distance of x from L;, of course
Aox 4 + A x A
0%, L =2 L,
JEP + L+

Then we have

TueoreM 3. If Lo, ..., L, are the given hyperplanes and {x,o,,.,,

-1l

(igs -+-s ix—1)€J} is the set of all distinct X ;> 0 <oy .oy Iy <1, then
Jor arbitrary real number set
I= e <myg i —k, o, ey i-1) €T}

there exists a unique polynomial PelIl,_ . (R¥), such that

aul+ oy — e
Wax P (Xig i 1) = Vigrigey Yig "k 1€I~

Moreover, if m =k for all 0<iq, ..., ix—y ST then

0ol — 1
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(1)  P(x)= Y __ekL)
0SiQ, veuif— | SF J#Eigyumnip— 1 Q(xio...,,l'k_..la L)
Proof. Consider the polynomials

(xiovuv‘ik_ 1)'

,,,,, By
Pfo, ke () .
=(x_xj0'..--jk—1)/111 (=g, Jk—l)ﬂ : olx, Ly)
Bil .. B a=o Q(Xjq... }k~1’L")’
Xjounwg— 1  Lon
where (jo, ..., ji-1)€J, Bit .. +B<m Mjg..iy— —k- They have the fol-

lowing properties:

PILie ell, sy (RY
and
511+...+1k el’-"’_ﬁk (x‘ )
6)(:1 ﬁxﬁl JOredg—1 iQveenrif—1
Lif (fo, ooy g 1) =G -o s 1)y @1y -eny ) = = (1 ---s Bo)s
0 if (fo, vvvs B 1) =Uos - os dim1)s (@1, ooy @) # (Brs -+ -s B,

= a+ ot <P+ L+ B
or if (ip, .-, ik—1)€J, (ig, ..oy ig=1) # (os ---

o+ ... +ak<mio....‘ik_1_k‘ .

Of course this gives us a way of constructing P(x). On the other hand,
dimIT, . (R =4I, and this completes the proof of the first part.
Formula (11) can be readily checked directly.
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