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Abstract. The first part contains some theorems about the order-topological properties of
the quotient space of a o-Dedekind complete and intervally complete locally solid Riesz space
(L, ) by the largest ideal L, such that 7]L, is a Lebesgue topology. These theorems are a
generalization of some Lozanovskii’s results from [7] and our proofs are slight modifications of
Lozanovskii’s methods. In the second part it is presented a very simple proof of the fact that I/L¥ is
an abstract M-space (I¥ denotes a Musielak-Orlicz space and I its subspace of elements with
absolutely continuous norm). A broad class of Orlicz spaces I? whose quotients L7/L%, have no weak
units is also indicated.

Let (L,t) always denote a Hausdorff locally solid Riesz space. As
concerns the terminology of Riesz spaces (= vector lattices) and locally solid
Riesz spaces, we refer to [1]. Moreover, for xeL, let C(x) be the set of
components of |x|, i.e,

C(x) = {peL: p n(x|—p) =0}.

The projection onto the band generated by an element xeLwill be denoted
by P,.

1. General case. The theorems presented below were formulated, for
Banach lattices, by G. Ja. Lozanovskii in [7]. It appears that Lozanovskii’s
results remain true also for intervally complete (L, 7) with L being o-Dedekind
complete. Lozanovskii uses in his proofs some facts which are interesting in
themselves and which are not proved in [7]. We separate these facts and give
their complete proofs under essentially weaker assumptions (Lemmas 1, 3 and
6). The main parts of proofs of our more general theorems are practically the
same as Lozanovskii’s proofs, but for convenience of the reader we indicate
them.

Distinguish the largest ideal L, in (L, 1) such that 7L, is a Lebesgue

.topology, ie.,

L, ={xeL: lx'l > x, | 0 implies x, 5 0}..
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The ideal L, is t-closed and it may be trivial, in general. We shall always
assume that

L, is a proper ideal in L.

The letter Q will be reserved for the canonical homomorphism from L onto
L/L,, and N will denote the set of natural numbers.

We start with the following lemma:

‘LemMma 1. Let (L, t) be intervally complete with L having the principal
projection property. If xe L., \L_,,, then there exist a t-neighbourhood of zero
U and a sequence (q,) = C(x ) of disjoint elements with q,¢U for all n.

Proof. Denote by Id(x) the ideal generated by xeL,\L,. We claim
7/Id (x) is not a pre-Lebesgue topology. In the contrary case, let (J, ) be the
topological completion of (Id(x), 7/Id(x)). The topology |Id(x) is intervally
complete, hence by [1] Theorem 7.3, Id(x) is an order dense ideal in J; in
particular, Id(x) is a regular sublattice in J. Moreover, T is a Lebesgue
topology (see [1], Theorem 10.5). Therefore, taking z,eld(x), z, 10, z, < x,
we obtain z,]0 in J (regularity) and z, 50. Thus z,-%0 and xeL,, a
contradiction.

According to [1] Theorem 10.1, there exists an order bounded sequence
(x,) of positive disjoint elements from Id (x) with x, - 0. Let ax be an upper
bound of {x,: neN}. The elements y,=a'x, are disjoint, y, < x and
Vu ¢ U for some solid t-neighbourhood of zero U and some subsequence (r).
The elements g, = Py”k (x) are the desired components.

Now, using the above lemma we can formulate the first property of

L/L,:

THeorREM 2. If (L, t) is intervally complete with L being o-Dedekind

complete, then (L/L,), = {0} (in particular, L/L, is a non-atomic lattice).
Proof. Suppose (L/L,),  {0}. Take a positive element x¢ L, such that
Q(x)e(L/L,)4. By Lemma 1 there exist a sequence (g,) of disjoint compo-
nents of x and a solid t-neighbourhood of zero U with ¢,¢ U for all n. Let
{N}iz; be a decomposition of the set N consisting -of infinite disjoint sets.
Denote x; = sup{q,: neN;}. We have x;¢L, (see [1], Theorem 10.2 and
10.1). The elements Q (x;) are disjoint and Q(x) is an upper bound of them.

Let V be a solid t-neighbourhood of zero such that V4V« U and let
zeL,. We have x,—z¢V for every i, because |x;—z| = |g,—z A ¢, for all
neN; and z A q,50. Thus Q(x)¢Q(V), so Q(x;)-# 0. Therefore, see [1],
Theorem 10.2, Q(x)¢(L/Ly), and we have got a contradiction.

To the end of the paper we shall work under the additional assumption

that

L, is order dense in L.

In further considerations we shall need the following modified version of
Lemma 1:

icm

Order-topological properties of L/L, 141

Lemma 3. Let (L, t) be intervally complete. For every xeL, \L, there
exist a sequence (g,) = C(x) N L, consisting of disjoint elements and a solid
1-neighbourhood of zero U such that q,¢U for all n.

Proof. The interval completeness implies the Dedekind completeness
of L, (see [1], Theorem 10.2 and 10.1), so x =supi{x,: ae.e/}, where
0 < x,e L, are pairwise disjoint (see [1], Lemma 23.15). The elements x, are,
of course, components of X.

Moreover, x = sup {p;: §€4}, where 4 is the family of finite subsets of
o/ and p; = Z x,. The net (p;) increases to x, but it is not r-convergent (L,

is closed !). Therefore the net (p;) does not satisfy the Cauchy condition, i.e.,
there exists a solid z-neighbourhood of zero U such that for every finite
subset d, there is a finite subset & > do With p;—p, ¢ U. Take an arbitrary
finite 6’ and a finite set 6, = §' such that
Z Xy == D5y — Do ¢U.
aedy\&'
In the next step take §, o, with

gz = Z

aedy\dy

Xg =P52"P51¢U-

Proceeding in this way we shall construct, by induction, a desired sequence
of components.

The next theorem says about another property of L/L,:

Tueorem 4. If (L, ) is intervally complete with L being c-Dedekind
complete, then every positive element yeL/L, majorizes a family having the
power of the continuum and consisting of pairwise disjoint elements.

Proof. Let y=0Q(x)>0, where x>0, let (¢q,) = C(x)nL, be as in
Lemma 3. Denote by (N,) a family of the power of the continuum of infinite
subsets of N which are almost disjoint, i.., N, n N, is finite for all « # f. Put
x, =sup {q,: neN,}. Then x,¢L, because x, majorizes a sequence of dis-
joint elements which does not converge to zero. Moreover, ¥ > Q(x,) and

O(x) A Qlxg) =

because g,eL, and N, N Ny is finite,

Now we give necessary and sufficient condition for the quotient top-
ology on L/L, to be o-Lebesgue. But before doing this we have to prove some
sublemma and lemma. i

SuBLEMMA 5. Let L be a Riesz space with the principal projection
property. If K is an order dense ideal in L, then every x€ L, is the supremum
of an increasing net (ps) of components of x belonging to K.

Proof. Fix xeL, and a net (xg) = K with 0 < xs1x. According
to Freudenthal's spectral theorem, there exist elements g;, (jeN) such that

Q(sup {g,: neN, N N;}) =0,
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m;
J

0<gq;;1;xs and every g;, has the form ¢;, = 3 a5, where s;eC(x),
i=1

s; A sy =0for i #k and g; > 0. The relation ¢;, < x implies a;&(0, 1], and
SO

mj
GipStp= \\/l s5eCx)nK.
i
Moreover, supt; ; = x. Let 4 be the family of all finite subsets of N x B. Then
Y]

ps=sup{t;s: (j, Hed}eC(x)nK and pstx.

LemMa 6. Let © be a Hausdorff Fatou topology on a Riesz space L
with the principal projection property. If x,10 and x,5 0, then there exist
a sequence (q,) of disjoint elements with q,eC(x,)nL, and a solid z-
neighbourhood of zero V such that q,¢V for all n (we assume, as usual, L, to
be a proper order dense ideal in L).

Proof. Since x,--0, then x,¢V+V for all n and for some solid

order closed 7-neighbourhood of zero V. In particular, x,¢ ¥, so by Sub-
lemma 5 there exists a projection P; onto some principal band with g,
= P, x; € L,\V; the Riesz space Lhas the principal projection property, thus
every component of an element xe L, has a form P, x. Moreover, P, x,eL,
and Py x, = 0. Denote Q; = I—P,. Take a solid t-neighbourhood of zero V;
such that V; +V; < V. It must be Q, x,¢ V+¥;. Indeed, the set ¥+ ¥, is solid,
so in the contrary case Q, x,eV+V; for large n. But x,= P, x,+Q, x,&
Vi +V+ VW, for sufficiently large n. In other words, x,eV+V for large n, a
contradiction, .

Since Q, x,¢V for all n and Q x,¢ L, using Sublemma 5 again we find
a projection, P, onto some principal band such that g, = P,Q, x,eL,\ V.
We have g, A g, =0. Moreover, P,Q, x,eL, for n3> 2, and so P,Q, x, > 0.
Denote Q, =Q;—P,Q,. Let ¥, be a solid z-neighbourhood of zero with
Va+V2 = V;. Then @, x,¢ V+ V; for all n. Of course Q, x,¢L, and Q, x,¢ V.
Proceeding as above we construct, by induction, a desired sequence of
components.

Some weaker Hausdorff Fatou topology 7" can be associated with the
topology t. A base of t"-neighbourhoods of zero is the following:

UY ={xeL: [0, |x]]nL, = U},

where U runs some basis of solid order closed 1|L ,-neighbourhoods of zero in
L, (zV. is the topology induced by the topology of the maximal topological
extension of (L, 1|L,)—see [11]).

TaeoreM, 7. For intervally complete (L, 1) with L being o-Dedekind
complete the following conditions are equivalent:

(i) The quotient topology of L/L, is a o-Lebesgue topology.
(i)y x,10 and x, %0 imply x, 0.

icm
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Proof. (i)=(i): Let x,]0 and x, % 0. It must be Q(x,)}|0. Indeed, if
Q(x,) = Q(x), where xeL,\L,, then x—x A x, =y,eL, and x—y,%0.
Thus (y,) is an order bounded t-Cauchy sequence because 7V|L, =1|L,4.
Therefore xeL,, a contradiction.

Now we show that x, > 0. Let U be an arbitrary t-neighbourhood of
zero. Find a solid t-neighbourhood of zero ¥V with V+ V< U. Since t|L, is a
Lebesgue topology, there exists a solid order closed t|L -neighbourhood of
zero W included in VN L.

The quotient topology is a o-Lebesgue topology. Thus Q(x,)€Q (V) for
large n. In other words x,—z,eV for some z,eL,. Moreover,

Ixn"xn A Izn” < |xn_lznll s |X,,—Z,,I

and the solidity of V implies x,—x, A |z,|€ V. We have also x,e W" for large
n. Hence x, A |z,le W for large n. Finally

Xp = (xn—xn A lznl‘)+xn A lzn! eV+WeU
for sufficiently large n.
(i) = (i): Suppose Q(x,)| 0. We can assume x, | O (see [8], Lemma 65.5).
It must be x, % 0. Indeed, in the contrary case let (g,) be a sequence as in
Lemma 6. We have g, < x;, so p=supgq, exists in L and p¢L, because

q,,l»O, Moreover, for all k,
k-1 k-1
p=sup g+ ¥ 4<%+ ) 4
nzk i=1 i=1 3
and so Q(p) <Q(x) and of course Q(p) > 0. Therefore we have got a
contradiction. '

The conclusion arises now from (ii) and from the continuity of the
operator Q. :

It is obvious that if ¢ is a Fatou topology, then ¢ =", so in this case
the quotient topology is o-Lebesgue.

The next theorem says that L/L, is not a o-Dedekind complete Riesz
space. More precisely, we have:

Tueorem 8. Let t be a Hausdorff Fatou topology on a c-Dedekind
complete Riesz space L. If (L, 1) is intervally complete, then no non-zero ideal
in L/L, is o-Dedekind complete.

Proof. Let Y be an arbitrary non-zero ideal in L/L,. Fix a positive
xe L with 0 < Q(x)e Y. Let (g,) be a sequence as in Lemma 3. If {N;};2, is a
decomposition of N consisting of infinite disjoint subsets, then denoting x;
= sup {g,: neN,} we have Q(x;) + 0 (see the proof of Theorem 2). Moreover,
Q(x) < Q(x) for all i, but the supremum of this sequence does not exist. Indeed,
if w=sup Q(x;) existed, then by virtue of Theorem 7 we should obtain

w— 3 Q(x)—0, which is impossible because Q(x;)-+ 0.
i=1
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Remark. Theorem 8 is proved in [7], for Banach lattices, without the
assumption “r is a Fatou topology”.

2. Particular case. The second part will be devoted to special quotients
of the form L/L,, namely to IY/IY,, where IY is a Musielak-Orlicz space.

Let (S, Z, w) be a positive measure space. A function : [0, co)x S
— [0, o] is called a Musielak-Orlicz function if, for all seS and re[0, o),
the following conditions are satisfied:

1) Y(-,s): [0, 0) = [0, 0] is left continuous, continuous at zero,
non-decreasing and ¥ (r, s) = 0 iff r =0,

W2) y(r, ) S—[0, o] is Z-measurable.

The class of Musielak-Orlicz functions contains, of course, Orlicz func-
tions, i.e., functions @p: [0, 00) = [0, co]] with properties listed in (¥1).

Every Musielak—Orlicz function y generates some space of measurable
functions I¥(S, X, u) (called a Musielak-Orlicz space):

(s, Z,u

= {xe (S, Z, @): my(tx) = [Y(t|x(s)), s) du < oo for some t > 0).

Here I9(S, X, 1) is the space of all u-equivalence classes of measurable real-
valued functions on S. We shall often write IV instead of L¥(S, X, u), and I
when 4 is the counting measure on N. The symbol 1,, will denote the
characteristic function of the set B.

A Musielak—Orlicz space is a super Dedekind complete Riesz space with
respect to the standard order: x <y iff x(s) < y(s) u almost everywhere.
Moreover, the formula '

IIxlly = inf{r > 0: my(x/r) <7}

defines a momnotone F-norm on LY and IY is || -||,-complete. Thus (L, || -|l,) is
an F-lattice (= topologically complete, metrizable locally solid Riesz space).
For convenience, we shall suppress the letter ¥ in the symbol || -||,. It is easy
to see, that ||-|| is a Fatou F-norm, ie., 0 < x, 1 x implies [|x,]| 1(|x||, and that
IY has the o-Levi property, ie, whenever x,7 and (x) is topologically
bounded, then the sequence (x,) has the supremum in IV,

The functional m = m,, appearing in the definition of a Musielak-Orlicz
space is called the modular (generated by i) and it has one important
property:

(*) m(x v y)+mx A y)=m(x)+m(y) for
Another property of m is a simply consequence of (*):
(xx)  m(ax+by) <m(x)+m(y) forallx, yel¥,a, b>0, a+b=1

(for details see [9] and [10] or [12]).

x,y20.
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The convergence in the F-norm |||| can be expressed in terms of the
modular m:
1%l =0 iff  m(rx,) -0 for every r > 0.

In investigations of Musielak~Orlicz spaces the following subspace is

important:

Lh=1I4S, 2, gy = {xeL’: m(rx) < oo for all r > 0}.
We have L“f’ < I, and this inclusion is proper, in general. Indeed, let
(S, Z, w be the direct sum of the measure spaces: [0, 2] with the Lebesgue
measure and N with the counting measure. Deﬁne Y(r,s)=r for
(r,5)e[0, 00) x [0, 17U[0, 13 x(1,2]U[0, 00) x {2,3,4,..., y(r,s) =r*(1—r) "1
for (r, s)e[0, 1) x {1} and ¥ (r, s) = oo for (r, s)e(l, oo)x(l 2Ju[1, o) x {1}.
Then I¥ (S, Z, p) = L1 [0, 11@L°[1, 2]@1, Iy = £ [0, 1101, I} = I [0, 1]
@®{xel': x(1) =0}. This example also shows that I}, need not be order
dense in LY.

If ¢ takes only finite values, ie., y: [0, c0) xS — [0, co), then I¥ = I¥,.
The assumption that v is finite va]ued ensures also the super order density of
L} in IY. Indeed, for arbitrary Musielak-Orlicz function Y the following
theorem gives conditions equivalent to the super order density of L in I¥:

THEOREM 9. Let A, = {s: y(r,s) = oo for some r > 0}. Then the fol-
lowing conditions are equivalent:

(a) B is super order dense in I¥.

(b) u(Aenis: x(s) % 0}) =0 for every xel’.

(b) p(4,) =0 or p(ZnA,) =10, co}.

(c) For every xe L, there exists a sequence (A,) in T such that x1 4, Tx
and 1, elf.

Pro of. See [12], Theorem 1.3.

Therefore, by virtue of conditions (b) and (b’), the assumption that  is
finite valued is practically equivalent to the super order density of I in LY.

In further parts of the paper we shall always consider only ﬁmte valued
Musielak-Orlicz functions. We shall also assume I¥ # I, (so the function
cannot satisfy the generalized 4,-condition, see [12], or [5], inequality 5.7).
The letter Q will denote, as usual, the canonical homomorphism from I¥
onto I¥/LY.

We recall that a monotone norm |[|-|| defined on a Riesz space Lis an
M-norm if |[x v y|| = ||x]| v [}y]| for x, yeL, (see [1]).
TueorREM 10. The quotient F-norm |||-]|| on I¥/IY is an M-norm and

NQ ()| = inf {r > 0: m(x/r) < 00}  for all x in I¥.
Proof. Let p: I¥ —[0, o) be the functional defined by the formula

p(x) =inf{r > 0: m(xfr) < o0}.


GUEST


146 W. Wnuk

It is easy to verify that p is a monotone semi-norm on o and. Kerp = I¥,.
Moreover, p(x vy) =p(x) v p(y) for x, y>0. The inequality p(xv y)
> p(x) v p(y) holds by the monotonicity of p. To verlfy the inverse 1nequd1-
ity, let k>p(x)vp(y. Using (%) we obtain mk™(x v y) < mk™x)+
+m(k™'y) < oo, and so p(x v y) <k

Since Kerp =I%, p(x) =p(x—y) <|x—)y for all xel¥ and yell,.
Therefore p(x) < [|@ (x|l Let xe LY, and take any number r > O such that
m(x/r) < 0. The super order density of IY in I implies m(r™*(x—x,)) —0
for some increasing sequence (x,) in Lf,. Thus m{r~'(x—x,)) <r for suf-
ficiently large n. In other words |x—x,)| <r for large n. But x,eLf, so
1@ (Il < r. Therefore [|Q (||| < p(x), and finally [I|Q (o)l = p(x). -

We proved that the quotient F-norm is, in fact, a norm, moreover, it is
an M-norm. Indeed, Q is a Riesz homomorphism, so if Q (x) = 0, then we can
assume x = 0. Thus we have

Qe v @Ol =R v ylll =p(x v y) = p(x) v p(y) = I CANIl v I W

for Q(x), Q(») =0

‘Remark. The equality ||Q(x)|ll = p(x) was observed, in the case of
Orlicz spaces, by R. Leéniewicz (see also [3]). In this situation the order
density of I¥, in LV is trivial because all integrable simple functions belong to
LY. The above theorem, for convex Orlicz spaces, is due to De Jonge (see
41, § 2).

o I§t i)s interesting that a Musielak-Orlicz space 1Y may be highly non-
locally convex, but its quotient Lf/I¥, is always a Banach space. Hence,
whenever I¥ # IY, then the dual of I¥ is always non-trivial.

Every Musielak-Orlicz space I¥ (S, X, ) over a g-finite measure y has a
weak unit ecI¥\I¥. Indeed, the o-finiteness implies the existence of a
countable complete disjoint system (x,) < L% . Let (t,) be a sequence of

oG . o

positive numbers such that ) [|t,x,)| < co. The series Zl t,x, is then
n=1 n=1

convergent and its sum ¢’ is a weak unit in IY. If ¢’ e IY, then we can replace
itby e = e’ v x, where x is an arbitrary positive element in IV \ LY, to get a weak
unit in I belonging to I¥\ LY. But there exist many Orlicz spaces I (S, Z, 4)
whose quotient I?/I# does not have any weak unit, as shown by our next
theorem.

Before proceeding, let us recall that an Orlicz function ¢: [0, c0)
— [0, o0) satisfies:

A¥-condition if I K >0 Juy Vuzuy ¢(u) < Ko,
A3-condition if 3 K >0 3up >0 Vuel0, ugl: ¢(2u) < Ko(u).

Tueorem 11. (i) Let ¢ be an Orlicz function not satisfying the AP-
condition and assume that p|Z N B is non-atomic for some set B with 0 < u(B)
<oo. Then the quotient' I?/L%, has no weak unit.
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(ii) Let @ be an Orlicz function not satisfying the AS-condition and assume
that X contains a sequence (B,) of atoms with 0 < inf u(B,) < sup u(B,) < .

Then the quotient I?/I%, has no weak unit.

Proof. (i): Suppose 0 < Q(x)eI?/I%. We can of course assume x > 0.
Since ¢ does not satisfy the 45-condition, we can find a sequence (u,) with
the properties ¢ (2u,) > 2"¢(u,) and ¢(u,) > 1 for all n.

If (B\ {s* x(s) # 0}) > 0, then we choose a sequence (C,) in X consisting
of disjoint sets satisfying the following two conditions:

C,cB\{s: x(s) # 0}, u(C))=(2"@))"* u(B\{s: x(s) % 0}).

Then the function z =supu,, I¢, is in IP\I%, because m(2z) = 0. We have

x A z=0 and hence Q(x) AQ(2) =
a weak unit.

Let now u(B\{s: x(s)+ 0}) = 0. Find a sequence of sets (C,) such that
xlc, €% and xlc 1x (see Sublemma 5). We have u(C, nB) > 0 for large k.
Let (D be a sequence of disjoint subsets of B~ C, with the property u(D,)

=(2"p(u,)" ! p(C, N B). The function z —-supu 1p, belongs to I?\I% and

X Az Xl pe LY. Therefore Q(x) A Q(z)
QO(x) is not any weak unit.

0. However Q(z) > 0, so Q(x) cannot be

0 although Q(z) >0. Thus

(ii): Put B= U B,. The assumptions imply that I?(B, £ " B, pZ nB) is

Riesz (and thus topologxcally) isomorphic to the space I, which is essentially
larger than 1. We will identify these 1som0rphlc spaces.

Let 0<Q(x)eI?/I%. We can assume as usual, x>0 If

#(B{s: x(s) # 0}) < oo, then the set N = {n: (B, {s: x(s) # 0}) >0} is
finite or empty. Fix a positive element ze\1%. We have zlpwelP\l, s
Q(zlyy) >0 and x A zlyy = 0. Therefore Q(x) cannot be a weak unit.

If now u(Bn{s: x(s) # O}) = oo, then the sequence (x,) = (x(B,)) con-
tains infinitely many non-zero terms. The continuity of ¢ at zero and the
inclusion I* = ¢, ensure the existence of a stricly increasing sequence (n,) such
that ¢(2x,) < 27% Denote C = {n}i~,. We have xic€l4. Take a positive
element y = (y)el’\I4, Put z =(z,), where z, =y, for n =n, and z, = 0 for
n¢C. The sequence (z,) does not belong to I and x A z< xlgelf, so
Q) A Q) =

Therefore no element from L?/I%, is a weak unit,

Remark. If I¥(S, £, p) is such that I¥/I¥, has no weak unit, then
IY/LY is not isometric to any space C(K) over a compact K (in particular, is
not isometric to 1*/c,). Indeed, according to Corollary 2 in [6], p. 188, if the
spaces I¥/I¥; and C(K) were isometric, then they would be Riesz isomorphic.
However, these spaces cannot be order isomorphic because C(K) has a
strong unit, while I¥/I¥, does not even have any weak unit.
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Theorem 11 does not cover all quotients of the form L#/I% (¢ denotes
an Orlicz function), It is not difficult to find an example of an Orlicz space 1
possessing a strong unit ue I?\1%; then @ (u) will be of course a strong unit
in If/I%.

Let @(r) = ¢'—1 and let u be the measure on 2~ such that u({n}) =e™"
The element u = (u,), where u, = n for all n, belongs to I’\I% and it is a
strong unit. Indeed, if x = (x,)eI?, then

e " =m(tx) <co for somet >0,

i 1,
(™" —

s0 exp(t|x,—n) = 0 as n— co. Thus |x,| < ™' n for large n. This means that
|x| < Ku for some number K.

Moreover, the Orlicz space constructed above is Riesz and topologically
isomorphic to /™ (the operator T: I* — I¢ defined by T((s,) = (ns,) is a Riesz
isomorphism onto). This fact follows also from the following result:

Tueorem 12. Let (L,||:|)) be an infinite dimensional F-lattice with a
strong unit u. If Lis Dedekind complete and L, is order dense in L, then L is
discrete and Riesz isomorphic to 1™(X), where X has the same cardinality as
any complete disjoint system of atoms in L.

Proof. Notice first that L, L. Indeed, assume L, = L. The space is
infinite dimensional, sq there exists an infinite set C of positive disjoint

elements (see, for example, [2], Corollary 1). Take a countable subset.

{xphey = C. The elements y, = P, (u) are strictly positive and they converge
o
to zero. Thus y = Z ky,, exists for some subsequence (). The element u is

a strong unit, so y tu for some t > 0. Therefore ky, =P, (y) th"k(u)

=ty, for all k, a contradiction.
The order density of L, in Limplies that u = supu,, where u, e L, are

. o
- pairwise disjoint ([1], Lemma 23.15). Therefore u, is a strong unit in the
band B(u,) generated by u,. Hence, by the previous part of the proof, B(u,)
must be finite dimensional. Denoting by X, a complete disjoint system of
atoms in B(u,) with u, =sup X, we obtain that X = (J X, is a complete
a

disjoint system in L consisting of atoms and u =supX. The operator
T: I3(X)— L, defined by
T((t,)) = supt, x
x

has the unique extension to a Riesz isomorphism onto.
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