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The criteria for local uniform
rotundity of Orlicz spaces

by
A. KAMINSKA (Poznari)

Abstract. This paper is concerned with the geometrical properties of Orlicz spaces under
Luxemburg norm, particularly with the local uniform rotundity of these spaces. There were
found criteria for this property in the case of an atomless measure as well as in the case of a
purely atomic measure. It appears that necessary and sufficient conditions for rotundivy,
midpoint local uniform rotundity and local uniform rotundity coincide when the measure is
atomless, but in the case of spaces of sequences it is otherwise, i, the conditions for local
uniform rotundity li¢ “between” the conditions for rotundity and uniform rotundity.

0. In the last years the different geometrical properties of Banach spaces
are strenuously studied. Therefore it is interesting to investigate these
problems in classical spaces, e.g, Orlicz spaces. Uniform rotundity (UR)
(uniform convexity) and rotundity (R) (strict convexity) of such spaces, even
more generalized called Musielak—Orlicz spaces, were exactly examined in
papers [2], [3], [4], [5], [9]. Here we shall consider the relations between
some convexity properties of Orlicz spaces, particularly we are interested in
the property called the local uniform rotundity.

An arbitrary Banach space (X, || [}) is said to be locally uniformly rotund
(LURY), if for each & > 0 and ye X with ||y|| = 1 there is 5 (¢, y) >0 such that
for all xeX with ||x|| =1 the inequality [Ix—y||=¢ implies [[(x+y)/2l|
<1-6(, y).

The space (X, || ||) is midpoint locally uniformly rotund (MLUR), if for
each ¢ > 0 and we X with ||w|| = 1 there exists & (g, w) > 0 such that if x and
y are in X with x| =iyl =1 and {x—yll =, then llx+y—2w|| > 8(e, w)
[8].

Note that in these definitions the equalities ||x|| =1, ||yl =1 may be
replaced by inequalities ||x|| < 1, [[y|l < 1. Moreover, it is known that UR
—LUR — MLUR —R. It will be proved that R — LUR in Orlicz spaces in
the case of atomless measure, but not in the case of spaces of sequences.

Let in the following R be the real line, N the set of positive integers,
(T, £, 1) a measure space, ie, Z is a o-algebra’ of subsets of an arbitrary
set T and p is a nonnegative measure on Z. In the sequel let us suppose that
4 is only atomless or only purely atomic. By ¢ let us denote the Orlicz
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function, ie., ¢: R—[0, +00) is an even convex function such that ¢(0) = 0.

The functional :
I,(x) = ; @(x(1)du

defined on the set of all measurable functions x: T — R is a pseudomodular.
This functional defines the modular space called the Orlicz space and usually
denoted by L, ([6], [7]). The norm introduced in L,, the so-called
Luxemburg norm, is defined as follows:

Ixll, = inf {& > 0: I,(x/e) <1},
where x is a function belonging to L,. The conditions of the type of “4,” are
very important in the theory of Orlicz spaces. Here they will be used very
often. So, we say that ¢ satisfies the condition 4, on whole R, or shortly 4,, if
¢ (2u) < ko (u) for every ue R and some positive k. The function ¢ satisfies
the condition 4, for large arguments [small arguments] if there exist k, Uy >0
such that o (2u) < ko(u) for |ul >u, [Jul <upl, where @(up)>0. The
condition 4, for small arguments is usually denoted by 8, and here it will be
used in this sense.

Recall that ¢ is strictly comvex on an interval [a, b] if o(u+
+9)/2) < (¢ @)+ ¢(v))/2 for each u, ve[a, b], u+v. We also say that the
pseudomodular I, is locally uniformly rotund if for every ¢ >0 and y with
I,(y) =1 there exists (g, y) >0 such that for all x with I,(x)=1 the
inequality I,,(x—y) > ¢ implies I, ((x+y)/2) < 1-8(e, y).

0.1. Lemuma. Let (X, | |) be a Banach space. If f: X =[O0, +o0) is
a convex function satisfying the conditions

() lixll <1 implies f(x) <1 for xeX,

(2) there is M >0 such that f2x)< M if f(x) <1,
then f is uniformly continuous in the ball K(0, 1) = {xeX: |Ix| < 1}.

The proof of this lemma may be omitted because it is almost the same
as the proof of Lemma 4 in [5]. The assumption (2) differs not essentially
from that in Lemma 4.

0.2. Lemma. Let ¢ satisfy one of the following conditions:

(i) 43 if the measure p is atomless and pT = co,

{ii) 4, for large arguments and it vanishes only at zero if u is atomless
and uT < o0,

(iii) 6, (ie, A, for small arguments) if p is purely atomic.

Then for every & >0 there is a 8 >0 such that I, (x—y) <& implies |I,,(x)—
—I,( <e for all xeL, and every yeK,(0, 1) ={zeL,: |iz||, < 1]
={zeL,: 1,(z) < 1}.

In the case of (iii), this lemma was formulated and proved as Lemma 5

in [5]. But applying Lemma 0.1 in the place of Lemma 4 from [5], the proof
is analogous in the remaining cases.
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0.3. Lemma. The Orlicz space L, is locally uniformly convex.iff the
pseudomodular 1, is locally uniformly convex and ¢ satisfies one of conditions
(1), (i) or (iti) formulated in the above lemma.

The proof will be omitted because it is identical as the proof of Lemma
1 in [S]

0.4. LEmMMA. The function

_ 20((u+v)/2)
e +o@)
is nondecreasing in [0, v] for each ve(0, o).
Proof. Since ¢ has the derivative almost everywhere,

Wi = 200+ o0 =20 (@402 '
oW+ @]
If uel0,v], then ¢'(w)<@((u+v)/2) and 2p(u+0v)2) < o W)+e(v).
Therefore h'(u) > 0 for ue[0, v], which shows the lemma.

Remark. The function s defined in the above lemma may behave in the
interval [v, co) in a very different way; it depends on ¢. If we take, for
example, ¢(u) =u?, then h is decreasing on [v, o) for every v > 0. On the
other hand, if we take ¢'(u) = arc tan u, then

lim h(u) = im ¢’ ((u+v)/2)/¢' (1)

u—rcc u—

h(u)

= lim (arc tan(u+v)/2)/arc tanu = 1

u-roc

= lim h(u). But h(w) <1 for all ue(v, w),
U=
because ¢ is strictly convex. This simply implies that h cannot be
monotonous on [v, oc).
0.5. LEMMA. Let ¢ be strictly convex on an interval [ —a, a]. Then for
each ¢ >0, d, d,€(0, al, d; < d,, there exists p =p(s, dy, d;)€(0, 1) such
that

for each v>0. So h(v)=

o (u+0)2) S(L=p){e@) + ¢ @v)2
if lu—v| =& max(Jul, |v]) and max(|u|, |v])e[d;, d;].
Proof. Suppose u>v>0 and ¢e(0, 1). Then ve[0, (1—¢)u] and
ueld,, d,]. If we put

A= (u,v): ueld,, d;] Avel0, (1—-&)ul},
then g(u, v) <1 for all (u, v)e A, where

20 (u+v)2)

§u, v) = P+’
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But the set A4 is compact and the function g is continuous on A, so there
is pe(0, 1) such that the inequality from the lemma is fulfilled. To finish
the proof it is enough to consider the case when u and v are of different
signs. For example, let >0, v <0 and u< —v. Then uz(l—¢v and
ve[—d,, —d,]. But the first inequality is always satisfied by the assump-
tion O <u < —v. Let

B = {(u, v): ve[—~d,, d;] Auel0, —v]}.

The function g is continuous on B and ¢(u, v) < 1 for each (u, v) € B, because
@ is strictly convex on [—a, a]. Then, similarly as in the previous
considerations, there is pe(0, 1) such that the desired inequality holds.
The following simple lemma is proved as Lemma 6 in [5].
0.6. LEMMA. Let u;, v,eR, i =1, 2 and u, <uy; <v; <v,. If @ is strictly
comvex on [uy, v,], then there exists pe(0, 1) dependent on w;, v; such that

o ((u+0)2) < (L—p) (@ W)+ (v))2
for all ueluy, us] and ve[vy, v,].
0.7. Tueorem ([2], [4], [9]). The Orlicz space L, is rotund iff one of the,
Sollowing conditions is fulfilled:
@ is strictly convex on whole R and condition (i) is satisfied,
@ is strictly convex on whole R and (ii) is satisfied,

@ is strictly convex on the interval [ —uy, uy], where ¢ (ug) = 1/2 and (iii)
holds,

where (i), (ii), (ili) denote the conditions from Lemma 0.2.

1. In this part there are given the main results of this paper.

1. THEOREM. Let the measure p be atomiess. Then the following conditions
are equivalent:

(a) the Orlicz space ‘L, is locally uniformly rbtund,

(b) L, is midpoint locally uniformly rotund,

(¢) L, is rotund,

(d) the function ¢ is strictly convex on R and it fulfils condition 4, for
large arguments if uT < oo and condition 4, if uT = 0.

Proof. The implications (a) —(b) —(c) are evident. Also (c)-+(d) by
Theorem 0.7 giving criteria for rotundity of Orlicz spaces, So, to complete
the proof it is enough to show the implication (d) — (a).

First suppose uT < c0. Let e€(0, 1) be arbitrary and I,(x) =I,(y) =1
and I,(x—y) = e where x, yeL,. There exist ¢, k> 0 such that
1.1)

9 Q2e))uT <(1/16)¢  and @ 2u) < k() + ¢ (2¢4)
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for all ueR, by the assumed 4, condition for large arguments. Since
I,(y) <o, there exist a constant ¢ >0 and a set T, « T such that

(12) T, ={teT: [y >c v Iy®) <1/c} and [ @(y(®)du <(1/32k)s.
Ty

Now, we find a constant ¢, > ¢ satisfying

(13) @ ()¢ (ca) <(1/32K)s.
Let
T, = 1teT: |x(t) > c,}.
Denote )
Ty=T\(T,u Ty) = {teT: () < Iy <c} n{teT: x()] < ea}.
Suppose
(1.4) Lo ((x—y) xr,) < (3/4)e.

However, I,(x—y) = ¢, and so
(1.5) L {(x—=Y) xr,ur,) > (/4.
By the definition of T,, we have

el < | o(x@)du<,
T2

and so uTy < 1/9(c;). However, |y(1) < ¢ for te K\ T, and so
I,z ) < 91Ty < @0 @(cs) < (1/32K)e,

by (1.3). Therefore and by (1.2), we get
(1.6) I,(xr,ury) < (1/16k)e.
Thus, from (1.5), (1.1) and (1.6) we obtain

(1/8)e < L((x—y)xr, uTz)
< (k/2) 1, (Xxr, o) +(K/2) Iy Xy or,) + 9 (2¢) BT
< (kf2) 1, (xxr, ory) +(3/32)e.
Hence

(17 L, (xxr, ury) > (5/16K)e.

But I,(x) =1,(») =1 and (1.6) and (1.7) are fulfilled, and so I,(yxry) > 1—
—(1/16k)e and I, (xxry) < 1—(5/16k)¢. Now, apply Lemma 0.2 to the func-
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tions ypr,, Xxry because yyrg, xxro€K,(0,1) and |I,(yxro)—1I,(xxr,)
> (1/4k)e. Then there exists & > 0 dependent only on & such that

(1.8) L((x=y)xr,) 2 6.

If assumption (1.4) is not satisfied, then we have (1.8) immediately, because it
must be 6 < (3/4)¢. Now, let

Ty = {te Tyt [x(t)—y (0] > (3/4) max(ix (1), [y ()}

But 1/c < max (|x()], ly(®)) < ¢, for teT; and ¢ is strictly convex on R, so
applying Lemma 0.5 with 6/4, 1/c, ¢, in the place of ¢, d;, d; we find p > 0,
dependent only on ¢ and y, such that

o((x(+y)2) <1 =p) e (x®O)+ o (@))2
for te T;. Thus ‘
(19) . L(x+y/2) <1
If te T,\ Ty, then
P(x@O—y®) < G/ (p(xO)+ oy ©)),
0/2. But I, ((x—))xr,) = 8, by (1.8), and so

1, ((x=y) x1,y) > 8/2.

By condition 4, for large arguments, we can choose constants ¢s, k, > 0
such that ¢(2c;) uT < /4 and ¢ (2u) < k; @ (u)+ ¢ (2¢,) for each ueR (let us
note that c3 and k,; are dependent only on 4§, then they depend only on ).
Therefore and by (1.10) we have

I (Xxry) + 1, (Vtry) 2 (27k1) (I, (6= ) xrg) —
2 (2/ky)(0/2—6/4) =

—=(p/2) (I (Xxr3) + 1, V2r,))-

and 50 I, ((x— ) troiry) €
(1.10)

©(2cq) MT)
6/2k,,
which implies

I ((x+)/2) < 1—(pd/ak,),

by.(1.9). Thus we found the constant pd/4k, dependent only on ¢ and y
satisfying the last inequality, which in virtue of Lemma 0.3 finishes the proof
in the case of uT'< co. If we suppose uT = oo, then the proof is analogous;
it is even simpler because the assumption of condition 4, allows us to
replace condition (1.1) by the inequality ¢ (2u) < k¢ (1) which holds for each
ueR and some k> 0. In this way the proof of the theorem is finished.
Let us turn to the case of purely atomic measure, ie., we identify T
with N.. Moreover, generally suppose p{n} =1 for each neN. Then the
elements of L, are real sequences and the integral becomes the sum, i.e.
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E o (u,) = Z o(u,) for x =(u,). Such space L, traditionally is

called th; Orlicz sequence space and it is denoted by I,.
2. Now we will prove the following ‘theorem:
2. TueoREM. The Orlicz sequence space 1, is locally uniformly convex if
and only if the following conditions are satisfied:
(1).the function ¢ fulfils condition 6,
(2) (a) the function ¢ is strictly convex on the interval [—uv,, vol, where
plve) = 1,
or
(b) @ is strictly convex on the interval [ —ug, o), where ¢ (uo) = 1/2 and
it fulfils the condition
— 2¢(u/2
lim (/2 <1.
oW
Proof. Sufficiency: Let x = (u,), y = (v,)€l, be such that I,(x) = I,(y)
=1 and I,(x—y) =& where £€(0, 1) is arbitrary. Let us consider a few
cases.

(A) Suppose ¢ fulfils condition 8, and it is strictly convex on the
interval [—uvo, vo]. So wé have the inequality

u=0

21 ¢ (2u) < ko ()
for all |u| < vy and some k > 0. There exists a positive constant’c such that
(22) where E, = {neN: |v,| <c}.

Y @) <(1/8k)e,
Ey

Let us denote
(2.3) E, =N\E,; = {neN: |v,] = c}.
We shall show that there exists [ = 1(g) > O satisfying

(2.4) 2 ou—v) =1
Eo

In order to do this, assume 2 o (u,—1v,) < (3/4)¢, which implies Z o (u,—
—1,) > (1/4)e. Hence and by (21 ) and (2.2), we obtain
(1/4)e < (k/2) Y. o) +K/2) Y @ v,
Ey Eq

(k/2) Y o () +(1/16)e.
Ey
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Therefore
EZ o (u,) > (3/8k)e.
But I,(x) = I,(y) = 1, and solby the above and (2.2),
‘ T o) > 1-(1/ske  and Y o) < 1—(3/8k)¢.
0

Eo

Then
> ow@)= ¥ ou,) > (1/40)¢,
7S £y

and so one can apply Lemma 0.2 with (1/4k)¢ in the place of ¢. Thus we find
a constant I(g) <(3/4)e such that inequality (2.4) will be satisfied. Let us
define the set

EZ = {nEEO: |un_vn| 2 (1/4) max(lun‘s lunl)}
Since max (|u,), [v))e[c, v,] for each neE, and ¢ is strictly convex on
[—vg, vo], by Lemma 0.5 there is p = p(e, y) such that
@ ((U,, +Un)/2) < (1 - p) ((/7 (un) + [ (Un))/z

for each neE,. Hence

(2.9) L((x+2/2) <1=(/2) (T o)+ Y o (v,).
‘ &

E2
If neEy\E,, then ¢(u,—v,) <(/4)(pu,)+¢(v,) and hence

—v,) < lj2. Therefore Y ¢(u,~v,) > 1/2, by (2.4). Hence
Ey

2 o~

Eq\Ep

2 o)+ Y o) =2/ Y ow,—v,) > Uk
Ep Ey Ey

Then in virtue of (2.5),

1, ((x+»)/2) < 1—plj2k,

where the constant pl/2k depends only on ¢ and y. Thus, the space [, is
locally uniformly convex, by Lemma 0.3.

(]3) Let us suppose ¢ is strictly convex on [—ug, u,] and it fulfils
condition 8, and the condition

lim 20 (u/2)/o(u) < 1.
u=0
The last condition is equivalent to the following

(2.6) W2 <(1-q) o w)/2
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for each |u| < vy and some ge(0, 1). There are at most two indices m, n such
that @(u,) > 1/2 and ¢(v,) > 1/2.

1. First, assume that there are exactly two indices m, n where m # n. One
can put m=1, n=2 without loss of generality. Also we may take the
elements u,, v, (n = 1, 2) only nonnegative. Indeed, if for example u; < 0 and
v, =0, then ¢@(u;)>1/2 and ¢@(vy) <1/2, where u;e[—v,, —u,] and
v, €[0, ug]. By Lemma 0.6, we find pe(0, 1) independent of x and y such
that

(P((“1 + ”1)/2) <(1-p (‘P (1) + @ (0))/2.
Hence immediately we have the following inequality
27 L ((x+)/2) < 1=(p/D) (@ () + @ (v1)) < 1 —p/4,

because ¢ (u) > 1/2. .

Let & be the number from Lemma 0.2, where ¢ is replaced by &/8k.
Moreover, let ie N be such that i 5 and &27! < 4.

(a) Let us assume

o)) < 1/2—¢/2%Y or  o(uy) < 1/2—g/21F1.

Since @(u,) > 1/2 and ¢(v;) > 1/2, there is p = p(e)€(0, 1) such that
(P((MH+U")/2) < (1 _p) ((P (un)+ QD(U,,))/Z

holds for n=1 or n=2 Hence, similarly as (27) we get I, ((x+y)/2)
< 1—p/4.
(b) Now, let

(28) 1/2—¢/2* <o) <1/2 and 1/2—g/2*! < @(uy) < 1/2.
But @u;)+e(u,) <1, e@)+v) <1, o(u)>1/2 and ¢(v,) > 1/2, then
29) 12<o(@y) <1/2+¢2%"  and  1/2 < @(uy) < 1/2+¢/2+1.
Let us denote
Ey={neN: n#1,2 An¢E;}
={neN: n=3 Al =¢},
where E, is the set from condition (2.2). Similarly as (2.4) we will show that

(210) Z (p(uu—vn)Z 117
By

" where I, is the constant dependent only on & Indeed, if

Y @(u,—v,) <(3/4)e then
Eo

Y o,—v,) > (1/4)s.

EyO{1,2)
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But, by inequalities (2.8), (2.9),

(211 0 (uy—0,) < o) =@ (0,)] < &/2 < /2°

for n=1, 2, because i > 5 by the assumption. Then Z @ (u,—v,) > (3/16)¢.
Ey
Hence and by (2.2), we get easily

(2.12) Y o(u,) > (1/4k)e.
Ey

Then, by Lemma 0.2, in virtue of I,(x) =I,(y) =1 and inequalities (2.2),
(2.12) there exists § >0 chosen for &8k such that ) ¢(u,—v,) > 5. But

~ N\E;
N\E; =Ey,u 1,2} and so
Z @(un_vn)z
Eg

by (2.11). Putting [, = —&/2'~! we have I} > 0 from the assumption &/2'~!
< §. Since we can always take & < (3/4)¢, inequality (2.10) is thus obtained.
In the following the proof will be analogous to the part of the proof of (A).
Namely, in the definition of set E, we replace E, by E, and [ by I;. Then we
have max(Ju,], [vJ)elc, uo] for each neE, and we may apply Lemma 0.5,
because ¢ is strictly convex on [—u,, tip]. Next, we continue the
considerations similarly, replacing inequality (2.4) by (2.10). Thus we will get
the desired result.

Il. Now, let m=n =1 without loss of generality. Similarly as in I we
may suppose that u;, v, .are nonnegative. If @(u; —v() = (1/2)¢, then
[@(u)— @ (v1) = (1/2) . But

) =1-3 o) and

nz2

8L (uy —vy)+@uy—v))] = d—4/271,

@) =1— ;2 ¢ (vy),
and so
kz (P(u,,)— Z W(D,,)[?

Then there exists, by Lemma 0.2, a constant /, <
such that

(2.13)

(1/2e.

(1/2)& dependent only on &

2 (p(un'—un) = IZ'

n2z2

This condition is always true because if ¢(u;~v,) < (1/2)¢, then Z @ (1~
nz2

—v,) > (1/2)e, by the general assumption I,(x—y)>s Let &, be the
constant from Lemma 0.2 chosen for &= ql,/8k, where gy is the constant
from (2.6). It is evident that we always suppose that §, < gl,/8k. There is
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d > 0 such that
(2.14) Y o(v) <6y,
Ey

where

Ei={neN: n22 Ao, <d}.

If we take x = (u,) such that ) ¢(u,) < l,/2k, then
.
_Z (P(un_vn) <
Ey

Therefore and by (2.13), Z ®(u,—1,)

(k/2)(L/2k +6,) < /2.

= 1,/2, where

EQ—-lneN nz2Alpl =

This inequality is analogous to (2.4) or (2.10). Thus in the sequel the proof
will be similar to the proof of (A) based on inequality (2.4).
Now, let us take x = (u,) such that Y ¢(u,) > l,/2k. We have
Ey

) <0y,

2 ot v)2~u/2) < Y @
Ey . Ey
by (2.14). Therefore
(2.15) ]EZ @ ((un+00/2)~ 3. ¢ (ua/2)| < gly/8k.
1 £y

Moreover,

Z P u/2) < (1-9)(1/2) Z @ (),

by (2.6). Then, by the above and (2.15), we obtain
L((x+»/2)<(1/2) Y o@)+(1/2) ) o)+
N:Eg N.Ey

+(1-9)(1/2) ; @ (un)+qla/8k
1
< 1-(g/2) Y, o (un)+qla/8k
Eq

< 1-(a/2)(1p/20) +qly/8k = 1—ql/8k,

where ¢l,/8k is only dependent on &.

Thus, the proof of the case when there are exactly two numbers u,,, v,
such that ¢ (u,) > 1/2 and ¢(v,) > 1/2, is finished. But the case when only
one number, e.g., U, is such that ¢(u,) > 1/2, may be considered exactly as
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I1; while the case when ¢ (u,) < 1/2 and ¢(v,) < 1/2 for all neN is similar to
the case (A).

Necessity. Supposing that (1) or (2) fail, we get three alternative
conditions:

¢ does not fulfil condition 4,,

¢ is not strictly convex on [—ug, ],

@ is not strictly convex on [—uv,, vo] and lin(n) gifp—((%%zm) = 1.

But, in virtue of Theorem 0.7 presenting the criterion for rotundity of /,,
the only essential one is the last condition. However, even here, we also can
restrict ¢ to be not strictly convex only on the interval [ug, vo]. Then there
are numbers t;, v; €[ug, vy], sequences (u,), (p,) < (0, 1) such that 1, <u,,
u, 10, p, 10 and

o ((ts +v1)/2) = (1/2)  (t) +(1/2) @ (vy),
@ (/) 2 (1-p,) @ (u,)/2

for all neN. Choose v, > 0 such that

2.17)

(2.16)

@)+ e(v) = 1.

Since ¢@(t;)+¢(v,) <1 and ¢(u,) |0, there exist a sequence (m,) = N and a
subsequence (w,) of (u,) such that

(218) 1—1/?’1 < (P(t1)+(P(Uz)+mn(P(W") < 1

for each ne N. Denote by (g,) the subsequence of (p,) due to (w,). Let us put

my+2

y=(v1,02,0,..) and x,=(t, vy, Wy, ..., W,,0,..).

By (2.17) and (2.18), we have ||y|l, = 1 and ||x,||, < 1 for each ne N. Denoting
c= ¢(v;—t;), we have ce(0, 1) and

Lo (y=x/c) = (o1~ t)/c)+my @ (wi/c) > 1,
which implies |ly—x,|, = ¢ for all ne N. However,
L{(0+x)/2(1~g)
2 1/(1=g,)((1/2) 0 (1) +(1/2) @ (t1)+ @ (v2)) + m, o (w,)/2

2 (/2 (0 01)+¢ (02) +(1/2) (@ (t1) + @ (02) + m, 0 (w,)
>

for every neN, by (2.16), (2.17) and (2.18). Then
y+x)/2ll, 2 (1~p)(1~1/2n) - 1,
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as n—oo and [, is not locally uniformly convex. Thus the proof of the
theorem is finished.

Let us recall the criterion for uniform rotundity of J, [5]:

The Orlicz sequence space [, is uniformly rotund iff ¢ satisfies condition
é, and it is strictly convex on [—ug, uy], @(ug) = 1/2, and it is uniformly
convex for small arguments, ie.

— 2 2
— o ((u+au)/ )<
w0 O W)+ @(au)
for all ae(0, 1).
Now, let us compare the criteria for rotundity, local uniform rotundity
and uniform rotundity of I,, presented here respectively as Theorem 0.7,

Theorem 2 and the above theorem. First, we note that uniform convexity of
¢ for small arguments implies the condition

Tm 2¢(u/2)
w0 @)

(*) ,
occurring in Theorem 2. This implication is evident, by Lemma 0.4. However,
there are examples of Orlicz functions, which are strictly convex near zero
without satisfying (*) and strictly convex functions which fulfil (%) without
being uniformly convex near zero.

3. Examples. 1. Let us take a function ¢ for which lim p(u)=b > (,

u=—0

where p is increasing derivative of ¢. Then ¢ is strictly convex, but it does
not satisfy condition (*). Indeed,

liir(l) 20 (u/2)/@ (u) = ligtl) p(u/2)/p(w) =1.

As an example we may take

W= 0, u=0,
P = w41, u#0,
[ul
where ¢ (u) = [ p(t)dr.
[}
2. Now, let
u+1/2, ue(1/2, o),
(1/2u+1/2, ue(1/2%,1/2],
P =< o e
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This function is increasing and left-continuous, Denoting by p. the right-side
limit of p, we have

p(/2) _ L2412t I LR
pe/2) 2RISR 2 2 3172
for each i=1,2,... So, if we take ue_(1/2"“, 1/2“], then
(1/2)ue(1/22,1/2*]  and  p((1/2)u)p@) < p(1/21)/p. (1/27*Y) < 3/4,
Hence :

— p((1/2)u)
@1 lim =~ < 3/4.

Now, let £€(0, 1/2). For such & the intersection of the intervals (1/2**, 1/21,
(1/(1—&) 21, 1/(1—¢)2] is nonempty. If

we(l/2+, 121 A (11 =8) 2%, 11 -6 2] = (1 —~8) 21, 1/2],

then

(L—g)ue(1/2*1, (1—e)/27] = (1/2+1, 1/27.
Therefore ‘

p((1—gu) (1—gu+3/2-1/2 Aol

_ pw)  u+3/2—1/2 >1-1/2:2.
Hence v
— p((1—g)u)

(3.2 il—r)ré @ 1,

for each ee(0, 1/2). Let us put

uf

e = [ p(t)dt.
o
Condition (3.1) is equivalent to the following one:

p((1/2)u) < B3/4) p(w)
for each ue[0, g] and some a > 0. But hence

lu/2| Juef
20u/2)=2 _i p(t)dt < (3/4) | p(t)dt = (3/4) o (u)
0

for |u| < a, which means condition (*) for .
Akimovi¢ showed in [1] that uniform convexity of ¢ for small
arguments is equivalent to the condition
i p((1—¢)u)

<1
w0 P(W)
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for each £€(0, 1), where p is right or left derivative of ¢. Then, in virtue of
(3.2), the function ¢ is not uniformly convex for small arguments, though it is
strictly convex and satisfies condition ( *).
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