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des fonctions entiéres de deux variables (voir [2], Theorem 2.15, ou [10], pp.
329-331).

Le théoréme 2.6 permet d’améliorer les résultats de [5] de la fagon
suivante:

COROLLAIRE 2.7. Soit J — K(A) une fonction analytique multiforme sur C.
Supposons que pour tout AeC, K(A) ait au plus 0 comme point limite (resp.
K (A) soit fini ou dénombrable). Alors ou bien K (1) est constant ou bien il existe
un ensemble fermé F de capacité nulle tel que pour z¢F lensemble des ) tels
que ze K(A) soit discret (resp. dénombrable) et non vide.
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Computing norms and critical exponents of
some operators in LP-spaces

by
T. FIGIEL (Gdarisk), T. IWANIEC (Warszawa) and A. PELCZYNSKI (Warszawa)

Abstract. Among other results we prove the following:
1° Let (f})1<jxn be @ sequence in L such that ||fjl, =1forj=1,2,...,n and

X fll =% ¢ 0 Lol

for every sequence of scalars {c)), for every sequence of unimodular scalars (o), and for every
permutation n of the indices. Then .

n n n
EIJZ Gflezn | Z Al X lefp for 1<p<2,
=1 J=1 =1

1T ctlp<n I 4l %l for 2<p<oo.
J= Jj=1 i=1

29 Let E be a finite dimensional subspace of L. Let P denote either Pg — the orthogonal
projection onto E or PE — the orthogonal projection onto the orthogonal complement of E.
Then sup {p: ||P|[*? = 1} > 2 where |[P|™* denotes the norm of P regarded as an operator
from L*® into L”.

In particular, if E = span {1, ¢"], then sup [p: |[Pgl|™? =1} =4.

Introduction. Evaluation of norms of linear operators in Banach spaces
requires various techniques like the Lagrange multipliers, variational methods,
combinatorial calculations, etc. It is often related to finding the best constants in
classical inequalities.

The present paper consists of three loosely connected parts.

The first one has a general character. Roughly speaking, we consider
there the following problem: Given an operator acting between real
L7-spaces. Under what condition the complexification of the operator has the
same norm as the original operator ? The norms are the same in the case where
the operator acts from LP-space into Li-space for p < g. Our general result is
stated in terms of “mixed norms”. For p = g this fact has been established by
F. W. Levi [5]. :

A consequence of the main result of Section 2 is the following inequality:
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Given n Rademacher functions ry, 7y, ..., 1, (n =1, 2, ...); then for arbitrary

scalars ¢y, €3, ..., Cps
1 n 1 n n
1Y gry@lrdezn~t [|Y r@Pde Y leff (1<p<2),
0 j=1 0 j=1 j=1
1 n 1 n n
Y er@Pd<n™ [|¥ r@pPdt T el (2<p <o)
0 j=1 0 j=1 i=1

Our Theorem 2.1 asserts that in the above inequalities the Rademacher
functions can be replaced by any 1-symmetric basic sequence normalized in
L? (in particular, by a sequence of equally distributed independent random
variables). Moreover, the inequality becomes the equality either for all sequences
of scalars or only for sequences of scalars whose absolute values are equal.

In the third section we study the following phenomenon. Let E be a finite
dimensional subspace of L. Let Py denote the orthogonal (in L?) projection onto
E. Let || Pg||**? denote the norm of Py regarded as an operator from L™ into L”.
Then there is a p > 2 such that ||Pg||®? = 1. Hence if E contains a unimodular
function then the function p — [[Py||*” is constant in some interval 2 < p < p,
and is strictly increasing for p > p,. We call the lower upper bound of p such that
[[Pgl|**? =1 the critical exponent of Pz. We prove that the critical exponent
always exists for Py as for P¥ = “the orthogonal projection on the complement
of E”. We Qiscuss some special cases; in particular, for the projection

2r 2n
1 e N ot
f—»i;t— Jf(r)dH—ET—t ff(t)e ‘dt
0 0

the critical exponent equals 4. This fact requires some delicate computation
involving Gauss’ hypergeometric series.

Finally, in the Appendix we consider the problem of maximizing the
functional

1 1 1
{90 de-[ [g(I de- (] [g(n]*dr)™*
0 0 0
1
for non-increasing g satisfying the conditions 1 Z¢g20and f gtydt = M"*
- . 0
(M > 1 is fixed). It is shown that the problem has a “bang-bang” solution,
1. The norms of complexification and tensor products of operators in L”. Let

(S, 2, 4) be a measure space. Denote by L(u) (resp. LY (1)) the space of all
p-equivalence classes of y-measurable complex-valued (resp. real-valued)
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functions on S. For feL®(y) we put
1 lgagy =171l = (§ L/ mds)? = ([ 1£1Pd) (O < p< o),
11y = 171l = es5 sup S (9]
s&S

Given measure spaces (S;, Q;, ;) (j=1,2) we denote by (S; xS,
Q, x5, g xu,) the product measure space. For feL®(u; xu,) and for
p;e(0, co] (j =1, 2) we put

Wy = (011 o1, 520" s (@)™ i ds)) 2 (max p; < eo),

(0 < p; < 00).

1 1lue,py = ”essslasslllp If (1, Sz)lHLpzmz)

We put
LP() = {feL’(w: Ifl, < oo},
Ly () = L () 0 Lg (),
LVP2 (g x o) = {f e L% (py x po): ”f”pl,pz <o},
LR (uy X pa) = L2 (g X o) 0 L (py X p1z).
Clearly, LPP(uy x pp) = LP (g X ). ) .
Recall that a non-negative functional || - | on a linear space X is a quasi-norm
provided that ||x|] = 0 implies x = 0, [Jaix}] = || {|x]| for all xe X and all scalars o,
and there is a C > 0 such that ||x+y|| < C(||x{| +||yl]) for all X, yeX.
A quasi-normed space (X, || -||) is a linear space X with a quasi-norm || -[|. A

quasi-normed space is a linear metric space with the topology given by a basis of
neighbourhoods of zero,

{{xeX: |Ixl <c}: ¢ >0}

It is well known that the spaces LP(y) and L™V'"2(uy x p,) and their linear
subspaces are quasi-normed spaces; they are Banach spaces iff p > 1, resp.

min(py, p2) 2 1. ) .
If u: X — Y is a linear operator acting between quasi-normed spaces then

llull = sup {{lux||: [IxIf < 1}.

If |ju]| < oo then u is said to be bounded.

Let E; be a linear subspace of L°(u) (j = 1, 2). By E; ®E, we denote the
linear subspace of L°(u, x j1,) spanned by the set {e;®e;: e, €Ey, e;€E,}
where e; ®e, (51, 5;) = e, (s1) e, (55). If E;®E, is contained in LPUP2 (g X py)
then by E, ® E, we denote the closure of E;®E, in L'V (uy, uy). If

P1:P2

p1 = p, we write E; ® E, instead of ElgEz.
P h
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Let E; and F; be linear subspaces of L°(w) and L°(v)), respectively, and )

let u;: EJ~»F be linear operators (j = 1, 2). By u; Qu,: E;QE; —+ F, ®F, we

denote the unique linear operator such thdt (1 ®uy) (e, ®@e;) = uy(e;)Ru,(e;)
for ¢,cE, and e,eE,. Finally, by 1y we denote the identity operator on a
linear space X, and by ujy, we denote the restriction of an operator u: X - Y
to a subspace X; of X.

Now we are ready to state the main result of this section. (For a slightly
weaker result cf. [7], Lemma 2)

THeoREM 1.1. Let 0 < p < q. Let (S, 2, j0) and (T, Q, v) be measure spaces.
Let E be a linear subspace of L"(u1) and let u: E — L2(v) be a bounded linear
operator. Then for every measure space (Z, A, o) the operator

1,0y ®H: L7 (0)®E - L' (o) ®LA(v)
has the unique extension to the bounded linear operator
LA@)y: 12(0) @ E — LP9 (o x V).
14

Moreover, [[X"ul| = |ul|.

Proof. First observe that without loss of generality one may assume 1° E is
finite dimensional, 2° all measures in question are sigma-finite. Indeed, given a
quasi-normed space X, denote by Z (X) the family of all finite dimensional
subspaces of X. Now for 1° observe that for every subspace E of L"(u),

Il = sup {luell: FeF (B)),
1y @3l = sup {11, ®tiell: Fe F (E)}.

For 2° note that for every measure v any separable, in particular, any finite
dimensional subspace of L (z), is isometrically isomorphicto a subspace of L ()
for a sigma«ﬁnite measure t,; furthermore,

11, pie, @il = sup {{|1p®ull: FeF (L (7))}

Assuming 1° and 2° we begin with the case 0 < p < g < 00.Let f1, f3, .., fu

be a basis for E, let g; =u(f) for j=1,2,..., n. Then for every scalars
Cq, €3y +-., C, ONE has

13, sy <01 S sur
Hence for arbitrary functions ¢;(*), ..., ¢,(*) in L*(0),
(13« <IWP {15 50 )
Integratlng against do we obtain

O] ; (J1 2 ¢@g@F v@yro@)<lulr [ [T ¢;@) f6) uds)o(dz).
T j=1 zs j=1

¢;(2) g; W v (d)yie < for z g-a.e.
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Using the Fubini Theorem to the right-hand side of (1) (this is rigorous because
of assumption 2°) we get

® ] ﬁ o2 (01 1) 0(@2) = [ )5l (0

Next we estimate from below the left—hand side of (1). Put a = g/p > 1 and define
Y. Z-L*(v) by
Y@ =|Y ¢;@g () for zeZ.
i=1

Then for the left-hand side of (1) we have the identity

(13 e gt v@Pio(ds) = [ 1@, 0 (@
2T j=1 z

Using the integral version of the Minkowski inequality we get

@3 [1¥ @l (@) > 1] ¥ @)1

(Here we use that o = g/p > 1. Rewriting the right-hand side of (3), we get
@ I ¥ @ @la = (] lji ¢)(2)g; (0 o () @)™
SRR RICS
Combining (1)—(4), we obtain
(11 exO0as0l @0 < [ 1560 @00
equivalently,

12, <0l

The last inequality, in view of arbitrariness of ¢, ("), ...,
definition of the g;’s, yields

<Wl| % el

¢,(*) in L?(0) and the

n n
11,5, ®ull = sup {IljZl i ®Glpa: | 2 €@, =1} < llull.
= j=1
Since the reverse inequality is trivial and since the space L?(6)®E is dense in
IP(c) ® E, we get the desired conclusion for 0 < p < g < oco. The proof in
p

the case g = oo is similar.
The following well-known fact completes Theorem 1.1.
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TueoreM 1.2. Let 0<p<oo, 0<g<oo, 0 <r<oo. Let (S, 2, p),
(T, Q, v), (Z, A, d) be measure spaces. Let E be a linear subspace of LP(y), let
u: E— L#(v) be a bounded linear operator. Then the operator
u®1,,: E®L(0) > L0)®L (0)
has the unique extension to the bounded linear operator
w’®: E® L (o) = L4 (v x0).
pr

Moreover, ||ut" @ = |u]].
Proof. Pick fi, fa, .-, fy in E and ¢y, ¢3, .-
for j=1, 2, ..., n. By the assumption,

. ¢y in L'(0). Put g; = u(f)

“ )y cj(z)gj“zﬂ(v) < full ” 21 ci(z)f}“u’(#) for z g-a.c.
j=1 =

Hence for r < oo,

(1Y @ alan e @ <Il([II Y @ Hlp)"
z j=1 Z j=1

and for r =

esssup || Y. ¢;(2)g;|| < lull ess sup 1Y @5
zeZ j=1 zeZ i=1

The last inequalities in view of arbitrariness of ¢y, ..., ¢, in L'(g) yield
|Iu®1L,@|| < |lull. Since the reverse inequality is trivial, we get the desired
conclusion. )

CoroLLARY 1.1. Let 0 < p € g < 0. Let E; < L7 () be linear spaces and let
u;: E; = L2(v;) be bounded linear operators (j =1, 2). Then the operator

u; @uy: E; ®E, — L (v)) @L(vy)
has the unique extension to a bounded linear operator

v: E; @ E; = L (vy xv,).
P

Moreover, vl = [luy ]| [lua]l.
Proof. Let us put v=u}"? 0™ #0u,; gp. . By Theorems 1.1 and
1.2, [loll < flugll lluall. Clearly, vg, @, =1 ®uy. Thus [|p]] 2 ||uy|[[luy].

The next corollary generalizes a result of F. W. Levi [5], cf. also [6],
p. 175.

COROLLARY 1.2, Let 0 < p < g < o0. Let E < LP () be a linear space and let
u: E - Li(v) be a bounded linear operator. Then for every Hilbert space L*(t) the
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operator .
L2y ®u: L*(V®E - L (@L(v)

has the unique extension to a linear operator

L0y; [2(t) ® B = L*4( x).
P

Moreover, ||X*®u)| = |jul].

Proof. For every pe(0, co] the space L?(z) is isometrically isomorphic to a
subspace, say G, of L (o) for sufficiently rich measure space (Z, 4, ¢). Identifying
L2(7) with G we put 2?0y =%y o where the operator “u is that of
Theorem 1.1. P

Remark. Theorems 1.1 and 1.2 and Corollaries 1.1 and 1.2 remain valid if
complex spaces are replaced by appropriate real spaces.

To formulate the last corollary we need some notation. In the sequel we
shall identify the space L%(u) with the subset of LP(u) consisting of real-
valued functions. If E = L% (u) is a real linear space then by E we denote the
linear subspace of LP(u) generated by E. If u: E— L%(v) is a real linear
operator then i: E > I4(v) denotes the unique linear operator over the
complex scalars which extends u. (Every element of E is of the form e, +ie, -
for some e;, e,€E; we put #i(e; +ie,) = u(e;)+iu(e,).) The space E is called
the complexification of E in LP(y) and the operator i the complexification
of u.

CoROLLARY 1.3. Let 0 < p<.g < 0. Let E be a linear subspace of Lk (1)
and let u: E — L% (v) be a real bounded linear operator. Then ||@] = [[ul}.

Proof. Let 12 denote the 2-dimensional real Hilbert space. Then the
spaces E and L%(v) regarded as real spaces can be identified with I3 2®E‘and

P

13 ® L% (v), respectively ; the operator ii regarded as an operator over the real
2.4

2
scalars can be identified with ‘2u. The desired conclusion follows from the
real counterpart of Corollary 1.2.

2. An inequality for 1-symmetric basic sequences in L”. In this section we
deal with diagonal operators acting from finite dimensional subspaces of L”
spaces spanned by independent symmetric random variables (like the
Rademacher functions and the Steinhaus variables) into I5. We prove some
results which allow to compute the norm of such operators and their
inverses.

We begin with recalling some concepts.

Let X be a Banach space over a scalar field K and let n be a positive
integer. A sequence X;, Xy, ..., X, in X is normalized if ||x| =1 for j =1,

3 — Studia Mathematica 79,3
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2, ..., n; is 1-symmetric if for every sequence of scalars t,, t,, ...,
every permutation of the indices m: {1,2,...,n} = {1, 2,..., n},

IE &l = 112 tr=all

t, and for

is 1-unconditional if

I ] = |1 et
for every sequence (t;) = K and every sequence (g;) < K with [g] =1 for
j=12,...,n
It is well-known that a normalized 1-unconditional sequence is linearly
independent.
By [(f)}=1],, or bneﬂy by [(f})],, we denote the linear subspace of L7 (1)
(resp. L% (w)) generated by a sequence (f))j-, = LP(u) (resp. (f)j=y = L (w)).

By 4 we denote the diagonal operator from [(f})}-,], into If which is defined
by

4% uh) =

Now we are ready to formulate the main result of this section.

THeoREM 2.1. Let (f})}= be a normalized 1-symmetric and 1-uncondztwnal
sequence in LP(u) (resp. in L (n)). Assume:
(1) 1<p<2 Then

(ta) Il = 2] 55,

(1b) either the only elements in the unit ball of [(f)]1, at which A attains
its norm are of the form

(21 ajfj)“_ZIfjH;l with gl =1for j=1,2,..,n
Jj= Jj= *
or the functions fi, f5, ..

(2) 2<p< . Then

-+ fy have mutually disjoint supports.

(2a) b= = |3 o=,
Je= 1

(2b) either the only elements in the unit ball of I at which 4™ attains its
norm are of the form (g;n~ 'Ry with |¢f =1 for j=1, 2,....,n or the
Sunctions fy, fa, ..., [, have mutually disjoint supports.

Our proof of Theorem 2.1 involves several steps. An important role in
the argument is played by the concept of exchangeable random variables.
Recall that a sequence (g)j=, of real y-measurable functions is said to be a
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sequence of exchangeable and symmetric random variables if for every open set
Q<R .

pit: (g;0)=1€Q} = n{e: (69 (D=1 €2}

for every sequence & ={(g;) with g =41 (j=1,2,..
permutation #: {1,2,...,n}={1,2,...,n
The next proposition (cf. [4], Lemma 1.2) goes back to P. Lévy.

., n) and for every

PropPOSITION 2.1. Given a normalized 1-symmetric and 1-unconditional
sequence (f})j-y in Ly (u) there exist a probability measure space (S, 2, v) and
a sequence (g;)j=y = LR (v) of exchangeable and symmetric random variables
such that the map f;—g; for j=1,2,...,n extends to the isometric
isomorphism from [(f)], onto [(g;)],-

Moreover if the f;s have mutually disjoint supports then the g;'s have the
same property.

Sketch of the proof. It is well-known that every finite dimensional
subspace of I%(u) is isometrically isomorphic to a finite dimensional
subspace of I%(ue) for some probability measure po. Moreover, this
isometric isomorphism preserves disjointness of supports of the functions.

Let (T, X, o) be a probability measure space. Let W denote the set of
all N =2"n! pairs (s, ) where & =(g)}-, is a sequence with g = +1

(G=1,2,...,m and =n: {1,2,...,n}—>{1,2, ..., n} is a permutation. Let
S= U 7;5 » be the union of N different copies of T Q= |J Zn. The
(e, m)eW {e.m)eW

measure v on & is defined as follows: if AeQ then A = A, € X,y for some
(e, meW. We put v(4) = N"* ., (A4, where p, ., denotes the measure
corresponding to p, on Z,. Finally, to fieLk(uo) (=1,2,...,n) we
assign the function g;eL%(v) as follows:

g;(s) = ¢; fn(j)(z(s,n))

where for given seS, (g, m) is the unique pair in W such that s =t € T ).
To simplify several formulae it is convenient to introduce the following
notation. For teR and p> 0 we put
(5) (t)? = |t|” sign t.
With this notation we have:
If o) =1t]", p>1, teR, then
(6 @' =py*. ’

First we shall prove Theorem 2.1 for 1 <p <2 in the case of real
functions and real scalars. To this end in view of Proposition 2.1 it is enough
to prove
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ProposITION 2.2. Let 1 <p < 2. Let (f})i=y be a normalized sequence of

exchangeable and symmetric random variables in Li(u) (u ~ a probability
measure). Let

=inf{|Y 4l heR (=1,2,....m), L It)F = 1}.
i=1

Then m = ”2:‘:1 fj”p'(n)“”".

n
Moreover, if there exists a real sequence (a)j-, with 3 lalr =1,
Ji=1

[ Z a; fill, =m and |a,| # |a| for some indices k and | then the functions (f))
have mutually disjoint supports.

Proof. Clearly m < n‘””” Z fill,- Pick a sequence a = ()}~ so that

12a,>a,>.. =0, Za”——l HZ a;fill, = m. The existence of a

follows by a standard compactness argument and from the symmetry
conditions imposed on the f;’s. By the Lagrange Multiplier Theorem theie
exists a Ap€R such that if
t ) =[|Y i ffrdu—2a-(% Itj"~1)

i=1 j=1

(p(tls t2’ Ty

then
dp )
0] (@, l)=0 for j=1,2,...,n

Using differentiation rules and (6) we infer that (7) is equivalent to
(8) 6 a i Ydu=2o(a)r™ for j=1,2,...,n

Multiplying the jth identity of (8) by a; and adding all of them together “by
sides” we get

] lj; & fifPdu = 4o Z::l )P = Ao.

(Here we have used an obvious consequence of (5) that (£ = [t]9*! for ¢ > 0
and teR.) Hence

n
lo=mr <™ 3 g
LY j=1

n

Z aj =1. Let us put

Jj=1

Gi=1,2,...,n.

Next observe that a; > 0, because naf >

b; = a;a7?
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Clearly 1 =by 2b, >...2 b, >
by (a,)P~* we get

0. Dividing the first identity of (8) (for j = 1)

o= TH(S, b~ dn.
Thus _
TACE, Pt dusot §I3 g
Let us put J J

— RS G hp

=1
=inf{H(x;, ..., %) l=x32x,>...2x>0}

By the Holder inequality H is well defined. Using the exchangeability of the
fi's we get

H(xla X235 005 xn)

-

HL L o, )=(f(X fFtdy for k=1,2,...n
j=1

Summing over k and using the formula t(f)?~* = [f|” we get
D=at[|Y filPdp.
i=1

Now to complete the proof of Proposition 2.2 it is enough to prove
ProrositioN 2.3. Under the assumption of Proposition 2.2,

H{,1,...,

o= |Y fPdu=H(1,1, ..., )
i=1
Moreover, if there is a b= (b))j=, such that

1=b1>b2>--->bn20,
H(by, by, ..., by) =@

b, <1,
©)

then the functions fi, fa, ...,f, have mutually disjoint supports.
Our proof of Proposition 2.3 is based on the following
Lemma 2.1, Let 1 <p <2,
(i) If u, veR and
h(ty = ul{u+t)P "' +@—rt)* 1]
then either uv = 0 and then h(t) = const = 2|ul?, or h(t) is a strictly decreasing
function for t = 0.

for t=20
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i) If u, vef(w) and
h(ty = [ul{u+10)P"* +(u—tv)~Jdp
then either uv.= 0 p-almost everywhere and then h(t) = const = 21Jullz, or h(t)
is a strictly decreasing function for t > 0.

‘ Pr.oof. Part (i) uses a routine argument of examining the sign of the
derivative of h(-). Part (i) follows from part (i) by pointwise integration.

_ Proof of Proposition 23. If b= (b)), satisfies (9) then there is a k
with 1 <k <n such that b, =1 and b,,; < 1. First we show that

(2005 b=

j=k+1

(10) 0 p-ae.

This is trivial if b,,; = O because in that case by=0for k+1<j<
Assume that by, # 0. Let us put

u=.§l bff.}z.;lf}’ V=

h(t) = [ u[(u+to)P~ - (u—to)"~ ] dp.

Since 0 < by, <1, Lemma 2.1 yields h(1)> h(b;},). Observe that h(t)
=2 fu(u-+r)r- 1d;4 because of the exchangeablhty and symmetry of the

n (by (9)).

2 b

J=k+1

random variables f;, ..., f,. Moreover, since b, =bh, = co=by=1, the
exchangeability of the variables J; yields
H(b,, b,, ..., ,,)—jf(z fi+ Z bify~tdu for 1<i<k.
Jj=k+1
Hence

k k n _ 1
Hiw b sbd =3 [ 5+ 5 bspsau= Lo

j=1
Let us put b} =b; for 1<
1=0b% =b%...
shows that

<k, bF

=bilyb; for k+1<j<n Clearl
R A ’ e .

= 0. The same argument as before

{5z

It follows from (9) that H(by, by, ..., by = g < H (b, bk *
y by b)) =0 T, b%, ..., b¥). Thus
h(1) < h(1/b. ). Hence h(l) = h(1/byy) and, by Lemma 2.1, u-v ; 0 p-ae
This completes the proof of (10). -
Next we show that

H(b}, b%, ..., b¥) =

Pﬂw

(ay (

i

f)fk+1 =0 p-ae.

I

1
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Case 1° by,, # 0. Then (10) and exchangeability and symmetry of the
fi’s yield

(X M =bers fivi+bisa fisat .. +b,.f) =0 pae.
i=1
Substracting the last identity from (10) we get
k
2besr furr (2 £} =0 prae
i=1

Dividing by b, # 0 we get (11).
Case 2°. by, = 0. Then b; = Ofor j > k and obviously b; = 1 for j < k. Put
b¥ =1 for j<k+1 and b} =0 for j>k+1. Let us consider the function

k k k
ho) =(2 1) [(‘glf}-*'tﬁﬁ'l)p—l+('§1f}'_tﬁc+1)p—1]‘

Using the exchangeability and symmetry of the random variables (f})}-, as
in the proof of (10), we infer that

h(0) = 2kH (b, bs, ..., by,

Since H(by, b;, ..., b,) = ¢ < H(b}, b3,
Lemma 2.1, we get (11).

Clearly, (11) yields (—f;+fa+ ... +fi) fi+1 = O p-ae. (by the exchange-
ability and symmetry of the f;’s). Substracting the last identity from (11) and
dividing by 2 we get f; 'fy+1 = O p-a.e. Hence the exchangeability condition
yields f,-f, = 0 p-a.e. for k # I. Thus the f;’s have mutually disjoint supports.

The proof of Theorem 2.1 for 2 < p < co in the real case is similar to
that for 1 < p < 2. Instead of Proposition 2.2 we use

ProposiTiON 2.2 Let 2 <p < o0. Let (f)j=1 be a normalized sequence of
exchangeable and symmetric random variables in Ly (y) (u — a probability
measure). Let

M = sup HZ t;fill eR G=1,2,

, ..., bY).
h(1). Thus, by

h(l) = 2kH (b, b}
..., b¥), we get h(0) <

o, 3l =1},

Then M—”Z fillan= e
“Z anJ“p

=M and |a| # |aj| for some k and | then the funcnons (=1 have mutually
disjoint supports.

Proof of Proposition 22. The proof reduces via the Lagrange
multipliers method to an analogue of Proposition 2.3 with ¢ replaced by

xJ 1 =Xy £

Moreouer if there exists areal sequence (a;)}= with } v |aj[”

o* = sup {H (x;, x,, .- 22X, .. 2%, =0}
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and the inequality involving ¢ replaced by the reverse inequality involving ¢*.
The proof of this analogue uses an analogue of Lemma 2.1 with “strictly
decreasing function” replaced by “strictly increasing function”.

The next proposition enables us to extend Theorem 2.1 to the case of
complex-valued functions.

ProrosITION 2.4. The space LF (u) regarded as a linear metric space over the
real scalars is isometrically isomorphic to a subspace of Lig(v) for some other
measure v.

1
Proof. Letv=p X d0 where dff is the Lebesgue measure on [0, 2r]. To
each felLf(u) we assign Fel} (,u XEIE d()) defined by

F(s, 0) =Re f(s) cos 0+Im f(s) sin 6 = | f| (s) [cos(w(s)—6)]
where w(s) = arg f(s) e [0, 2m). The desired isometrically isomorphic embedding
is given by the map

2n

1 _ 1 » 1/p
f—c,'F  where Cp"ﬂ [cos B17d6 | .

This is clearly a real linear map. Since for every ae[0, 2n) we have

1
7 |cos (o —6)|? 6,

P —
Cp-—

we get

2n
“lpip — a-p 1
s 11z =% (55 [ 1P @leostuir ok ao o = i

s ]

- Bemark. Clearly, the map f—c,'F preserves the property of the
disjointness of supports of functions. )

Now we are ready for the

Proof of Theorem 2.1 for complex-valued functions. Assume
that fi, fa,...,f,eLP(4) is a l1{complex) unconditional and 1-symmetric
sequence. Then the f’s as elements of L”(y) regarded as a space over reals
are 1-(r.ea1) unconditional and 1-symmetric. Therefore the corresponding (via
Proposition 2.4)j§eall functions ¢;* Fy, ¢;*F,, ..., ¢; ' F, in Lk(v) have the
same property. ing Th i as d
e w); infif );hagt T eorem 2.2 for L (v) which has already been

W={eR,j=1,2,...,n Y |t)r =1}
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then i
inf [I¥ ;' Fily = inf [ 6 ll, = (| E, fllon™7 for  1<p<2,
i=

SI;IVp 2 tiey ! Fil,= S\;p X t il = “'Zlfijn” Mpofor 2<p<oo.
=

Also the “moreover” part, where the inf and the sup are attained, holds. To
complete the proof observe that the 1-{complex) unconditionality implies

15 2l =1

for every complex sequence (z;)j-;-
Now we derive some corollaries from Theorem 2.1.

CoroLLary 2.1. Let (f)}=, be a normalized l-unconditional and
L-symmetric sequence in LP(y) (resp. Lk (@). Let H be a Hilbert space over
complex or real scalars, respectively.

Then if 1l <p<?2

(1T 5 A <H0= 1,2, S sl =1} =0 5 A
if 2<p< o,
sup {(J[[S. x, f[5dn)’: el G =12 ... m, Elixllg =1} =" L Sl

Moreover, either the inf (respectively the sup) is attained only for sequences
(x)j=1 = H such that S ]}xjﬂ}’, =1 and there is an xoeH and a sequence of
scalars (sj)}';1 with |gf =1 for j=1,2,....n such that x; =g;xy for J
=1,2,...,n or the fs have mutually disjoint supports.

Proof. The first part of Corollary 2.1 is an immediate consequence of
Theorem 2.1 and Corollary 1.2. We give here an alternative proof which
allows to obtain the “moreover” part, too.

Since we deal with sequences (x;)j=; < H of length n, without loss of
generality we may assume that H = 7 (either real or complex). Let {, » denote
thescalar productin 2, let S, , be the unit sphere of [; and let A be the normalized
Haar measure on S, ;. We embed 2 isometrically into L?(4) (resp. Lk (4)) via
the map x—g, for xel? where g.(y)= a;*<x, yy for yeS,., and
a,=( [ Ies, yOP LA, ey =(1,0,0,...,0). Clearly, for every xel?,

Sp-1
[ 1% IPa(dy) = alixlg-

Sp—1
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We restrict ourselves to the case 1 < p < 2. The proof for 2 < p < w is

analogous. Fix a sequence (x;)’=; < H. By Theorem 2.1, for every yeS,_, we
have

RN R CCE Y AR
Integrating against A over S, we get

(13) I l}_i Qo ) [ w(ds) A(dy) > a:llj_il Allpn
Applying the Fubini Theorem to the left-hand side of (13) we get

15, <o ) 0P W9 20d0) = SJICE, 503, Y03 e

J

-

=4

16 %% n(ds).

o
ip=

Thus
(19 - ) I|jZlf,-(s) %l p(ds) > HJZ Sllpm.
= =1

If in (14) we have equality then (12) is also an equality for y A-a.e. Thus, by
continuity of the functions G WE infer that we have equality in (12) for all
y€S,—. Thus by the “moreover” part of Theorem 2.1 if the f;’s do not have
mutually disjoint supports then

<355 Y21 = [<Xs ¥

forall yeS,.; and all pairs (j, k) of the indices. The last property easily implies ‘

that x; gnd x, are linearly dependent and ||x;[| = ||| which yields the desired
conclusion.

COROI'.LARY 2.2, .Let (f)}=1 be a normalized 1-(real) unconditional and
L-symmetric sequence in L (1). Then for every sequence(z 1)j=1 of complex numbers

satisfying the condition Y |z)® =1 we have
j=1

Y affrdusn™ [|3 fledu for 1<p<2,
j= j=1

NE zfffduzn"t [|3 fledw for 2<p<co.
Jj= Jj=1

Moreover, in both cases the inequality becomes the equality iff z; = zy¢;

I(; Izj,n%,l};., nwheree; = +1(=1,2, ..., n)and zois a complex number with
o = .
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Proof Apply Corollary 2.1 regarding the complex plane as
the 2-dimensional real Euclidean space.

The first part of Theorem 2.1 (as well as the first parts of Corollaries 2.1
and 2.2) extends to the “limit cases” p = 1 and p = oo. However, a more general
fact is well-known: :

PropPOSITION 2.5. Let X be an n-dimensional Banach space with
a 1-symmetric and 1-unconditional riormalized basis (x;)l=,. Let 4: X =1, and
V: 12— X be diagonal maps. Then

n
4l =

17l = 12 =

X il
i=1

The first formula follows by a simple averaging procedure using the fact that
the norm of I} restricted to the positive cone of [} is an additive functional; the
second uses only 1-unconditionality of the basis (x;}}-, and the form of the
extreme points of the unit ball of .

Recall that the Rademacher functions (r;) are defined by r,;(z) = sign sin 2t
for te[0, 1] (j =1, 2, ...). They are independent random variables essentially
+1-valued with mean zero.

The Steinhaus variables (y;) are independent random variables each
distributed as the function t — e*™ for t € [0, 1]. A model for the sequence (y;)j=1
of n Steinhaus variables are the functions y;(ty, t5, ..., t) = &™ defined on the
cube {0<t; <l j=1,2,...,n}.

The Rademacher functions can be identified as the coordinate functions of
the Cantor group ZF while the Steinhaus functions —as the coordinate
functions of the infinite torus group T~.

Applying Theorem 2.1 and Corollaries 2.1 and 2.2 for the Rademacher
functions we obtain

CoROLLARY 2.3. Let n=1,2, ..., let (r))}=, and (y)}-1 be the Rademacher
and the Steinhaus functions, respectively, let #

1 n 1 n
=] ]j; n@P e, Bon= ] |j§1 PP du)re

(1 < p < ). Then for every sequence (X;)j~; of vectors in a Hilbert space, in
particular of complex numbers, we have:
If 1<p<2then

n

1 n
(1% xm @ de)e = apn™ (X Il
0 j=1

=1

n n
(1Y, Xl > Bpan™ (X, W)™
i=1 =
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if2<p< o then

1 n n
(1E sl def < ctyun™ (3, W),
0 j=1 j=

n

15, w3l ase < Ban™#( 5, i

j=1
Moreover, for 1 <p#2<oo these inequalities become equalities iff
x; = g Xq, & = +1 for the Rademacher and |¢]l = 1 for the Steinhaus variables
(i=1,2,...,n) and x4 is an arbitrary vector.
Remark. By the Central Limit Theorem the asymptotic behaviour of the
sequences (x,,) and (B,,) is determined by the formulae

+ o
. 1 2 1/p
lim n™ %0, , ={—= [tPe2dt |
n=c0 ' /2n )
-0

+o +ow (1 sp< OO)
. - 1 2,2 Lr
lim n~128, == (s2+ 2P e " dsdt
n= o TE

~®0 —o

We end this section by discussing some relationship of Corollary 2.3
to the Hlawka inleq\;ality (cf. [6], pp. 171-172). ’
Observe that 6”,';1 r; (0P dt =471 (374 3), Now spécifying in Corollary 2.3
n=3 and using the Holder inequality
(a1 11xeall +[lxeall < 327 D72 (|[3eq 174 el + [x3]17) 7
we get

Co.ROLLAgY 24. If 1 < p < 2 then for every vectors xy, x,, x5 in a Hilbert
space, in particular, for every complex numbers,

1
15) (f”i xjrj”p)lxp 5 (31~:+1
j=1
0

Moreover, if 1 <p<2 then (15) becomes the equality iff .

; L quality iff x; =g X,

&==%x1(=1,23) and x, is an arbitrary vector. P
Putting in (15)

i/p
) (el =+ 1] + 1231

_utv u+w v+w
Xy —”‘5" ' —_—, X3 =
2 2

and evaluating the integral in the left-hand side of (15) we get

X, =
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CoROLLARY 2.5. For 1 < p < 2 and for every vectors u, v, w in a Hilbert space

T4
p2d

Moreover, if 1 < p <2, then the inequality becomes the equality if either
u =10 =W, or two of the vectors u, v, w equal zero, or one of the vectors u, v, w
equals zero and two others are equal. :

Remark. For p =1 (16) is the well-known Hlawka inequality (cf. [6],
p. 171). For p = 1 the “moreover” part of Corollary 2.5 fails; for instance, for
u+v+w =0 we have always the equality.

It would be desirable to extend Theorem 2.1 to the case of complex-valued
functions fj, ....f, satisfying the following “mixed” condition:

For arbitrary complex (z)}-, arbitrary permutation = of the indices and
arbitrary real (¢)f=y with &f =1(j=1,2,...,n

“; &2 fuplln = ”; 2 fllp-

In particular, we do not know whether the assertion of Theorem 2.1 remains
valid for the sequence (£,) of independent equally distributed random variables
each of which is distributed according to the law

ple=1=pl¢=~-l=pll=ij=pil=—i}=47"

3. Critical exponents. This section is devoted to the study of the beha-
viour of norms of orthogonal projections onto finite dimensional subspaces
of L™ as well as onto orthogonal complements of finite dimensional subspaces
of L*® regarded as operators from L*® into L7 (p > 2).

To formulate the results we introduce some notation.

In this section we consider only probability measures. Let E be a finite
dimensional subspace of L® (1), 4 — a probability measure. By Py (resp. PE) we
denote the orthogonal projection (in L? (1)) onto E (respectively in the direction
of E, i.e,, onto the orthogonal complement of E). By || P||™” we denote the norm
of a projection P regarded as an operator from L* (y) into L? (). If P is either Pg
or PP then clearly ||P||™® > 1 while ||P|*? < 1. We put

or(P) =sup {p: P> < 1}.

. 1
(16)  Hutv+wll”+llull” -+l +wl” = 2 (ol +1lw-+ull +[lo+w)?.

The value cr(P) is called the-critical exponent of P.

Principal results of this section are

Tureorem 3.1. For every probability measure ju and every finite dimensional
subspace E of L®(u) one has cr(Pg) > 2. :

TugoreM 3.2. For every probability measure y and every finite dimensional
subspace E of L*®(u) one has ct(PF)>2.

We begin with the proof of Theorem 3.1. It is convenient to introduce more
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notation. Let us put
Mg = sup {[Ixllo: x€E, [Ixlly 1}
Clearly 1 < Mg <.

Given 0 5 g e L™ (1)) we denote by P, the orthogonal projection onto the one
dimensional space generated by g. Clearly

Pg(f):Jf'.Zidu'——q; for fel*(.
llg113

Thus

lll ll,
co,p . N1 IIFlp
Pl IR

Given M with 1< M <0 we put'

Zy(w) = {geL™@): llglly, = M™" and [lgll, < 1},

dy, =sup {IPJI™?: geZp(w)} (2< p< o0).
Theorem 3.1 is an obvious consequence of the next two propositions.
ProrosiTioN 3.1. For every finite dimensional subspace E of L™ (u) we have

IPHI =7 < dyy .

PROPOSITION 3.2. For each M with 1 < M < oo there is a po(M) > 2 such
that ajy, =1 for 2< p < py(M).

For the precise description of py(M) see Appendix.

Proof of Proposition 3.1. Fix p>2 Let g4, g2s .-+ gn be an

orthonormal basis in E. Then Pg(f) = Y ([f,du)g, for feL®(y). Clearly

. . . j=1 .

Py is continuous in the w*-topology of L®(u) (induced by L'(u)) and the
norm t_opology of (E, [I*|l). Since E is finite dimensional and the unit ball of
L*(p) is compact in the w*-topology, there is an f, with ||f,||, = 1 such that

iP5 (foM, = [IPgl|™". Put g = Pg(f). Then

Pp(fo) = Hg”fz(ffog_dﬂ)g-

(This is clear if one chooses the orthonormal basis ¢y, gs, ..., 4, $0
that g, =llgll;'g) Hence ||Pg|™? =|IP,(foll, < |IP,|®?. Since geE,
90 =(lgll: Mp)~'"geZy (4. Clearly P, = P, . Thus ||P,|™" < At p-

Proof of Proposition 3.2. The general case can be reduced to the case
of the Lebesgue measure A on the unit interval [0, 1] as follows. First we
reduce the case of an arbitrary probability measure space (S, Q, u) to the
case of a separable probability measure space. Let geL*®(u). Let Q, be the
smallest sigma-subfield of Q such that g is Qo measurable. Let uo = yq.
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Then, by the Stone Representation Theorem, there is a probability measure
space (S%, £28, u§) and a measure preserving homomorphism of Boolean
algebras ¢@: (QF, ug) —(Qo, po). Clearly p,, and therefore u%, are separ-
able probability measures. This homomorphism induces the linear iso-
morphism of L°(u¥) into L°(u), say u, such that u(L° (u¥)) consists of all @,
measurable functions. Furthermore, there exists the operator P: L!(w)
—u (L' (u¥)) of conditional expectation which regarded as an operator from
LP(p) into u(L”(u¥)) is a contractive projection onto LP(u¥) (1 < p < o0).
Clearly P; = Pyjup2(u) ©P. One can easily see that

1P|l = ||P

L1y .
alu(Lz(#S))|l =IP,

—1(‘)“1’"'-

Now let (S,2, u) be a separable probability measure space. Let
51, 82, ... be atoms of p and let Sy =S\ {s;}. Let 4¢, 4,, ... be the de-
composition of [0, 1] into mutually disjoint intervals such that A(4;)
=p({shfori=1,2,... Then u(So) = 1- Y. u({s}) = A(dy). Let p, = Hinnse-

i
Then g, is an atomless separable measure. Hence there exists a measure
preserving one-to-one map ¢ from 4, onto S, (cf. [3]). Next we consider the
map u: L°(y) — L°(2) defined by

u(f) =f tag+ 21 6) 2y
i
Let P: L*(4) = u(L*(x) be the orthogonal projection. Hence
Ph=hy,,+Y | hda.
T4

One can easily see that P regarded as a map from L*[0, 1] into I7[0, 1] is
a contractive projection. Clearly, if geZy,(p) then u(g)eZy(4) because
flu(g)il, < llgll, for 1 < p < co. Furthermore

”Py”w’p = “Pu(g): u(Lm (u)) —’LF(;L)” S ”Pu(g)”m’p-

Thus ., < djy, -

Finally, in the case of the Lebesgue measure A on the interval [0, 1], the
assertion of Proposition 3.2 is an immediate consequence of Theorem A of the
Appendix which says that aj, , equals the unique positive root of the equation
MFP—~1 = p(M?*—M).

Proof of Theorem 3.2. The proof consists of several steps. Given 0 # h
€ L™ we denote by P" the orthogonal projection of codimension 1 onto the
orthogonal complement of h.

1° Reduction to projections of codimension 1. Fix p>2. Since P*
=1I—Pg(I: L® - L” denotes the natural injection) is as an operator from L* ()
into L” (u) weak*-weak continuous, it attains its norm at some extreme point of
the unit ball of L®(y). Hence there exists a unimodular f,eL™() such that
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IPE(foll, = |PE||™>. Put g = PE(fq). Clearly 0 g LE. If g = f then || PE||=r
=1, this case s trivial. If g 5 f; then obviously f, —g L g (because P¥(f,—g) =0

Jfo—g ho (£
. Then hoeE and PO (fy—g) = 0.
fo—allz ° °=9)

and therefore f,~gekE). Put hy =
Thus P"°(f,) = g. Therefore
I1PEP = lgil, = 12" (foll, < 1"
Hence '
cr (P%) > inf {cr (P"): heE}.

2° Reduction to the case of atomless measures. Similarly as in the proof of
Proposition 3.2 we show that if v is an arbitrary probability measure then there
exists an atomless probability measure u and a map u; L*(v) - L' (1) such that
u(LP(v)) = LP(w)for 1 < p < 'oo and u regarded as a map from L?(v) into L?(u) is
an isometry. Moreover, the orthogonal projection from L?(u) onto u(L?(v))
regarded as a map from L”(y) onto u(L?(v)) has norm one. Thus cr(P¥)
= cr (P“9) for every finite dimensional E < L®(v).

From now until the end of the proof we assume that x is an atomless
probability measure, )

3° Reduction to the case of P* with auxiliary real h. Let a be a unimodular
measurable function. Denote by m, the operator of multiplication by «. Observe
that m, regarded as an operator from LF (u) into L?(u) is for every 1 < p < o an

isometric isomorphism; moreover, malP"°mi= P*. Hence || P|or
=||P*™)| =7 and therefore cr (P™™) = cr (P*%). Now given h & L® with ||hg|l, = 1
we specify « so that

a(s)z%

e Y for  sed,
for s¢d

where the measurable set 4 is chosen so that

[ 1o () pnds) = [ Iho(s)] p(ds)
4 S\4

~ iarghp(s)
—e ols)

(S denotes the whole space). A set A with the above property exists because
K is an atomless probability measure and hoe L*(u) = L' (). Let us put
h = ahy. Then

() heLg (1),

(i) |[All; =1,

(iii) { hdu =0.
Clearly, [Ihll, = [lkoll, and ||PY|=7 = || P*|=* for 2 < p < co.

Observe that if he Lg then P*(LE) < L¥. We denote by P4 the restriction of
Ptio L regarded as a linear operator acting between real spaces. In particular,
[IPhl{~- denotes the norm of Pl regarded as an operator from L¥ into L5.
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& ||PRll™P = |[PY|™P for every 2<p<oco and for every heLl®(y)
(n—atomless!). Clearly || P§l|*? < || P"|*+*. To prove the reverse inequality pick
arbitrary unimodular feL®(y). Let f = x+iy with x, ye LZ (1) and x*(s)+
+y?*(s) = 1 for seS. Replacing f if necessary by c-f for appropriate complex ¢
with [c| = 1 one may assume without loss of generality that ffhdu is a real
number; equivalently [ yhdu =0 (because he LE(y)). We then have

P(fy =f—(Jfhdu)h = x—([ xhdpu)h+iy.
Thus for p < oo

Pl = ([ = (7 xhdu )P+ y2 "2 dps) ' = (] (P12 dyre
where for ge L% (4 with ||g||, < 1 we have

¥ (9) =1-2(f ghdu)gh+(J ghdu)*h>.

" 2
Now if p > 2 there is a ¢ & LE" (1) (where (p/2)* = p/g/—-l for p > 2 and
(p/2)* = o0 for p = 2) such that
(I ¥ ()7? dﬂ)z/" = j l//(x(s))(p(s)u(ds) and  [lgligzr=1.

Next we use the following well-known fact (cf. e.g. [2]).

If u is an atomless measure then for every xe L (u) with ||x||, < 1 there
exists in L (u) a sequence (f,) of unimodular functions (i.e, f,(s) = +1forseS
and n=1, 2, .. ) such that for every r with 1 <r < o0 li,;nf,, = x weakly in L}.

Since h belongs to L (1), the functions hg and h? ¢ belong to L§/?" (;.L).Thus
the weak convergence in LZ?(u) of the sequence f, to x easily implies that

[ edp=1im [ ¥ (f)pdu.

Next observe that the property f;? =1 yields
v () =[fH—([fhdp)h]* = [PR(H)]*
Thus, by the Holder inequality,
IP*(NNl, = [lim [y (f) @ du]'/?
< [irl;'l- (I '/’(fn)p/z)zlp”(P”(plz)"]llz
= Tim ||PR (£, < PRI

Since the latter inequality holds for arbitrary unimodular f 'in L*® (),
we infer that ||P'|®? < ||P4||®?. This completes the proof of 4° in the case

2<€p<oo.
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If p=co then for he Lg () with ||4l}, =1 we have the explicit formula
(*) PRI = 1+l 1Al -
Since for every feL™(u) with ||f]|, =1 one can easily check that

P (Mo < M Mo 1Al 1 oo 1Al oo = L+ 11A) 1Al

we infer that ||PY|<® < |[Phl|®*.

To establish (*) fix ¢>0 and pick unimodular f eLg(w) so
that [fhdu>|h),—e. Next pick a measurable set Ac<S so that
#(4) <27 |Ih|Z%e and |||, = |lhxl,. Now define f, by

( _{f(s) for s¢d,
9= —sign([ fhdu)h(s) for sed.

Clearly, f,eLg is unimodular. Moreover, using the inequality
[ffhdp—{ fahdp < 2u(A4) 1Ml
one can easily check that '
1PR falleo = 1+ 1Bl [1Bl] o~ (|  ~é.

Letting & tend to zero we get ||Phj| > L+ (Al 1A o -

5° If h satisfies (i)~(iii) then cr(P" > 2. Assume to the contrary that
cr(P% = 2. Then there would exist a sequence p, \ 2 and a sequence (f}) in
L*(p) of unimodular real functions such that

17 1P fllp,>1 for n=1,2, ..

Remembering that ||k, =||f,||, = 1 and using the Pithagoras Theorem we get ‘

(T fohduf® =1If,— PP£)IZ2 = 1~ ||Ph7y)2.

Observe that (17) implies that P*f, + f, hence [fuhdp #0. Let |||, =K.
Clearly, by (i) K > 1. Then ||P"(f)]|,, < K+1; hence

IP£lI3 = (K+1)2"""|[P"f,,|f:: > (K+1)""
(the latter inequality by (17)). Thus
((fahdpf <1=(K+1)*™™ for n=1,2,..
Hence

lim [ f,hdy = 0,
nos

Let A, = {s€S: f,(s) = —1}. Then, by (iii),
Ghdp= -2 { hd = —
gf I J 4 | hdu [ hdy.

S\4, 4,
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Let n be any index such that K |[{f, hdy| < 1. Then
5
WP fllsy = | [1=([fuhdu) W) dp+ [ [14( f, hdu) B]™ dp
SvA, 5 A, s
= [ [1+2(] hdu)h]™du+ [ [t=2(] hdu)r]™du.
54, An Ay Ay

Expanding each term into power series and integrating we get

S\IA [1+2(Aj hdu)h]""du=s\j; [1+2p,(f hdu)h+

+2p,,(pn—1)(Af hdufh*+0((] hduf)]du

A

n n

= u(S\A,)—zp,,(Aj hduf*+

2= 0(] b [ K drO( ] haup),

Ay An

Ap

T =2(] hd " dn= | [1=2p,(] hauh+

+2p,(pa— ([ hdp)? B> +0((| hdu))]du

A Ay

=u(A..)—2p.(AI hdpy® +

+2p,(po—D)([ hdpf* | B*du+0(( ] hau?).
Ay Ay A,
Adding both expressions together and taking into account that x(S) = 1 and
[hPdu=1 we get
5

IP*fllpn = 1+2p,(pa—3)( Aj hdu)?+0(( | hdu)?)

and | hdu 0 for all n. Since lim p, =2 and lim (f hdw? =0, we infer
Ap n L

that for large n, ||P*f,;" <1 which contradicts (17).

This completes the proof of 5° and thus of Theorem 3.2.

Remark. Given a finite dimensional subspace E < I*(u) we put
Kg =sup{||xll: x€E, ||xl, < 1}.
A careful analysis of the proof of Theorem 3.2 shows that similarly like
in the case of Theorem 3.1 there exists a function K — ¢ (K) such that cr(PE)

> ¢(Kg). However we do not know the explicit formula for ¢ (K).
In the next two examples u is an atomless probability measure; (S, Q, u) -

is a measure space.
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ExampLe 3.1. Let A = Q, u(A) > 0. Pick he L* (1) so that [ = y,. Then
cr(P" = 3.

Proof. Put P4 = P*, By step 3° of the proof of Theorem 3.2, cr(P4)
=cr(P"). Now fix p > 2. By step 4° of the proof of Theorem 3.2, ||P4||=?
=P8,

To evaluate |P4|| ™? put a = p(4) and fix e[ —a, a]. Since the measure His
atomless, there is a set 4,2 with 4, < A and u(4,) = (a+8)/2. Define the
unimodular f, by f, = X4, Xs\a,- Then

€ I3
PAf =fi— [ fiduyua™t = XS\A+(1 _E)XAZ_<1+E)XA\AE'
4

Thus

P
e

(18) PR =1

and for all 2<p<

eV a+e eV a—eg
PAFIP = (1 — _2 e ) il
P47 = (1 a)+(1 a) : +<1+a) =
a
2

i GH)(CH A CHN
:(1~a)+g[2+p(p"3) (§)z+0(<§)4)
()

The latter formula implies that for every p > 3, for sufficiently small positive ¢,

||P4 SllE > 1. Thus cr (P4) < 3. On the other hand, for every unimodular real f
one has :

_
T

IPA7IE = IPALIE

for & =£fdu =uAn{f =1)~p(An{f = ~1}). Therefore, by (18),
IIPAf113 < 1. Hence || P4 = 1. Thus cr(P4) > 3. Hence cr (P4 = cr (P = 3.

CoroLLARY 3.1. If u is an atomless measure, A a measurable set with u(A)

>0, then for every he L () with |B = 34 and every p >3 there exists a @p
€L®(u) with |@,| = x, such that

H%—(J hopdp) hu(A) ™ dy > p(4)
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while for every @eL®(u) with |o| =y,
[lo=(] hodu) hu(4)f di < ().

Proof. Apply the argument of Example 3.1 to the measure space
(4, 24, u(4)™* 1) where Q, = {BeQ: B < 4).

ExampLE 3.2. Let (4,)7- be a finite family of mutually disjoint measurable
sets. Pick My, hy, ..., by so that [k = L4y for j=1,2,...,n let E
=span(hy, hy, ..., h,). Then cr(Pf) =3,

Proof. One has

n

PE(f) =f- Z (Aj fhydp)hy p(4)7*.
¥

Jj=1
Thus for every unimodular f

n

IPEE= [ If1Pdu= [ |f= 3 (] fhdu)hy p(4) P du
s\U4; 4j k=1 Ay

Y4
=u(S\U 4)+ T [ 1f~(f Shydph;u(4) " du.
Jj=1 .Aj Aj
Using Corollary 3.1 for every fixed p > 3 there exist ¢p,jsuchthat o, | = x 4 and
§leni—(f hiop du)hn(A)~ Pdp > p(4) for j=1,2,..,n
A; 4

J
Let us put

n
fo=x + }ZX Pps Xy

n
s\ U 4 j=

&

Then f, is unimodular and

=1

IPEIE> ) O )+ 3 uld) = ) = 1.

Thus, for p >3, [|[PE||*” > 1. Hence cr(PF) < 3.
On the other hand, by the second part of Corollary 3.1, for every unimodular

fel®(w),
[ 1/~(] hfdwhu(a) Pau<pd) for j=1,2..n.
4j Aj

Thus . ,
IPENIS < #(S\jy1 4)+ ;1 udy)=1.

Therefore || PE|=3 < 1 (in fact ||P¥|™? =1). Hence cr(P) = 3.
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Remark. A similar technique allows to evaluate critical exponents of
complementary projections to some infinite dimensional expectations. We
mention here the following fact.

Let (S, Q, p) be a probability space with u atomless. Let €, be a subfield
of . Assume for simplicity that S e Q,. Suppose for each ne(0, 1) there exists
an 4,€Q such that Py (1,,) = n¥s. Then cr (P%) = 3. Here Pg, denotes the
orthogonal projection from L?(u) onto the subspace consisting of all Q,
measurable functions, and P? = I ~Pq,-

Next we show that the fact that cr (PF) =3 at least for real finite dimen-
sional E holds only in the situation described in Example 3.2,

ProposiTion 3.3. Let (S, Q, ) be a probability space with u atomless.
Let E = LR(u) be a finite dimensional space. Assume that ||P§||™* < 1 (in par-
ticular, that ||PE|[®3 = 1).

Then there are mutually disjoint sets A, ..., 4, in Q with u(4)>0
G=12...,m and hy, hy, ..., h, in Lg (@) such that |l = x4, for
j=1,2,...,n and span(hy, ..., h) = E. /

Proof. Fix a unimodular feL%(u). Clearly, f2=1 and fi=f Also

[ Pef(f—Pg f)du =0 because for real E and S, Pgf is real. Thus, by our
hypothesis,

Y2 NIPEAIS = [1f~Pe (NP du = [ [1—f Py () du
Z [(1=fPg(f))’ du = 1= [ [Ps(/)P° d.
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Hence

[f[Ps(f)Pdu>0 for every unimodular fe L% ().
The latter inequality implies
(19) [x(Pe(x)Pdu>0 forevery xeL®(u.

Indeed, it is enough to check (19) for xeLg(u) with ||x, < 1. Pick as in
step 4° of the proof pf Theorem 3.2 a sequence (f,) of real unimodulars which
tends to x weakly in L?(u). Then, because of finite dimensionality of E,

li'rln 1P (f) — Pe (%)l = 0.
Thus
lim [[LPy (f)]° ~ [P (x)]*ll o = 0
and finally
linm S [Ps(f)T du = [ X[Pp(x)] dp
which yields (19).
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Next we show

(20) yeE implies y*eE.

If (20) were not true thqn there would exists a yeE and a ze LE(y) such
that (i) f zy® du % 0 and (i) | zxdp = 0 for all xeE. (We regard E as a closed
linear subspace of L!'(u) and apply the Hahn-Banach Theorem to find
a zeL¥ (W) = [L' (w]* which separates y* from E.) The orthogonality of Py

combined with (ii) yields Pgz = 0. Now using (19) for all teR we get
0< [+t [Pelz+ty)Pdu = [ (z+1y) Py du =1 [ zy* dute* | y* dy;

this is impossible for |t| small enough and sign ¢ = —sign [ zy*dp unless
f zy*du =0 which contradicts (i).

Finally, observe that for every finite dimensional subspace E of L (u) there
is a set Sy < S of full measure such that evaluations at points of Sy are linear and
multiplicative functionals on the smallest closed subalgebra of L (u) generated
by E. Thus for n = dim E one can find points s,, $,, ..., 5, of g and functions h,,

hy, ..., h,in E so that hy(s) = §;, forj,k=1,2, ..., nHence x = ) x(s)h;
k=1

for xe E.By (20), i} e E. Thus ki = Y. h}(s)h, = h;. We put 4; = {seS: h?(s)
1 .

k=
=1} (i=1,2,...,n). One can easily check that the functions hy, h,, ..., h,
together with the sets A,, 4,, ..., 4, fulfil the assertion of the proposition.

We do not know whether Proposition 3.3 remains valid for arbitrary finite
dimensional subspaces of L*(u).

However, we have

CoroLLARY 3.2, Let he L™ (1), ||| = 1, p— anatomless probability measure.
Then cr (P*) =3 iff |h| is a characteristic function of a set of positive measure.

Proof. Combine Proposition 3.1 and Example 3.2 with the argument
of step 3° of the proof of Theorem 3.2.

Our next result provides an additional information about functions
at which the norm ||Pgl|®* is attained. It seems to be useful in computing
critical exponents.

- PrOPOSITION 3.4. Let u be a probability measure not necessarily atomless.
Let E be a finite dimensional subspace of L®(y). Let pe(1, o) be fixed. If f
eL®(w), with ||f|l, = 1, satisfies the condition [|[Pg(f)l, = ||Pgl|™7, then

Py(Pe(NIPs(NIP"?) =¢f
Jor some non-negative ceL*®(y).

Moreover, if A={t: [f() <1}, and ecE then e=0 ae. on A.
In particular, if no non-zero element of E vanishes on a set of positive measure


GUEST


256 T. Figiel, T. Iwaniec and A. Pelczynski

then one has

_e@®
f(t) = m H-a.e.

for some e€E, viz e = Pg(Pg(f)|Pe(f)IP”?).

Proof. We may assume that E s {0} and hence (IPe (), # 0. Recall
that if ge L*(w) then the function

@(s) = [P (f+sg)l,
is differentiable at zero; if h = Py (f)|Pg(f)”"2 then
¢©'(0) =Re [ Pg(g)hidu = Re [ gPy(h) dy.

(Here we make use of the assumption that P is an orthogonal projection.)
Next observe that if ve LE (1) and g = ivf then the assumption || /]|, < 1 yields

I/ +5gllo < (1452 [plf2)!>  for  seR.

f+sg
Fe <Hf+SgHm)

IPe (NN +51[01%)" = (| Pe(f+sg)l,
‘ = (1P ()l +5¢' (0)+ O (is]).
This implies that ¢'(0) = 0, ie, for all velg ()
0=¢'(0)=Re [ ifP (1) du
=fv Im (fPg(h)du.
Therefore ¢ =fPg(h) must be a real function.

Now to prove that ¢ > 0, take g =1f for some velLP () with v<O0.

Then for 0 < s < ||2)|Z! one has 1Lf 39l < 1Ifll, = 1. Hence ¢
@ w = 1. S) < 0) fo
0<s<|jv|lZ . This shows that “ PS e for

0> ¢'(0) =Re [ of Py(h) du = Re [ of P, (h)dp
=Re [ vf'PE(h) du = [vcdu.

Hence taking into account that

IPEll ™ = [|Pg(f)ll, >

14
we obtain

Since v < 0 is arbitrary, we infer that ¢ 2 0. Clearly on t =
one b ¢ e y on the set where | f| = 1

Suppose that A = {t: |f (8 < 1} has positive measure. Let %, denote the

icm
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characteristic function of the set {t: |1 (1) < 1—-n"1). Observe that

Pp(x,'g9) =0  for O#QELw(ﬂ)..

For, let go =(2n]lgllw)”™ " gta- Then [|f+goll, <1, and hence [1Pg(fEgolll,
< ||Pgl|®?. On the other hand,

WPl = 1P (/M < $(I1P (f+go)ll + 1P (f—goll)-
Since LP(u) is strictly convex, it follows that

Pe(f+90) = Py(f~gy).

This proves that Pg(g,) = 0. Hence Pg(y,-g) = 0.

Now if geL®(u) vanishes outside A, then y,g—g as n—oo in the
weak*-topology of L*(u). Thus for P, being weak*-norm continuous we
have Py(g) = lim Pg(x,g) = 0. Therefore for arbitrary ecE we have '

n "

[egdn={ Ps(e)gdp= [ ePy(g)du=0.

Consequently all elements of e vanish p-ae. on A. Thus c¢(t) = 0 for te 4.
Remark. Proposition 3.4 can be extended to the case p=1 and p = o
as well as for the orthogonal projection Py regarded as an operator from
LA(w) into LP(u) for oo > g > p.
ExampLE 3.3. Here L? denotes L”[0, 1] with respect to the Lebesgue
measure, We put
e(t) = exp(2mit).

Let E denote the two dimensional space spanned by e and the constant
functions, P the orthogonal projection onto E. Clearly,

Pf =f(O+f(De for feL
1

where f(n) = [ f () e(—n)dt (n=0, £1,..).
0

THEOREM 3.3. One has cr(P) = 4.

Theorem 3.3 is an immediate consequence of the four lemmas stated
below. The following one parameter family of unimodular functions plays an
important role in the proof:

h=(1+rd|l+re ™, 0<r<1.

The argument culminates in establishing that the function of r,
o) =|Ph)E, O0<r<l,

is strictly decreasing.
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LemMa 3.1. For every pe[2, oo] there is an r(p) such that
1P ()l == VP75
in other words the norm ||P||™” is attained on the set {h}o<,<;-

LemMa 3.2. One has P(h)= A(r)+ B(r)e where
2

w00

S (2N (=12\ gy T T
§Q )=
LEMMA 3.3. One has

1P =140 2 06 2<p <),

Hence if p>4 then for v positive and small enough |[P(h)|, > 1; thus
Py = > 1.
LEMMA 3.4. The function r » @ (r) (0 <

IPHI=* = IP(holls = [S(0)]* = 1.

r < 1) is strictly decreasing. Thus

Proof of Lemma 3.1. Put

a+be \
Qpp =7  With

B> 1
latbel laf + 8]

Clearly ¢,, = h,. Observe that f(r) # O for t ae. for every feE. Thus, by
Proposition 34, for every pe[2, co) there are a(p) and b(p) such that
1P (@up),sm)llp = |IPl| ™. Next note that ||P(¢,4)ll, = ||P(@y,o)ll,- Thus without
loss of generality one may assume that |a(p)| > 0 and la(p)l = [b(p)l. Clearly,

if a0 then @, = @y, = (pl'w,,, for @ = —arg p where 55 (D) = @ap (L +0).

Thus [|P(¢4)ll, = IP(91,sa)ll,- Thus

()

PP = [|[P(hyp)ll, for r(p)= @)

€(0, 1].

Finally note that

umlw=ij

0

Proof of Lemma 3.2. Let 0<g

IL+e@dt = P (hy)].o-

r <1. Then expanding into Taylor

series we get

Similarly

B(r) = f( )1+re Z
0
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1

b (8)dt = f——-——””(t) dt

A0 = tre)]

i
o

(L+re(o)2 (14 re(—1))2 dt

4 (..io(lf)( ) e m)d,

- =00

L]
- O

-

1/2) (-1/2) ey
J

1 +re(t)| j=0

259

Since the power series also converges for r = 1, the Abel Theorem yields
that the formulae for A(r) and B(r) hold also for r=1.

Proof of Lemma 3.3. By Lemma 3.2 one has

A(r) = 1—%2—+o(r2); B() = %-{-o(rz).

Fix pe(2, o). Then for small r > 0,

1
1P MG = J |4.(r)+ B(r) e(t)}” dt
0

»/2
dt

’ 2y 2 2
= J ’(1 ~ +3 oo 21rt> Ly sin? 2nt +o(r?)
0

: T‘2 p/2
w J‘<1—-—4—+r cos 2m+o(r2)> dt
0

—1420=Y

g o).
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To prove Lemma 3.4 we recall some facts about Gauss hypergeometric
series,

2 @, (B

F(ul,b;c,x)="§0 EXT c#0, =1, =2, ...
where (a), = 1; (@), = a(a+1)...(a+n~1).
Note that (1), = n! and (2), = (n+1)!. Thus
2y -1 (1/2),(=1/2); 12\ (=12 =E(1/2),-(1/2)j
<1>( j >_ Mt (i+1>(j ) 2@

Therefore Lemma 3.2 yields
A =F(-%3 1,7,

- B)=3rF(4:2, 7).

For the proof of Lemma 3.4 we need several properties of the functions
A and B. They are collected in the following
SusLeMMA 3.1. (i) A is a decreasing function on [0, 1] and A(1)

(i) B is an increasing function on [0, 1].
(i) A'(r) =rB'(r) for re[0, 1).
(iv) The following recurrence relations hold:

2\/— r
(1+r) 1+rA(r)+FB(r)’
8(2E) s gl

(v) Let us put A(r) =B(r)-A~
with the following properties:

Y(r). Then 1 is an increasing function in r

2./r 1+4()

* <1+r) ey A0
‘ 3

(23) AMr) < =5

Proof. The identity 4(1) = B(1) = 2/n can be easily checked by direct
computation. The remaining assertion in (i), and (ii) follow immediately from

icm
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the power series expansion formulae for 4 and B given in Lemma 3.2. Also
from these expansions follows (iii).
To prove (iv) we use several relations between hypergeometric series for.

which we refer to [1]. We begin with Gauss’ quadratic transformation
formula (cf. [1], p. 64, formula (24)):

i ,
F(“ b; 2b, e )2)—-(1+V)2"F(a, a+3-b; b+, 1.

In particular,

o9 P(ibt ) =aenra 4,
(25) F(_%s %! 1: a’_’?}:"‘)—z)=(1+r)’lF(_%: —%) 1’ 7'2).

We also need two other formulae of Gauss (cf. [1], p. 103, formulae (33)
and (38)):

(26) (c—a—b)F(a, b;c,x)+a(l=x)F(a+1, b; c, x)—
—(c—b)F(a,b—1,¢,x) =0,
27)  c(l=x)F(a, bie, x)—cF(a—1, b; ¢, x)+
+e—b)xF(a, b;c+1, x) =

Substituting in (21) (a, b;¢,X) >(—%,3,1,7%), and in (27) (a, b;c, %)
-3, 3, 1, 4r(1+1r)"2) one gets

@8)  F(—4 ~b:i 1) =20 (=4 1 L, - (—AFG 1 1,7,
) (”2(1+r>2>

dr 4r
( Lt (1+r)2) (1_(1+r)2>1:<é’%’1 (1+r)2)‘

Combining the first formula of (21) with (25) one gets

2\/; “1p(—4, -4 2
(30) A(1+r> (%%1(1+ ) 1+ F(=5 —3: 1,79
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The second formula of (21) gives

631) B(iﬁ)=1—{’7p 142 4’)

1+r T(1+1)?

_.li_’_[ (_1 11 _1___>._
2\/; 252> a(1+r)2

4 4
()it )] v

[F(=% =% 1, )~(1-1’F @4, 5 1, %)

1
2 /r

(by (24) and (25)).
Using (27) for (3,%; 1, 7% and then (21) we get
) (=P E LA =Fh kL -D P 12,7
=A(r)—rB(r);
combining (27) with (23) we obtain
(33) : F(—3, =5 1, 1) = A®)+rB(y).
Both formu}ae in (iv) are immediate consequences of (30), (31), (32) and (33).
To verify (v) observe that (22) is an obvious consequence of the recursive

formulap of (iv). Clearly (i) and (ii) implies that 1 is increasing. To prove
inequality (23) we consider the Taylor expansion of A(r). By Lemma 3.2,

1) = Br AW (}u% ...)(1_12.-?11 )1

r r 2 3 P2 3 2
=lzt=+. . 1+ —+"— —_—

<2 et ),: +(4+64+”')+<4+64+"'>+"']
LAV T
2+j§1/1j rérl

Observe that 4,>0for j=1,2, ..., and Y A4 =Ai(1)—%=4%. Thus
j=1

M) <THE ) = 4p4r)

i=1
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Hence

(5-29A() < g(r) =(5——2r)<h;r3><g(1) =3

(because g' 2 0 for 0 <r < 1). This completes the proof of the sublemma.
Proof of Lemma 34. A straightforward computation gives

1
®(r)= g [A@M+BP) e()[A()+ B(r) e(—1)]* dt

= A*(r)+442(r) B*(r)+ B*(r)
= A*(r) [1+422 () + 14 ("]
Using Sublemma 3.1 (iii) we get
(34 P'(r)=44°(r)B'(r) f (r)
where
S =230 -2rA2 (1) + 24 () —r.

By Sublemma 3.1 (i) and (i), 4*(r) B'(r) > O for r€[0, 1). Thus to prove
that @'(r) < 0 for re[0, 1) it is enough to show that f(r) <0 for r < [0, 1].
To this end observe first that using Sublemma 3.1 (v) we get

2/r\  (1=-nr B B B
f(1+r>_(1+r)(1+r,l(r))3 {FO+e=1D2E+rA@5—2r) A1) —3]}
(1=n)/r
EEEIE=TD A
The latter inequality yields that if f(r) <0 in some interval [0, ¢] then

[0, 1] is the maximal interval with the property that f(r) <0 in this interval.
Finally observe that by Lemma 3.2

o= 1-" +0¢®
M) =1=g+00).

Thus for small r > 0, &'(r) < 0. Hence, by (34), f(r) <0 for re[0, £] and
therefore f/(r) <0 for 0 <r < 1. This completes the proof of Lemma 3.4.

Remarks. 1° The function @ is “practically” almost constant. In fact,
we have

6
0,985 z%=¢(1) <O <P =1.

2 Let H® denote the classical Hardy space of boundary valuf:s f’f
bounded analytic functions in the open unit disc. Clearly, we can identify in
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a natural way H® with a subspace of L®. We consider the restricted
projection P yo 3 an operator from -H* into L?. Denote by HP'HOUH“"" the
norm of this operator. D. Sarason and A. Shields have proved a result
similar to our Theorem 3.3 (private communication):

THEOREM. One has [lPlellw"’ =1 for p<4 and []P’lel‘”’” > 1 for p> 4.

Clearly, our Theorem 3.3 implies the first part of their result, while the
second part of their result implies that ||P||*>? > 1 for p > 4. However, one
has

ProposITION 3.5. One has ||P||®7" > lfP|Hm“°°’p Jor 4 <p < 0.

Proof. It is well-known that H® is the dual space to the space
X = L'/closed span {&™, n > 0}. Moreover, Prw is weak (H%, X)-norm
continuous. Thus for every pe(4, o] there is a g,€H® with |[P(g,)ll,
1+re o
» TTre ¢ H®. Thus,
by Proposition 3.4, ||P(g,)li, <|P||7 (the case h, is also excluded because
1P (holll, = 1 < [[P|** for p > 4).

3° Let m+# 0 and k be integers. Let E be the two dimensional space
spanned by 2" and €™*#2% Then cr(P,) = 4. This follows from Theorem
3.3 and the fact that the subspace of L® consisting of all JeL® such that
ff(We(—nt)dt =0 for ntm+lk, 1=0, +£1, +2,... is norm-one comple-
mented in L® via the orthogonal projection.

ExampLE 34. Let m, denote the equally distributed probability measure
on the set {1,2, ..., n}. Let

= ”men‘”'", Clearly g, # h, for 0 <r < 1 because h, =

OP(f) =f—[fdm,=f-n"' T f()1.
Jj=1

Clearly, cr(PP) ~ 0. It follows from Example 3.1 and Corollary 3 that
cr(™P)>3 for n=3,4, ... (one embeds I*(m,) into L2(I) so that the
1

projection “P extends to the projection P* where P! f=f={fdx-1).

Clearly, cr("Pg) > cr (®P) where ™P,, denotes the restriction of (")OP to the
real space L(m,) regarded as a real operator. We do not know whether
1P| =P = || Pp(|*F for p> 2 or cr (WP) = cr (™Ppg).

Since the unit ball of Ly (m,) (= the real ) has finitely many extreme
points, there is a simple method of computing cr (“Pyg). In fact, taking into
account that |[[®™p,( A, depends only on the distribution of f and
multiplying if necessary by +1 to get {fdm, >0, one may assume that a
real unimodular f at which the norm [Pyl is attained is one of the
functions £, £{", .. £, . where f® is defined by f™(G)=1 for
J<S2+k fPG) = -1 for j > /2] +k. In particular, in the case n =3,
4,5 the critical exponents cr("Pg) = p® are determined as the smallest
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roots p >3 of the equations
I9PR(L, 1, ~DIE=1;  [“Pa(l, 1,1, ~Dllg=1;
9P (1,1, 1, =1, ~1)lf =1,
respectively. The equivalent’ equations are
2:2°44P-3-37 =0; 34+37—4-27=0; 3-4742-67—-5""1=0.
This gives p{ = 3,081643..., pP = 3,210660..., pR = 3,027586...

Appendix. In this Appendix M is a fixed number with 1 <M < co and
L? for 1 < p < oo denotes the L”(1) shace where 1 is the Lebesgue measure
on [0, 1]. Given geL®, g 0 and pe[l, ) we put
a,(9) = liglls ligll, - llgll 2

1 .
Z%={gel®: 0<g <1, [g(x)dx=M"", g non-increasing},
o

Zy = {geL®: lgll, < L. llglly = M~}
Clearly, a,(g) = a,(lgl) = a,(lgl*) where |g|* denotes the non-increasing
rearrangement of |g|. Thus

(A1) sup {a,(g): ge€Zy} =sup{a,(g): geZi}.
Next consider the equation
(A2) MP—1 = p(M*—M).

Using standard differential calculus one shows that equation (A2) has exactly
one root in the positive half line. We denote this root by po(M). In fact,

2 < po(M) < 3. o
The purpose of this Appendix is to prove

TueoreM A. (i) If 1 < p < po(M) then
a@ <1
Moreover, a,(g) =1 iff g = M™! is a constant function.

(i) If p> po(M) then
sup la,(g): geZi} > 1.

for every geZ%y.

Moreover, the supremum is attained at exactly one function g, which is of the
Jorm

1 Jor t<t(p, M),
gp(t)={% for  t>t(p, M)

where t(p, M)e(0, 1) is uniquely determined.

& _ Qudia Mathemaficas 703
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Proof. If p, < p, then a4y, (9) < a,,(9)- Thus we can restrict ourselves to
the case p > 2. Clearly, Zj; is compact in the pointwise convergence (the
Helly Theorem) and the functional a,(-) is continuous on Zf (the Lebesgue
Theorem). Thus there exists a g,e€Z% such that

a,(9,) = sup {a,(g): geZj}.
The description of g, is given in several steps.

1° g, is a step function with at most 4 steps; the intersection of the range
of g, with the open interval (0, 1) is at most a 2-point set.

Let A: [0, 1]—;[0, 1] be a measurable function (not necessarily non-

increasing) with [h(x)dx=M"1 Let h =th+(1 ~t)g, for 0<t<1.
4]
1

Clearly, [hdx=M"", 0<h<1, and hy= g, Thus, by (A1), a,(k)
[}

< fzp(ho). Let D(h) denote the right derivative of the function t — a,(h,) at the

point ¢ =0. Then D(h) = 0. The computation gives

1
D(h) = g (Y og,)(h—g,)dx
Where
V(@) = lg,ll3 -2~ ~2llg I3 1) pM 1.

Now fix ¢ with 0 <& <2~ ! and let fe€Lg be an arbitrary function satisfying
the conditions
f(x)=0  whenever

gr(X)¢le, 1-¢],

[f(x)dx = 0.
0

Then h* = g,+&f satisfies the conditions
e <1, fIB*ly = M™%, h*: [0, 17~ [0, 1]
and similarly h~ = g,—e&f. Thus
¢ D(h*) = [(Jog,) f dx <0,
e7ID(7) = [(Y 0g,)(~f)dx < 0.
Therefore j(wogp) fdx = 0. Thus because of the arbitrariness of 1 satisfying

(A.3) we infer that !//09_,, i_s constant almost everywhere on the set
{x: g,(x)e[e, 1—¢]}. Taking into account the arbitrariness of ee(0, 4) we
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infer that there exists C such that '
¥(g,(x))=C ae.on {x: 0<g,(x) <1}

Since for p>2 y is strictly convex, ¥ "!(C) is at most a 2-point set.
Furthermore, 0 < g, < 1. Thus, except may be a set of measure zero, the
range of g, is at most a 4-point set with at most two of these points in the
open interval (0, 1). Since g, is non-increasing, without loss of generality we
may assume that g, is a step function with at most 4 steps.

2° The number O is not a value of g,; hence the range of g, is at most
a 3-point set.

Indeed, if O is an essential value of a geZ% then thefe exists a b > 1
such that g(x) =0 for b"* <x< 1. Put g°(x) =b"'g(b~!x). Then

p—1

1 1
[g°(x)dx= | g(x)dx=[g(x)dx =M1
0 0 0

Thus g°eZ%. A simple computation shows that a,(g°) =b"?a,(g) > a,(g).
Thus g #g,.

3° The range of g, is at most a 2-point set.

It is enough to show that if

W=1{o=(p ¢ nNeR"

O<a<f<l,0<y<E<l,a+éB—a)+n(l—p =M1}
then the function ¢: W — R, defined by
oo, B, &, 1) = MPab (X100 + EXpapy + MXep,11)

does not attain its maximum on W. (Observe that

1
.f (X0, + &ty + Mi5,17) () dx = a+E&(Bf—a)y+n(1—p).)
o

Assume to the contrary that ¢ attains its maximum on W at the point
00 =(a, b, y, )& W. Then by the Lagrange Theorem there exists a 1& R such

that if
Q(Oﬂ, ﬁ7 67 1’[) = ‘P(a: ﬂ: f: 71)—/1,[0(+6(ﬂ_€l)+17(1——ﬁ)"'M_lj
then

od oP od . (6@) _
—_— =0; —_ =0; - =0; - =0.
(A9 <6“ >a=ao 0 <5B)o=eo ' (af )a=ao on e=ep

Observe that ¢ = A-B~? where

A =a+&(B-a)+n*(1—B); B(@=a+E(B—o0)+n*(1-p).
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Thus (A4) is equivalent to
1=y B?—(1~y*)pBP™* A~i(1~y)B*" =0,
(y"—2") B"—(y* 2% pB* "' A~A(y—2) B*" = 0,
py?"1(b—a) B?—2py(b—a) B*"* A~ A(b~a) B* = 0,
pzP (1 —b)B?—2pz(1—b)BP "1 A—A(1—-b)B?** = 0
where 4 and B are taken at g = g,.
Dividing the first equation by B?(1—y); adding the second to the first
and dividing by B?(1~z); dividing the third by B”(b—a) and the fourth by

B?(1—b) we get a nmew system of equations (which is equivalent to the
previous one because of our assumptions

1#b#a, 1#y, 1#2z and B=x0):
1—y? A
— —— A=
=y +ypr3 0,
12z A
— =
1=, (1+z)pB 0,

A

Pl dpy = — 1 =0,
by PJ’B
A

Pl _2pz ——A=0.
bz PZB

A
Put C = Py Substracting the new third equation from the new first one,
and the new fourth from the new second we get
1—y*?
e pyPTl (1 = —
1=y P (1-yC=0,

1—gzP
Tt (1—2)C = 0.

1__ P
Thus C = —f'(y) = —f () where f(u) ’"“T:t{?‘ Note that, for p > 2, f(u) is

strictly convex for 0 <u < 1. Hence f*(w) is strictly monotone. Thus y =z, a
contradiction.

4 Either g, =M"" or the range of g, has two points one of which is 1.
First we restate the maximum problem. Given geZy there is a unique
number ¢, with 1< ¢, < M such that |jc, g3 = licglly. Let

Zy ={h=c,g: geZ}}.
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Then Z3; is compact and there exists an h,eZ¥ such that

(*) (Ill, = sup {ilhll,: heZ3}.

Clearly, h, satisfies (*) iff h, =Cg,0p and g, satisfies:
ap(gp) =sup {ap(g): gEZgl}

Thus 4° is equivalent to the following statement:
49 Let

W* = {(av é’ '1)‘5R33
0<a<1,0<¢<n<M@+(1—a)p), rx«f—l—(.l——a)q =cx'fz+(1.—-oz)112}.

Then the function (a, £, n) —»alP+(1—o)n® does not attain its supremum
on W*. i
Assume to the contrary that there is a g, = (a, x, y)€ W* such that

ax?+(1—a)y? = sup {a?+(1—a)1%: (a, &, M) e W*}.

Then by the Lagrange Theorem there is a 1€ R such that if

D, &, 1) = al?+(1~o)n?+ALal +(1—a)n—af®—(1—a)n’]

P 645) ) (645)
— =0; — =0; —_— =0.
<a‘x>e=ao (56 e=0qp M Jo=eq

XP—y?+A[(x—y)—x*+y*1=0,
pxP~ta+A(a—2xa) =0,
Pt l-ag+i(l—-a)(1-2y) = 0.

then

Equivalently,

(A5)

y
l1—a

x .
Multiplying the second equation by —-;‘; (a#0!) and the third by
(a# 1) and adding the results to the first equation we get

(son(i-2)owmaf3-2)) o

Observe that 4 # 0 (otherwise from the second equation xa =0, a contra-
diction) and x # y. Thus

—_

o~ ]

(A6) x+y=

|

(5]

p—
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From the second and the third equations of (A5) we obtain

y!
=2y——1'

xp~1
2%—1

(A7)

Putting y =tx (0 <t < 1) we get from (A7)

-t 1—?
Su-ry YTy
Thus, in view of (A6),
pol_ Lt 1-rt
p—=2 2t 1—t72

which yields
(P=2(A=t")+p(t* '~ =0
The desired contradiction follows from the inequality.
fO=p=-21-)+pE* =) >0 for
Indeed,

O<t<l.

'O =—(p=2)pt*"" ' +p(p-1)t""*—p,
[ =0@-2(-p-nt*"* >0 for

Thus f(¢) is strictly increasing in (0, 1) and continuous in [0, 1]. Since f'(1)
=0, we infer thatf’(f) < 0 in (0, 1). Since f(1) =0, we infer that f () > 0 for
0<t<l1.

We have already shown that any extremal gp is either a constant
function or a step function of the form ¥y, + Xy, 47 With 0 < x < 1. Since

O<t<l1.

1
g(X[o,u)'*‘XX[a,l])(t)df =at+x(l—a)=M"1,

we get x =(1—Ma) (M(1—a))™! and 0 <a < M~!. Observe that for a =0
we get the constant function M~*. Thus all extremals are some members of
the one parameter family

1-Ma

fi =0, +m Xfa,1]

O<ags M)

Next we show

5 If 2 < p < pp where py = po (M) satxsﬁes M —1 = py (M?~ M) then
a,(f) <a,(f)=1for 0<ag< M1

Proof. Clearly, it suffices to prove the inequality for p = po. Since
a(fo) =1, it is enough to show that a’(f) <1 for O<a< M~1:
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equivalently || /15 <||/lI3* M?. We have

[ (1—aM)
£l = M (M,,+(1 i a)p)
and
1-2aM+aM?* Y
13 = M 2"<M2a+(( “Afz) (1- a)) v(_——“1~:“ )

Thus we have to prove that

MPat (1 a

Replacing M” by 1+p(M*—

2\r
>(1_ o < (1_2(111\/;{_:“]\4)-

M), using the inequality

-1
(1—0F < 1—pt+£—(£2—) 2 0<t<l),
the fact that p <3 (cf. the definition of po(M)) and the Bernoulli inequality
we get

M"a+(11 )(1 @) = (1+p(M*~ M))a—i—(l aJ\I{[ )(1 a)
<a+pM?*—~M)a+1l—a—paM—-1)+
(M=1)2a
+p(p—1) 3i-a

(p—1a
+2(1-—a)>
‘<1+pa(M—1)2<1+1—i—‘;>

a(M—1 l a(M—1)2>”

_ 1—2aM+aM*\
= sy .

6° If p> po(M) then a,(f) > 1 for some ae(0, M™Y.

Proof. It is enough to show that
d Y O 1/ )
— ab = 1 = 11>0
(da “P‘f")>,.=o-- o, (smn%vw

= 1+pa(M—1)1(1
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Since Iim ||f}[3? =M
a=+0

~2F we have to show that

a” (£l — MP1I£l137) > 0.

‘We have
LA~ M2 L2

e 1—Ma \? . 1—=2Ma+M?*a\?
o oe it 0= (SR
=[M(1-a)]™? {M*~(1—Ma)+a™ " [(1 - Ma)’ ({1 — Ma) +(M* — M) a)’]}..
Clearly,

lim ™ [(1~ Ma)’ (1~ Ma) + (M~ M) a)f] = — p(M>~ M),
Thus
' al-.irfo @ (I£F =M1 £1137) = M™?(MP— 1~ p(M?— b)) > 0
because for p > py(M), M?—1—p(M?*—M) > 0.

To complete the proof of the theorem, it suffices to show:
7° The function

(1fallp
I fll3

has exactly one maximum in the interval [0, M~1].

1(a) = MFal(f) =

This has already been established in 5° for p < po(M). If p > Do, then,
by 6°, ©(0) is not the max1mum neither is r(M = MP~1 < M? = 1(0). Let
u— M(l—a)

( 1) Then u = -
u 7 +o0. Let ¢(u) = t(a(u)). The substitution is monotone and (M) =1(0)
=M?, lim @(u) =t(M~*) = 1. Thus, by continuity ¢ attains its maximum

u=t o0

us put a = a(u) =

;a=0iffu=M;a »M-1iff

somewhere in the open half line (M, + ). Hence 7° reduces to

7‘1. The equation ¢'(u) =0 has at most one solution Jor M <u< +o.
We have

- l1-a ¥ 1—aM .\
T(a) aMP(1+a(M2_2M)> +(1—a)(1+a(M2"‘2M)> »

Y u—M ( u )” u(M-1) 1
o [M(u——l) w—M+1) TM@=1) o1y
=Mp“1[u1)+1_

Mu (M=) ulu—1)"* (4= M+1)"".
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Differentiating, after somewhat long computation we get
MM-1) Q)
Mpr (=1 u—M+1)

o' W) = (M <u< 4+wo)

where
0@ =(1—p)ur*t+{(p— (M ~1)+2p)u"—
Observe that Q' (u) = u*"? L(u) where

Lw) = —p(p=D[(* - D> —(p—-2((p- )M~ 1)+2p)u+<p 2 (p—-3)M].
Clearly, L(u) =

(»x) between every two consecutive zeros of the function there is at least
one zero of the derivative,

pPMuP ™ —pu? +(p—1)u+M—1,

0 has at most one positive root for p < 3. Thus, using the fact

we infer that for p <3, Q has at most 4 zeros on the half line (0, c0).
If p> 3, then L(u) =0 has two positive roots. Thus Q" has at most 3
zeros (by (#**)) for u>0. On the other hand, if p>3 then lim Q"(w)

u=+w
= —o0 and Q”(0) = —2p < 0. Therefore Q" has the even number of zeros on
the half line (0, +00). It cannot have 4 or more because Q" has only 2 (by
(*+)). Thus Q" has at most 2 zeros for u > 0. Hence, by (##), Q has at most
4 zeros on the half line (0, +o0) also for p> 3.
' Next observe that u =1 is the double zero for Q. Thus on the half line
[M, +oc) Q may have at most two zeros. On the other hand, Q (M) = M*—

—1—p(M?— M) > 0 because p > p,(M), and hm Q(u) = —oo. Thus O has

an odd number of zeros on the half line [M, + oo) Hence Q has at most one
zero on the half line [M, + ).

Remarks. 1° It is easy to show that
M-e-Vir  for 1<

inf {a,(9): geZa} = p<co.

Moreover, a,(g) = M~ iff g =y 4.

Proof. For every g eZ} the Holder mequahty 5 g?dt < |lgll, llgll- yields

loly o llly s
MIlglE ™ Milgl gl

llgll4” 1lgll3/® for geZjy, we then get

llglly* -

a,(g) =

By the inequality ||gll, <

M~ gllz* 2
It is easy to see that the equality in this chain of inequalities holds only for
the characteristic function.

- 1
1”9“1 p = M~ (r— )/P'
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2° We have sup {a,(g): geZy} = M; the supremum is not attained.
One can easily see that the set {geZ3: [lgll, =1} is dense in ZY in the
L*-norm. Thus

1
sup {a, (9): geZ;} =sup{m: geZ&}=(inf{MllgH§: gezZyh)!

<(M-inf{ligli: geZy))™' =M.
On the other hand, lim a,(f,)= M.
a=+0
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Multipliers along curves
by
YANG-CHUN CHANG (Peking) and P. A. TOMAS (Austin, Tex)

Abstract. The authors analyse boundedness of Fourier multiplier operators which are
constant along curves. Boundedness is shown to depend upon a balance between the curvature
of the level curves and the lack of smoothness of the multiplier function.

Introduction. In this paper we shall give an analysis of the L7
boundedness of Fourier multiplier operators which are constant along curves
in the plane.” The three fundamental examples for our study are the
following:

(A) m(x, y) = @(x*+y%), ¢ smooth and compactly supported. Then m
gives a multiplier operator bounded on all I?, 1<p<oo. If ¢ has a
discontinuity of the first type away from origin, the work of C. Fefferman [1]
shows m gives a multiplier bounded on L” if and only if p= 2.

(B) m(x, ¥) = @ (x*~y?), ¢ smooth and compactly supported. Then m
gives a multiplier operator bounded on all L, 1<p<oo, by the
Hérmander—Mihlin multiplier theorem [4].

(C) m(x, y) = (y—x?). If ¢ has any reasonable growth properties, m
gives a multiplier of L? if and only if p =2, from the work of Kenig and
Tomas [2].

These examples show that the L” boundedness of such multipliers
depends on a balance between the curvature of the level curves, and the
“bumpiness” of the multiplier function. It is these intuitive ideas we shall
make precise. Such questions have already been considered by Ruiz [3].

In Section one of the paper we shall use some techniques of Ruiz [3] to
give a different geometric characterization of the level curves. In Section two
we shall follow Ruiz' [3] proof and show certain restrictions on ¢ can be
removed.

Section ome. We shall analyse the LP(R? boundedness of Fourier
multiplier operators 7, where :

T7(E) = m(@ F(©)

and m is constant along level curves of a function F: R>— R!, that is,
m(&) = @ o F (¢). We shall consider a restricted class of level curves, which we
shall call regular. )
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