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Bounds for oscillatory integrals and I*-theory of
the corresponding singular integrals
by
MAGDALENA WALIAS-CUADRADO (Madrid)

Abstract. Let £ ()= ar e with a/B21 or f(1)=(a+btf)e", B=2u#0, where
%, B, a, b, and A are real numbers. We prove in this paper that
R
[ Y‘—{—(ﬂdr} <c

&

where C is a constant independent of a, A, & and R or independent of a, b, ¢, A and R,
respectively,

The above estimate is used in the L?(R?) theory for singular integral operators with
kernels whose polar coordinate expression is such as

Ko, o) = in @

—————— §
agheu”“(l +10%
These kernels do not satisfy any kind of homogeneity.

Estimates for some similar oscillatory integrals can be seen in [3}-[12].

§ 1. Basic lemmas and known results. We state now some of the known
results and some basic general principles that we are going to use in the next
section. )

(1.1) TueoreM (Stein-Wainger). Assume a, <a, < ... <a, are n non-
negative fixed real numbers and by, b,, ..., b, are real numbers. Then

Of exp {i(b, [x]" + b, [x]2+ ... -+-b,,[J«{]"")}L—i)gE <k(ay, az, ..., a,)

where k does not depend upon by, ..., b,.
(The integral is defined as

R
lim | 9‘%&4&

=0 g
R~
[x]* means sigx-|x|* for a fixed real number a.)

The proof can be seen in [11]. This is an example of the type of
integrand functions for which we are going to get estimates.
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Another result improving the preceding one is the following, due to
Coifman and Guzmén.

(1.2) Tueorem (Coifman-Guzmdan). Let F(1) = Y "' P,(Igt) where P,(1)
i=1
m;
=3 gt and apy >, >0, i=1,2,...,n—1. Then
k=0 .
o0

(1.2a) fsin [F(x)]‘-irfI <C, O0<R<w
1]

(C depending only upon o; and m) and for R > 1

R dt
(1.2b) Jeos[F(t -
1

< Cc (1 + min [Iu Ial.kl:l)
i= 1

1,0, n-
with C depending only upon o, and m, i=1,2,...,n (I, = Napierian
logarithm).

The proof can be seen in [14].

"Observe that estimate (1.2a) with m; =0 Vi is the estimate of Stein-
Wainger.

(1.3) LemMMA. Assume F: [a,b]—R,a,beR, a<b, Fe?¥' and F
monotone.

(@) If[F'(t) >A>0, te[a, b], then

b
| fem dr| < 1/4.

(ii) If |[F"(1)) > ¢ > 0, tre[a, b], then there exists a constant C indepen-
dent of a and b such that

b
[fe™di| < Clo.
a

This result is due to Van der Corput and the proof can be seen in [17],
Vol. 1, p. 197. A generalization of this lemma is the following.

(14) Lemma. Let F: [a,b] >R, a,beR, a<b, Fe%" n>1 be such
that [F (@) > A > 0 if te[a, b]. Then there exists a constant C, > 0, indepen-
dent of a and b such that

b
H‘ei)?(t) dt’ < C,,/ll/".
a

The proof can be seen in [14] and uses an induction argument. As a
consequence we have

(1.5) CoroLLARY. Let f be in the hypothesis of the Van der Corput lemma
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over [1, R], ReR, R > 1. Then there exists a constant C(1) independent of R
such that

dr

'Jisinf(r) <cw.
1

t

In order to prove this, it is enough to apply Lemma (1.3) and integration
by parts. Using the mean value theorem we obtain:

(1.6) LEmMMA. Ler
f: [0, 1] x_[O, 11-R
(b, ) ~fb,9)

be a 6'-function. For every ¢,0<¢ <1, we define the function

y
0.0) =[O0 4 g e,

i

Assume that |g,(s)| < C, where C, is a constant independent of ¢ and se[0, 1]
and that |g,(0)]-« C, (or |g,(1)] < Cs) with C, (or C,) independent of . Then
there exists a constant C independent of b and & such that

1
sl o

n mi
(1.7) LemMa.  Ler  f(t)= Y rP/(lgt) where P,(s) = Y ay,s*  and
i=1 k=0 '
%1 >%>0,i=1,2,...,n—1. Then

sin f (1)
tlgt

j

dt’gc, e<R <o

where C depends only upon «; and m;, i=1, ..., n.

Proof. By the hypothesis and Theorem (1.2) we know that
R
Ism ;’ (1) dr

e

£C, e<R<w

where C, is a constant which depends only upon o; and m;, i =1, 2, ..., n.
Let us define

HQ) = ‘i sin f (s)

e .

ds.
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Then by integration by parts and taking absolute values we have

R si H R H(t
bins @), JHOT, |8 HO,,
. rlgr . lgr gt
< Cl +C, Té_f i <
(1.8) LEMMA. Let beR, b= 1 and f,: [b, o) — R be a function depending
upon the parameter « such that whenever ue[2h, 2*1b], k=0, 1, 2, ..., the
Jollowing inequalities hold:
(@ Isin £ ()] < | f(w)l,
(i) Ms% (C independent of b and f).
u u

Then

@ 2" 1 gin £ (u)

z

k=0 ok

du <C1

with C, independent of b and a.
Proof. From the hypothesis it is immediate to prove the following
inequalities:

w 2+l . w [2k+1n .
57 smﬁ,(u)du' <5 s1nj§.(u)du|
k=0 2k, u =01 2k

© 2 lsmmun

o 2k+1
<5 d<22.[”lfa(u)ldu

k=0 ok 2kp v
® 2kt - © ¢ by
Z J —fdu\ Z 2%y .[ '—'\'Cl'
k=0 ok, U k=0 oky M

§ 2. New results on bounds of integrals of Dirichlet type depending upon
parameters. In this section we will consider a family of functions f: [0, x)
— R depending on a parameter 4 in a certain way that we specify in each
case and we shall try to obtain a bound of the form
’j‘. sin f,,(r)

&

dr| < C

with C independent of ¢, R and «. The bound will depend essentially on the
oscillations at infinity and the behaviour at the origin of sin 1. (1), Therefore
it will depend on the distribution of the zeros of f, (1) on the real lme and on
the increasing of the functions. | .
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(2.1) THEOREM. Let f(x) = bx*e~,
o>=1. Then

where b and « are real numbers, with

R sin f(x)
f———
where C is a constant independent of b, & and R.

Proof. The convergence of the integral is immediate. We may assume b
> 0 because the function sine is odd. Consider

smf )

dx| < C

?sinf(x)d =}sinx( dx +f

E &

We will obtain a bound for each term. Let ¢* = u; then

R R
(2.1a) Ismf(x) ax| = | | sin [bulg"u] <c,
10X . ulgu
by (1.7), with C,; independent of b and R’
If 0<b< 1, by Lemma (1.6) we have
1
(2.1b) sin f ™ i < c,
because the function
1
(bx*
a.(b) =Ismb e)dx
: x
satisfies g,(0)=0 and |g;(s)| < e for every se[0, 1].
If b>1, let x=yb~'/*; then .
1gj bl/a - a yplle
Ismf(x)dx= i sin y* e dy
g x e’ y
h plia . h
[Slny » dy+ | Smy » dy
e 1
where h(y) = y*e*”'*. By Lemma (1.5)
»blla . h
(2.1¢c) f sinh0) )dy <G,
1

due to the fact that the function h satisfies the hypothesis of the Van der
Corput lemma, with [ () = ee'™® " > a > 1.
If we apply Lemma (1.6), we also have

(2.1d) } sin k()

tly' < C,.

&
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In fact, if

sin y* e”

g (a) ‘ dy

g

then |g.(s)| < e Vse[0, 1] and

tly C 5.

.
9./ O] = lsj 2

The last inequality holds because of Theorem (1.1). The theorem follows from
inequalities (2.1a) to (2.1d).

As a consequence we have

(2.2) THEOREM. Let f(1) =ar*e"” where a, 1, B and 1. are real numbers
and a/f > 1; then

R
jﬂ’-‘—rﬁi’drsc

&

with C independent of a, A, ¢ and R.
Proof. Let x = At". Then, using Theorem (2.1) we have
]fsin;f(r)dt _t R sin(bxveX)

f [

p X

<Th iC

with y = a/f and b= a/1? for 4 #0. If A =0, this result is Theorem (1.1).
Another type of result is the following ope:

(2.3) THEOREM. Let f(x) = (ax+bx?) e* where a and b are real number:
Then

-

R sin f(x)
=

dx' <C
with C independent of ¢, R, a and b. *
Proof. Consider the following decomposition:

R g R gin f)
{ sm){(x) dx = J. smf(x) dx+ f smi(x) dx

& 6 1

and let us prove the theorem for each term.
If we apply Lemma (1.7), we have

(23.a)

R .
f Sin/) dx' <c,

10X

- with C; independent of a, b and R. In fact, letting e* =, we have

rsmf(x) x‘ “[sm[(algr-#b]g nit]
Jiox . tlgr

di| < ¢,

icm
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Let us estimate

} sin f(x)

&

dx.

Since the function sine is odd, we may assume a >0 and beR. f0<a <

and 0 < b,

(2.3b) <G,

31. smf(x) '

with C, independent of a, b and ¢. In fact, the function
. 1 o 2y X
6@ = sin[(ax+bx?*) e ]dx

M X

e Vse[0, 1] and

f

&

satisfies |g;(s)| <

2 ,.x
g.(0) =| SR

dx’<C.

The last inequality follows from Theorem (2.1), with 2 = 2. Now, if we apply
Lemma (1.6), we obtain estimate (2.3b).
If a0 and 0 <b <1 by the same kind of argument we have

1
(2.3¢) jsmi il <. ,
Assume now a>1 and b>1. Let x = y/\/l;, then

! sin f(x % sin[((a//b) y +y?) V¥

i ;f()"ﬂ" [((/f)y SLad Py

3 &

smh(y

=] + dy
& 1
where h(y) = (—f—l;y+y2>e”/‘/’7. By Lemma (1.5) we_obtain

.

v sin h(y)
y

A3 mh(y

[ ——

1

(2.3d) y| < C,

because the function h satisfies the hypothesis of the Van der Corput lemma
with i (y) = 2.
It remains to prove the bound for

1 g 2) IV 1o L p?)
jsinllay/Dy+y)et] , _ gsinlmy e,

4 y & y
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with m =a/ﬁ and n= l/ﬁ. From the hypothesis on a and b we can
conclude 0 <n<land O<m fFOKm<1land 0K,

1 2y Lny
(2.3¢) §s1n[(my+y )e ]dy

o

<Gy,

with Cs independent of m, n and ¢, by Lemma (1.6).
Ifm>1,0<n<1 we use the change of variables my = t:

i. sin [(my + y?) e™] dy = j sin [(t-+t2/m?) ™™
; y Y=l :
_ j sin h(t) " sin h(t)

=

The function h satisfies the hypothesis of the Van der Corput lemma with
[W(®)| = 1. Applying Lemma (1.5) we have

™ sin h(t)

dr

with h(?) = (¢t +1t*/m?) e™m .

(2.3f) dt| < Cq.

For the other term, let t = m/u; then
1 o ht mfe'" . 2\
sin ()dt _ " sin [(m/u+1/u®) e /]du

] ;

g t m u
- @ **m gino(u) “msingw) , & M gino(u)
<Y | —du=| Sdu+ Y | —ldu
k=0 gkp m U k=2 oky u
with ¢(4) = (mfu+1/u®)e”. Now, we have
sin'g (1) 4m du
< —_—
,j:. » < ;'[' - Ig4.
On the other hand, for any k > 2, sin g (u)| < [o(u)] and lo(u) ]/u efu?,

therefore using Lemma (1.8) we may write

) Zk}l msjnf(“) du‘

k=2 gk,

<elg2 Z (1+1/2% < C,.
k=2

So
< Ig4+C,.

Yy
f——r—-df

&

We have proved the bound

‘ 4 sin[(ax+bx?) e
janllextbr)el |

£

assuming that a and b are non-negative.
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~ If we assume that, for example, b is negative,

1
sinu(x) dx

f

3

with C independent of a, b and &. Observe that the bound

_ 3. sin [(ax—bx

&

dx| g C

X

R sinu(x)

A}

1

has been proved in the first part of the proof -of this theorem, as an
application of Lemma (1.7)

dx{< C

If0<a<land O<borax0and 0<b <1, by Lemma (1.6) we have
1
(2.3g) jsm"(x) dxl <Cs.
If a>1and b>1, and x =1//b, then

; L PR 7N
pinlox=been " [((ﬁ)tt °)ers] W

1/n o1 2 pnt
5 s1n[(mtt t%) e ]dr

with m = a/./b and n=1/./b. Obviously, 0<n<1 and m3> 0,
IfO<m<1and 0<n<1, we may write

Hrsinh(r) |

dt+ §
2

1n g 2y 2
. 5 sm[(mtr t¥)e ]dt=jsmh(r)
where h(t) = (mt—t%)e™.

By Lemma (1.6) with 0<¢ <
2 sinh(r)

f

o
with C’ independent of m, n and ¢'.
On the other hand,

2, we have

a <

' e sinh(y

2
with C” independent of m and 'n by Lemma (1.5),

Assume now that either m>1and n2 1, or a/f
a>b>\/l—1/1, we have

al<c

1and 1/./b< 1. 1f
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L sin [(ax—bx?) e*
(2.3h) j~—-|1-~——)——]clx < Cy

M X

with Cy independent of 4, b and ¢. With the change of variables x = t/a, we
obtain

L sin[(ax—~bx?) e"] sinh(t

I

3

sin h(r

-]

a
dt +
X 4 '}

with h(t) = (t —(b/a)t*) ¢!". From Lemma (1.6) since ¢ = b/a* <
> b, the following inequality holds:

< 1, because a

Lsinh(r

(2.3i) [— ( )drt <k

with k; independent of a, b and ¢
On the other hand,

al3 a o
fsmh i = f smh(l ( §mh(r) it
1 a3

if a>3 (otherwise the bound is immediate). Since h verifies [I (1)
>2/9Vre[l, 9/3], we may apply Lemma (1.5). Hence

af3 o
2.3j) | sin h(7) il < k,.
1
Also
23k) [ onh® ) < ] fi—t—l 3.
a/3 af3

Therefore (2.3h) is now a consequence of (2.3 i, j, k). Assume now that b > a
>/b>1. Then
1 & — 2y X

sin [(ax—bx*) e ]dx

|

e X

(2.3 <Gy

with Cy, verifying the conditions of the theorem.
In order to prove the last inequality, let x = t/b. Then

1o P2} ¥ 1
i sin [(ax—bx?%) e J—dx = sinv(f) dr+ | smp”(_l__)_
[ x 14 1

2
with v(r) = ((a/b){—%)e’/". By Lemma (1.6) we obtain

(231) [

Py

1w
s (r
_._(ldr’s

icm
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with k3 independent of a, b and ¢. Let ¢ = aqu; then

1 bla o;
jsmv(t)d = smh(u) o smh(u)du
i 1a 1
with &(u) = (a®/b)(u—u?)e™®. If we apply Lemma (1.6), we have
bfa o1
(2.3m) i Smi'(“) du' < k.
1

On the other hand,

3, sinh(u)du _ } sin [c (u —u?) e*] "
1fa u 1/a u
with c =a*/b> 1 and A =a/b <
we obtain the following equality:
1

1. If we use the change of variable u = t/c,

sin [ (u—u?) ] du— sinv (t) sinw(t

j et

1/a u cla
with v(t) = (t—r*/c) . From Lemma (1.6),
1

[

cla 4

e

sinv(r)

(2.3n) di| < ks

with ks as in the theorem. Finally we have

P sinllt-/a)7)e”]

1 t

(2.30)

c M t
sm:;( )dt‘ _

!

with k, independent of a and b. In fact, if a?/3b

dt‘ < ke
<1, we may write

I <f==13.

On the other hand, if a?/3b > 1

"}/b sino(r) =°233" sino () , "}/b sinv(f)
1 1 a2{3b

We may apply Lemma (1.5) for the first integral. Therefore

a?/3b

a2 ginv(f) dt‘ 3 dt

dt.

(2.3p) sino () ,

1 < kq.
1

For the second one, we have

(23q) [ sine@

a2/3b
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Inequality (2.3]) follows from (2.31l, m, n, 0). The theorem is proven by taking
into account (2.3a) up to (2.3I).

As a consequence we have

(24) TuEOREM. Let f (1) = (at*+ brf) ™ where f =20 # 0, a, b and 1 are
real numbers. Then

Rsin f (1)
o

B

ersc

with C independent of a, b, A, ¢ and R.
Proof. Let At* = x and apply Theorem (2.3). Then

R o R’ o1 2) HX
[smf(r)dt _ 1 fsm[(cx+dx )e ]dx <—1-C
e ! oy x Jod

where ¢ = a/A and d = b/A*> when 1 5 0. If 4 = 0, the theorem coincides with
Theorem (1.1).

§ 3. I*-theory of the corresponding singular integrals. In this section we
will use the theorems of § 2 to study the I*-theory of some singular integral
operators, defined through a convolution, in R*. The kernels of this con-
volution will be truncated by a certain family of ellipses, contracting to the
origin.

Before we go on we will give an idea of how a family of ellipses
. generates a metric in R?. Let the family of ellipses be defined by

X; = QCcos @, 2€(0, o),
x; =g(o)sing, @e(02n]
where ¢ and g(g) are the semiaxes, ¢ is an increasing continuous function,

such that g(g) =0(g), ¢ »Q and g(g) > 0, p — . Therefore we have a
nested family, contracting to the origin.

For every xeR* we define o(x) = ¢ (with ¢(0) =0) where 0 is xy-
semiaxis of the ellipse passing through x,

(3a)

X2
X
glp)

Then a sufficient condition for g(x) = ¢ to be a quasi-metric is that
g9(@)
(%) - 0
g(Mg) M~
In fact,a constant M, M < o0, M > 1 can then be found such that Vx, yeR?

e(x+y) < M[o(x)+o(»)]

uniformly on o.

icm
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whenever (+) holds (see [14]). Among others, the following functions; g(g)
=0f ™, B>20 and g(o) =¢*(a+1gf0), f=1, a>0, are examples of
functions verifying the sufficient condition ().

Now we go. back to the problem of studying in R? the L? bound of the
operator T;,, defined by

Lo f(x) =K., xf(x), feL*(R?

where

k- 1K® for e<o(x)<n,
“100 otherwise.

Here ¢(x) is a metric defined through a family of ellipses that we will specify
later. K is a kernel that verifies

(1) K is odd, ie, K(~y) = —K();

(2) K admits the following factorization:

K(y1, y2) = h(0) 9(9)
where

(+%) C oy =0(cosg, y,=Y(Qsing

gives the family of ellipses contracting to the origin;
(3) JIK(Ndy < e
z

where X = unit sphere in R*; X = {xeR*: |x| = 1}.

Therefore K,, is given through the truncation of K by the family of
ellipses (*¥). Note that these kernels do not satisfy, in general, any type of
homogeneity, therefore the techniques are different from the ones used in [1]
and [2].

In order to prove the I*-boundedness it will be enough to show that
there exists a constant 4 > 0 such that IKM(x)| < A for any ¢, n and xeR%.
In fact, if such an inequality holds, using the theorem of Plancherel, we
obtain

NTon Az =1 Tn fllz = IRa Sl < AN fll2 =Alfll;  or
So we may define Tf for feI? as

Tf=lim K, , f
e=0
1+

and Tis bounded in I?(R?) with ||T]|, < A. The problem lies in how to study
the behaviour of h and g in such a way that the inequality 1IZ¢,,(x)| < A holds
(independently of &, # and xeR?).

In order to show that the inequality holds, we are going to use the
results of Section 2.
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Let us take in R? the following family of ellipses contracting to the.

origin
y, =gt el Ccos o = d(g)cos o,

(3b) y, =0° e sin @ = P (g)sin ¢

with f = 2«. Consider (in polar coordinates) the following kernel

(e Ko, ) ! sing = h(g) g(p)
c v w—— =h(0) g(¢)-
&9 OIQM euq (1+AQ“)

Then we have
" (3.1) THEOREM. For xcR? let

Kx) if e<eold<n
K:z.rl (x) - {0 otherwise

be the truncation of a kernel K by the family of ellipses (3b), using a change to
polar coordinates. Here the kernel K verifies:

(i) K is odd, ie, K(—y)= —K(y);

(i) K can be expressed as K(yi, y2) = h(g) g(¢), like in (3c);

(iii) ‘ K (7 dy < 0.

Then there exists a constant A > 0 such that |K, (XN < A4 for every ¢, n
and x.

If for any feI*(R? we define T, o S=K,yxf, then T, is a bounded
operator in I*(R?) uniformly in ¢ and 7.

Proof. As we saw, it is enough to prove that K (the symbol of the
operator T) is a bounded function. We are going to calculate the Fourier
transform of the kernel

k”"’ () = J; KI:JI (y) e 2mits) dy
R

= | KOGe ™y =—i [ K(ysin[2n(x, y)]dy
e<o(y) Sn 8So(y) Sy
where (x, y) is the scalar product in R? If we use polar coordinates, we may
write

N L]

Kpy(x) = —i ,f [h@g(@ Hyi, y25 0 @)sin[2n(x, y)]dode
where H(yy, y,5.0, ¢) = g™~ * 2% [(1 + 1g%) +sin? @] is the Jacoblan of the
change of variables. So .

" -
Ko (x)= ~i I [ h(@)g(@)sin [(ag™+ bo") e"* ag®*~ ' e24° (1 + 4% dodp —

-ne
L]

~i [ [ h(0)g(p)sin [(ag" +be") 4] g™~ € sin’ o dodep

-na

Bounds for oscillatory integrals 49

where
sin [(ag” + bo) e*¢"] = sin 2n(x, o ™" cos ¢ +x, 0% " sin @).
If h(g) = [0 e**¢"(1+ 10%)]" !, we have

K., (0] < I lg (@)

7 sinu(o)
I 4

dg! do+ f ____sin:(g)

de‘ do
with
u(g) = (ag" +bef)e** and n(g) = 1/(1+Ag".
By Theorem (2.4) we obtain
T sinu(g)

f

e

dg'gC

with C independent of a, b, 4, & and 5. Using integration by parts, since

, _ lagu——I
n(e);;;;l, n(e);;go and n(@)——m,
we have
1 sinu(g) o
{n(@) —— ’ do=[F(o)n(@) — [ F(a)n' (0)do
where
Flg = [ S04y
. 0
So
[ n %dei <cC

with €’ independent of A, ¢, #, a and b.
On the other hand, g(¢) = sin¢p. Hence

n x
Ken @ < C [ lg(@)ldo+C' | lg(¢)sin®pldo < 4
with 4 independent of &, n and x. We note that for any odd g satisfying

1 l9@do <o

we obtain the same result.
Remark. The same kind of proof we have used in Theorem (3.1) works

4 — Studia Mathematica LXXIX,1
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for kernels such as

K (e, ¢} =msinw
where the family of ellipses is now
¥y = 0*Cos @, .
, =g (a+lgfg)sine, p=1,a>0.

It is enough to take into account result (1.2) (Coifman-Guzmén)
The proof can be seen in [16] if « =1 and in [14] if f = 2.
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An analogue of the argument theorem of Bohr
and its application

by

WOJCIECH CHOJNACKI (Warszawa)

Abstract. An analogue of the argument theorem of Bohr is proved and used to estab-
lish the following result: given a real S' almost periodic function f on R, the function

x—+exp(i {f(u)du) is W' almost periodic if and only if it is (uniformly) almost periodic, in
0

x

which case the function x— [ f (u)du—f(0)x is almost periodic. It -is shown that the latter
]
theorem fails if W' almost periodicity is replaced by what is here called E* almost periodicity.

1. Introduction. According to a well-known theorem of Bohr (cf. [3],
[71), given a real continuous function f on R, the function x — exp(if (x)) is
almost periodic if and only if there exists ae R such that the function
x = f(x)+ax is almost periodic.

Our main objective is to prove the following

TueoreM 1. Suppose a real uniformly continuous function f on R satisfies
the following cocycle condition:

(co) for every teR, there exists a,€R such that the function x —f(x+1)

— f(x)+a,x is almost periodic.

In order that there be aeR such that the function x —f(x)+ax is almost
periodic it is necessary and sufficient that the function x»cxp(if (x)) be W1
almost periodic.

Since given an S!' almost periodic function f on R, the function
x

x = [ f(u)du is uniformly continuous (cf. [1], Th. 4.7.8), and, for any teR,
0
x+t

the function x — j' f(@du is almost periodic (cf. [2], Th. 23.1), from

Theorem 1 .and the above-mentioned argument theorem of Bohr we easily
deduce the following

THEOREM 2. Let f be a real §* almost periodic function on R. Then the

Sunction x —exp(i | f(u)du) is W' almost periodic if and only if it is almost
: :
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