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Interpolation of analytic families of operators

by
MICHAEL CWIKEL* (Haifa) and SVANTE JANSON** (Uppsala)

Abstract. Generalizations of E. M. Stein’s theorem on interpolation of analytic families of
operators {'I:.}QQR,,:S, are considered in the context of A. P. Calderén’s complex interpolation
spaces. For such a family {T,} such that 7, maps A,nA, into By+ B, for each z and Tj+4a€B;
with ||7]+,,a||,,j < llall4, for each aeAynA,, 1R, j=0, 1, it follows in some cases that T, maps
[A4q, A(]s into [B,, é,],. In other cases, depending inter alia on what sort of continuity
conditions are imposed on T, a, we may only be able to assert that Ty([Ap, A1le) is contained
in a space larger than [Bo, B,, such as [By, B,1} or [Bo, B;1%. Fdr many couples (B, B,),
these last three spaces in fact coincide, however an example is given of a couple for which they
are all distinct from each other. This also shows that, for certain analytic families {T.} as above,
one may have T{4onA;) & [By, Bi] or even T;(AonA,) & [By, B Iy

0. Introduction. Let S denote the closed strip {z: 0 <Rez < 1} in the
complex plane and A4(S) the algebra of bounded continuous functions on §
that are analytic on the open strip S. This paper treats the following
question:

Let (Ay,4,) and (By, By) be two compatible couples of Banach spaces and
let {T,}.s be a family of operators on AqnA, into By+ B, such that

(A) for every ac AgnA, and b*e(By+B,)*, (b*, T.ade A(S)
and

(B) rhere exist constants My and M, such that

||7}+na||uj< Mj“a”Aj’ j=0,1, —0 <t < o, acdon4d,.

Does this imply thar T, maps [Ay, A(Jp into [Be, B1]y?

We will give an example showing that the answer is no. The problem is
that although the analyticity (A) implies that T, is continuous and differenti-
able on S, the behaviour at the boundary may be quite bad. The example
also shows that it is not sufficient to require T, to be continuous in the
L(AonA,, By-+B,) operator norm on J; some sort of continuity or measura-
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bility in B, or B, seems necessary. However, the extra condition can be very
weak ; the following consequence of Theorem 1 below covers most cases that
are likely to appear in applications.

If further, for every ag AgnAy, {T; 4} - o < << lies in a separable subspace
of Bo, then T, can be extended to a linear operator from [Ay, A1y to
[Bo, Bi1y of norm not exceeding M§~°MS$. In particular, this holds if
{b*, T, a) is continuous for every b* e BE (cf. [9], Lemma 8) or indeed for every
family {T.} as above if B, is separable or By > By.

Note that the extra condition is asymmetric; no condition on B, is
required. (Of course, B, and B; may be interchanged.)

This type of theorem was first proved for IP-spaces by Stein [19].
Various generalizations have been given by several authors, see e.g. [4], [7],
[14], [17], but in some cases they have unfortunately neglected to mention
the extra conditions which are required on the boundary [17], [4].

A more direct generalization of Stein’s theorem is given in Section 3.
There we use [By, B;]° as the target space and can completely dispense with
continuity on the boundary.

1. Analytic families and interpolation methods. For the sake of this
discussion, we define four versions of the complex method.

Let F*(B,, B,) be the Banach space of all functions f: § — B,+B,
such that

(i) <b* f(2)>€A(S) for any b*e(Bo+By)*,

(i) f(z)eB, for Rez =0 and f(z)eB, for Rez =1,

(i) (If1l.5,, = sup {llf G+itllz;: j=0,1, ~o0 <t < 00} < c0.

We will use the following closed subspaces:

F(Bo, By) = {feF*(B,, B,): f(it) is By-continuous and f(1+it) is
B,-continuous},

F*(By, By) = {fe F¥(By, By): {f(it)}- <i<w lies in a separablke
subspace of By},

F°(Bo, B,) = { fe #*(By, By): f(2) is Bo+B,-continuous on §}.

By the maximum principle, ||/ (2)llpy+p, < IIf]l 5, z€S.

Lemma 1. #°(By, B,) = {fe #™: f is B,+B,- continuous on 8S}.

Proof. If the restriction of f to 4S is By+ B;-continuous, let g be its
Poisson integral. Then g is By+ B,-continuous on §, but application of linear
functionals shows that g(z) = f(z).

Hence # is the smallest and #* the largest of these spaces. Obviously
F* = F" when B, is separable. Also, 7* = #" when B, o B, [9].

We define the corresponding interpolation spaces [Bo, B, 13, [Bs, Bi15,
[Bo, B, 15> [Bo, BiJs (0 <0 <1) to be {f(6): fe #*(By, B,)}, etc. (equipped
with the quotient norms).
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[Bo, B, is the space defined by A. P. Calderén [3], see also [2] (and
the alternative equivalent definitions in [9] and [137]). [B,, B,]§ is the space
defined by Lions [12]. A related construction was introduced by S. G. Krein
[11].

It is clear that [By, B;], = [Bo, B;1; = [Bo, B, ]y It was proved in [9]
that [Bo, B, 1§ = [By,, B,], for any couple (By, B,). Hence, all four interpola-
tion spaces coincide if B, is separable or B, > B,. While this covers many
cases, the problem of whether [By, B,], and [Bo, B, ]y always coincide was
left open in [9]. In the next section, we will answer this negatively by
producing an example with [By, B,], # [Bo,B,1§ = [Bo, B, IV

The conditions (A) and (B) on a family of operators {T.},« as stated in
the introduction can be equivalently reformulated by replacing (A) by the
requirement that

T,ae F*(By, B;) for every acAdqonA,.

By replacing #* by a smaller space here, we impose further conditions on
{T}. The connection between the various interpolation spaces and analytic
families may be stated as follows. (See also [10], where the further compli-
cations that occur for quasi-Banach spaces are discussed.)

TueoreM 1. Let (Aq, A;) and (Bo, By) be two compatible couples of
Banach spaces and ler {T.}.5 be a family of linear operators from AynA, into
By+ By such that the boundedness condition (B) holds and

T,ae #"(By, By) for every acAynA,.

Then T, has a unique extension to a bounded operator mapping [Ao, A.], into
[Bo, B, 1. I Tl < M5~ MY. Conversely, [Bo, B, 1y is the smallest space that
contains Ty(AonA,) for all such families {T.}. The conclusions remain valid if
F" and [By, B,]y are replaced by F° and [B,, B,15 or #* and [B,, B, 13
= [B(h BIJO' .
Proof. By multiplying T. by a suitable scalar function, we may as-
sume that My=M,; =1. If aeAdonA4; and llallag. 410 <N1, there exist

ay, ..., ayeAgnA; and ¢y, ..., pyeA(S) such that a=3 ¢.(6)a, and
1

N N
I 0 @a| 5agap < 1 [18]. Let g(z) be Y ¢,(2)Ta;. Then geF™(By, By),
1 1

whence Tya =g (0)e[B,, B,]y and ||7;’a”mo.8115" < llgll sw < 1. To prove the
converse, let fe 7" (B, B,). Take a, in AgnA4; and a*e(A4y+ 4,)* such that
{a*, ayy = 1. Define {T,} by T,a = {a*, a) f(2). {T,} satisfies the conditions
and Tya, = f(0).

Remarks. (i) Theorem 1 remains valid for a weakened form of con-

dition (B) allowing a moderate growth of ”73+.':||A-,nj as t— +oo. (Cf.
Theorem 2 below where this is explicitly formulated.
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(i) As stated in the theorem, the range space of Ty cannot in general be
smaller than [Bo, B;]y. Thus, for those couples (Bo, B;) satisfying
[Bo, BiJs # [Bo, B1]} (see Section 2) we can construct an analytic family of
operators {T,} exactly as in the proof above, which satisfies all the hy-
potheses of the theorem but such that T;(4onA;) & [Bo, Byl

(iii) It is not reasonable to expect that T; extends uniquely to a bounded
operator into [B,, B,y of a space larger than [A,, 4,], such as [A4g, 4,1}
or [Ag, A;];. This is simply because in general 4,nA4; is not dense in
[4o, 4115 or [4o, A;1y. In fact (see below) the closed hull of A;nA, in
either of these spaces coincides with [44, 4;]s. (If one imposes additional
stringent conditions on {T.} such as requiring that T,: Aq+ A, — B+ B, for
each ze§, that T, is an analytic L(4q+ Ay, B+ B,) valued function on §
and that it is continuous on § with respect to the L{Aq+Aj, Bo+By)
operator norm, then of course T, maps [A4,, 4;]§ into [Bo, B;J5.) .

Calder6n [3] defined a different interpolation method as follows. Let
F(By, B;) be the space of all continuous functions §— By+ B, that are
analytic on S, bounded by C(1+|z|) and satisfy

sup {lf G+it)— S (+12)lg;/ It — 1]} < o0.

Then [Bo, B,1°={f'(0): fe #}.

It follows from Lemma 2 below that if the unit balls of B, and B, are
closed in B,+ By, then [By, B;1y < [B,, B;]1%. (Strict inequality may occur;
see the examples in the sequel.) We do not know whether this inclusion holds
for an arbitrary Banach couple (B,, B,) although of course we will always
have [B,, B, 1y < [By, B,1% where B, and B, are the Gagliardo completions
of By and B, in By+B,. Note also that [B,, B,], = [Bo, B,], [9], but it is
not known whether [By, B,1° and [B,, B;]° always coincide. Finally, since

[ﬁo, §1]o =[Bo, B11y = [Bo,B;15 = [Bo, B,J5 = [Eo, El]a,

all inclusions being continuous with norm one, we remark that, by a theorem
of Bergh [1], the norms of all these spaces coincide for elements of BynB,
and thus also for elements of [By,B;],. (Cf. also [9])

2. A counter-example. Let FL*, FC, FBMO, FVMO, FQC denote the
spaces of sequences which are the Fourier coefficients of functions on the
unit circle belonging to L, C, BMO, VMO, QC, respectively, These are
Banach spaces with the norms induced by the Fourier transform. Here

VMO = {feBMO: [ (* +h)~f(“)llsmo — O as h— 0}
and QC = I*nVMO [15]. Let
nzo0,
n <0,
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Fefferman’s characterisation of BMO may be formulated as follows

{a,} eFBMO <3 {b,}, {c,} €FL* such that a, = b,+s,c,.
C = QC = I* with strict inclusions; sinloglog 14/t], |t} <, is an example of a
discontinuous function in QC.

Let FI (~ o0 <a < o0) denote the space {{a,}®,,: {¢*'a,} eFI*}. Thus
FL3 =FL*. FBMO,, etc, are defined similarly.
We will prove that, for 0 <8 < 1,

[FL3, FLY]y = FC,, [FL3, FIF); = [FL3, FITTY = FQC,
and
[FL3, FIZ)® = FI3.
We do this in several steps. ‘
(i) Let {a,} e[FL3, FLY]® with norm less than one. Then {a,} =g'(®

for an analytic function g(z) = {g,(2)} in F(FL3, FL?) with norm less than
one. Let p be a trigonometric polynomial. Then, for ¢ > 0,

h(Z) = Ze,,,_ gn(z"*'i?z‘gn(z) ﬁ(n)

is a bounded analytic function on §.
h(it) < llg (it +ie)~ g (ol o lIPIl 2 /2 < 1P 1

Similarly |h(1+it)] < ||pl| 1+ By the maximum principle |h(8)] < ||pll .1~ Letting
£—0 we obtain (Z e""g,’,(B)ﬁ(n)) <|lpll,y, which implies that {a,}
= {g.(0)} eFL3.

Conversely, if {a,}€FLy, we may take g(z) = {g,(z)} with g,(z) =
—e®Ia/m, n#0, and go(z)=apz. Then geF and Ila,) =
g 0)e[FL, FLY1°. (The equality [FL3, FIS)? =FI also follows by
duality from [FL,, FI' ], = FL,, of. [9])

(ii) FCq is a closed subspace of FL7 and FLZNFL? is a dense subspace
of FCq. Thus [FL3, FL}], = FC, by (i) and Bergh’s theorem [1].

(iii) Let {x,} e FBMO. Then {x,} = {b,} + {s,ca} = {ba+cs} +{(5,— )c,},
with {b,}, {c,} eFL*. Hence {b,+c,}eFL3 and

-1

w -1
Y le"sa—Del =3 2cle"<C Y e"< oo,

whence {(s,—1)c,} e FL. This proves that FBMO < FL3+FL%. (The inclu-
sion is continuous, e.g. by the closed graph theorem.)

Let {a,}eFQC, and define f(z) = {a,e" ?}. Let heQC be such
that A(n) = e™a,. Then llf(j+it)ll”ja ={hll e, f =0,1, —0 <t <c0.

€ Qindie Meabbharatie T VVIV
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{J(if)) - <1< are the Fourier transforms of translates of . Since he VMO,
translation of h is continuous in BMO. Thus t—f(ir) is continuous as a
function into FBMO < FIZ+FIL%. Similarly ¢ —f(1+1it) is continuous into
FBMO, « FI5+FIL%, Since f equals the Poisson integral of its boundary
values, fe #°(FL3, FLY) and {a,} =f(0)e[FL, FLT15.

iv) If  f(z) = {f,(2)} e F*(FL;, FL}) and p is
polynomial,

a trigonometric

3 e fu(2) B(m)]
on 08, and thus on §. Hence f(0)eFLj, and [FL3, FLYY < FL}.

An argument similar to (i) and (ii) above shows that [FBMO,,
FBMO,]° =FBMO, and [FBMO,, FBMO,],=FVMO,. (We use the
duality of H! and BMO.) The mapping P: {a,} — {}(1+s,) a,} maps FI?
into the subspace FBMO™* of Fourier sequences of analytic BMO-functions.
Since. P maps FIZ into FBMO,, P maps [FL3, FLY]} into

[FBMO{, FBMO; 1} = [FBMO{, FBMO{ ], = [FBMO,, FBMO, ],
=FVMO,,

where we have used FBMOZ > FBMOY{ . Similarly I— P maps [FL3,FL?]y
into FYMO,. Thus, [FL3, FI%]y =« FYMO,. Consequently,

[FL3, FLX1y = FLynFYMO, = FQC,.
This completes the proof that
[FL3, FI7); = [FL3, FLT] = FQC, = [FL3, FLi]y.

3. Another interpolation theorem. Let ¢ be a 1-1 conformal map of the
unit disc U onto S. We define N*(5) to be the algebra of all complex
functions f on §- such that fo@e N* (U) and f (j+ir) = ]imf' (s+it) for almost

<Al Pl 1

every t, j=0, 1 of. [6]. H*(S) is the algebra of al] bounded complex
functlons on § which are analytic on S and satisfy f (] +it) = 11m [ (s+it) for
almost every r,j =0, 1. Then A(S) CH‘”(S) = N*(§).

Lemma 2. Assume that, the- Banach spaces By, and B, are Lonnnuously
embedded in a Banach space B and that B* is a linear subspace of the dual
space B* ‘that determines the norms B,, B, and B, i.e. there are subsets
Iy, Ty, T of BY such that

sup {[<b*,b)1, b* €T} =lblly,,  j=0,1,beB
(where ||blls, = if be B\B)) and

sup {|[<bT, b)), b* €T} = |lbll, , beB.

(By the bipolar' theorem this lS equlvalent to the umt balls of By, Bl, B bemg
a(B, B")-closed) -
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Let f be a function §— B such that (b*,f(z)>e H*(S) for b* B* and

NfG+ils, <1 for ae t,j=0,1. Then f(®e[By, B, and
1L O)ls,, Bl]s<1
Proof. Let ¢ >0 and let
:(z-ﬂ)_l
=02l T2 z).
fi@) 2G=D) f(2)

Then <b*, fi(2)>e H®(S) for all b* eB*, and

/1 G+inlls, < el o g
Since the embeddings B; — B are continuous, there exists a constant C such
that || f; (j+if)||z < C a.e, j =0, 1. This and the maximum principle yield that

IKb™, fi @)l <

Since B* determines the norm on B, ||f;(z)ll < C.

By uniform convergence, (b*, f; (z)> € H*(5) for any b*eB*, the closed
hull of B* in B*. Since we may regard B as a subspace of the dual of the
Banach space B, the uniform boundedness principle applies to show that

/1(2) is an analytic, and thus continuous, map from § into B (cf. [8], p. 93).
Fix zo€S and define

Clb*ll,., zeS, b*eB*.

g1(2) = [ fi(wdw for each zeS.
20

Since f; is continuous on S, this integral, taken along any rectifiable curve in
S, exists in B. It is path independent since

b, jfl(w)dw> I<b+,f1(W)>dW

0

holds for any b* eB™, and Bt separates points of B. Furthermore,

llgs (z1)—g1 Iz = ” fl (Z)dZ”B ”fl (@Nlp dizl <

Clzy —2z,).

Thus, g, (2) is uniformly continuous, and g, may be extended to a continuous
function § - B.
Then, for b™ eB™,

<b*, g1 (ity)—gq (ity)) = lim <b*, gy (s+ity) =g (s+ity)>

= lim j b S (s+inyde = j AT S

s—0 11
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Thus, if b* el
1
[Kb*, g1 (its) —g1 (it < f ISy (i0)llg, dt.
31

Since B* determines the norm of By,
12
llgy (ita)= g1 (it))llsy < FllfL@0llagdt <ty 14 e,
t

Similarly,

gy (1 +its)—g, (L4t )i, Stz —14] €%

Now, let g,(2) = g,(z)—g; (z—2mife), zeS. Then, if Rez=j=0,1,
g2(z)eB; and ||gz(z)|]Bj<2ne2"/s. Furthermore, for any 1, |t} or |r—2m/g]
exceeds m/e. Thus,

. . —n2
13 (iD)llzo +11.f1 (it — 2mi/e)llg, < e*+e2 7™ < e,

whence
t2
llg2 (it2)— g2 (it1)llsy < § At sy + LA (it = 2mife)lig ) dt <tz —1)e®.
1y
Similarly

gz (L+its)—ga (L +ity)llp, < ltz—~1] €.

In particular, g, restricted to 8S is a bounded continuous function into
By+B,. Let g3 be the Poisson integral of this restriction. Then g, is a
bounded continuous function § — By + B, . On the boundary 8 g, equals g,.
Also, for any b*eB* < (By+B,)*, <(b*,g;(z)> is a bounded harmonic
function, while (b*, g,(z)> is bounded and analytic. Consequently,
<b*, g3(x)> = (b*, g2(2)> in §, and gy = g,. Thus, g, =g is a continuous
function into B,+B,. For any closed rectifiable curve in S, {g2(2)dz is

defined in By+B,, but another application of b*eB* showys that this
integral vanishes and so [<b* g,(2)>dz=0 for all b*e(By+B,)*. By
7

Morera’s theorem g, is analytic S — By+B;.

We have shown that g,e % (B,, B;) with norm < €. Since

92(0) = 41 (6)— g (0~ 2mife) = f, (6)—f, (0 —2mi/e) = £ (6),

S (©)e[Bg, B,1° and 1F O)llesgmy0 < €%, Now, let ¢ —0.

Remark. In this lemma and the theorem below, the space B in which

By and B, are continuously embedded, may more generally be a locally
convex topological vector space which is quasi-complete. (We recall that this
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means that each of its bounded closed subsets is complete.) B should then
be a subset of B* which determines a fundamental set of seminorms on B (ie.
there exists a basis of neighborhoods of 0 which are o (B, B*)<closed). Of
course, B¥ must also determine the norms of By and B; as before.

The proof is the same except for the following modifications: Let pbea
seminorm determined by B*. Let B, = B/p~! {0} and

B = {b*eB*: |b* (b) < Cp(b), beB, for some C < oo}.

The seminorm p becomes a norm on B, and the completion 1?,, is a Banach
space. B determines p on B, and we may apply the same argument as
above (cf. [8], pp. 93, 94) to f,(z) regarded as a ﬁ,, valued function.
Consequently, f; (z) is continuous on S with respect to p. It is also clear that
p(f1(2)) is bounded on S. This holds for all p from a fundamental set of
seminorms on B, which is equivalent to f; being bounded and continuous
S —B.

Since B is quasicomplete, the integrals defining g, exist in B in the weak
(Pettis) sense [8], p. 77, [16], p. 201. Again, g, is uniformly continuous
(P(91(21)—91(22) < C,lzy—24)) and g; may be extended to §, B being
quasicomplete. The rest of the proof is the same.

Two examples of such B and B* when B, and B, are suitable function
%pfccs Cg;e B = Li: B* = {integrable simple functions} (cf. [19]) and B = &,

= 0 .

THEOREM 2. Assume that (Ay, A;) is a compatible couple of Banach
spaces, that A is a dense subspace of AynA; and that By, B;, B, B* are as
above.

Let {T},.s be a family of linear operators from A to B such that
bt TadeN*(S) for any b eB* and acA, and that ]]"I}H,al],,j
< M;(1)l|all 4; ae, acA, where My and M, are measurable functions satisfying

m(6) = [log Mo (1) P, (0, l)dt+_flogM1 ()P (O, Ndt < 0,

where P;(0,1), j =0, 1, are the Poisson kernels for S (cf. [2], p. 93). Then T,
(0<0<1) has a unique extension to a bounded operator [A,, Al
— [Bo, B;1’ and ||T| < ™.

Proof. There is an outer function yeN*(S) such that | (j+if)| =
M(j+i)"! ae. and |y (0)) = e”™®, Multiplying T, by (z), we may assume
that M;(t) = 1. Then ‘ ’

IKb*, T.a) < Clib*lls.llallagna, ae. on 8S.

By the maximum principle, this holds for all zeS. Thus ¢b*, Tad>eH(S).
This also implies that || T; dllp < C|lall4yra, - Hence, each T, may be extended
to  AonA;. These extensions  will satisfy - (b*, T,a)e H*(S) and
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T+ dlls; <1 ae. for every aeA,nA, and b* eB*. Thus, we may assume
that A= A(,r\A1

Now, let ae AynA; with [lallgg,a,1 <1- There exist ay, ..., ayeApNn4,
N

and ¢y, ..

Z(Pk

., pyeA®) such that a = Y o, (0)a, and |3 ¢u(2) ai| 5ug.4,) < 1-
k=1
T. a sansﬁes all conditions of Lemma 2. Consequently,

Ta=3 ¢(0) Tae[Bo, B;1° and

COROLLARY. Assume that (Ao, A,) and (B, B,) are two couples of Banach
spaces and that BonB, is dense in B, and B,.

Let {T,).s be a family of linear operators from A,NA, into (BynBy)*
= B}+B¥ such that <b, T,a>eN*(S) for every acAo,nA; and beB,NB,,
and that || -+,-ta|l3~< M-(t)][allA ae., ae AgNAy, where M;(t) are as above.
Then T,(0 <0 < 1) has a unique connnuous extension [Aoy, Ay]y — [BY, B¥)
( [BO: Bl]B)

This corollary is also a special case of [5], Th. 4.2. The following
example shows that in general T; does not map A4,nA; into [By, B;], or
[Bo, B;]¥. Thus, weak-*-continuity is not sufficient in Theorem 1.

ExampLe. We will use I', I® and ¢, and their weighted counterparts
I, 12,(co),- (The notation is as in Section 2) Let A, = A, be one-
dimensional and take By, =1}, B, =I*,. Then B¥ = Ig, B¥ = I, [I®, I¥]°
=g and [I§, 1]y = (co)p. To calculate [I, I¥]y observe first that if we deal
with spaces of onesided sequences, then either I < I§ or IQ < I so that
U, I°18 =iy, 1], (see Section 1). But the same result now follows for
two-sided sequences by considering them as direct sums of one-sided sequ-
ence spaces. .

Let {a,} €l and define T, by T,1 = {a, e"(""”} If b={b,}elinilt,,
then <b, T, ad> = a} a,b, e"“’")eA(S) since the series converges uniformly.
T+ all; < lal. Thus, {T.} satisfies the conditions and T;1 = {a,}, an arbit-
rary element of I, ‘

||7¢)a||[no,nx]9 <L
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