A construction of convolution operators on free groups

by

TADEUSZ PYTLIK (Wrocław)

Abstract. For a non-commutative free group G and for any p, 1 , we construct a non-negative function <math>f on G which by convolution defines a bounded operator on $l^p(G)$ but unbounded on $l^q(G)$, $q \neq p$.

Let G be a discrete group. A complex function f on G is called a convolution operator on $l^p(G)$, $1 \le p \le \infty$, if f * g belongs to $l^p(G)$ whenever $g \in l^p(G)$. The set $C^p(G)$ of all convolution operators on $l^p(G)$ equipped with the operator norm

$$|||f|||_p = \sup_{\|g\|_p \le 1} ||f * g||_p$$

is a Banach algebra. We note that $C^1(G)$ and $C^{\infty}(G)$ both coincide with the algebra $l^1(G)$ and that $f \in C^p(G)$ if and only if $f^* \in C^{p'}(G)$, where 1/p + 1/p' = 1, and f^* is the function on G defined by $f^*(x) = \overline{f(x^{-1})}$.

The aim of this note is to prove the following

THEOREM. Let G be a non-commutative free group and let 1 . $There exists a non-negative function f on G such that <math>f \in C^p(G)$ but $f \notin C^q(G)$ for $1 < q < \infty$, $q \neq p$.

Remarks. 1. The theorem is motivated by a result of Lohoué [3]. For any p, 1 , and any connected semi-simple Lie group <math>G he has constructed a positive measure μ on G which by convolution defines a bounded operator on L^p and unbounded on L^p for $q \neq p$.

2. It is known that for an amenable group G one always has $C^p(G) \subset C^q(G)$ for $1 \le p \le q \le 2$ or $2 \le q \le p \le \infty$ ([2], Theorem C) and that a non-negative function f belongs to $C^p(G)$ if and only if $f \in l^1(G)$ ([1], Theorem 3.2.2), which is in sharp contrast to the theorem above.

We start the proof of the theorem with the following two lemmas:

LEMMA 1. Suppose f and g are two functions on G such that for x_1 , x_2 in the support of f and y_1 , y_2 in the support of g the equality x_1 $y_1 = x_2$ y_2 implies $x_1 = x_2$ and $y_1 = y_2$. Then

$$||f * g||_p = ||f||_p ||g||_p, \quad 1 \le p \le \infty.$$

The proof is obtained by a simple verification.

Lemma 2. Let G be a non-commutative free group and let a and b denote two of the free generators in G. For a pair (m, n) of natural numbers let $f_{m,n}$ denote the characteristic function of the set

$${a^i b^{-k}: i = 1, 2, ..., m; k = 1, 2, ..., n}.$$

Then

$$m^{1/p} n \leq |||f_{m,n}|||_p \leq m^{1/p} n + mn^{1-1/p}, \quad 1 \leq p < \infty.$$

Proof. For $r \ge n$ define the function

$$g_r = r^{-1/p} \chi_{\{b^k: k=1,2,...,r\}}$$

(we use the notation χ_A for the characteristic function of a set $A \subset G$ and δ_x for $\chi_{(x)}$). Then $||g_r||_p = 1$ and

$$f_{m,n} * g_r \ge nr^{-1/p} \chi_{\{a^ib^k, i=1,2,...,m; k=0,1,2,...,r-n\}}$$

Therefore

$$||f_{m,n} * g_r||_p \ge m^{1/p} n (1 - (n-1)/r)^{1/p}$$

and so

$$|||f_{m,n}|||_p \geqslant nm^{1/p}.$$

To show the second estimation we let g to be any function in $l^p(G)$ with $||g||_p = 1$. For a given integer j define $g_j(x) = g(b^{-j}x)$ if the first letter of the word $b^{-j}x$ is neither b nor b^{-1} and put $g_j(x) = 0$ elsewhere. The functions $\delta_{b^j} * g_j$ have pairwise disjoint supports and $g = \sum_j \delta_{b^j} * g_j$. Thus $\sum_j ||g_j||_p^p = ||g||_p^p = 1$. Let also φ be the characteristic function of the set $\{a^i\colon i=1,2,\ldots,m\}$. We have

$$f_{m,n} * g = \sum_{i=1}^{n} \sum_{j} \varphi * \delta_{bj-1} * g_{j} = \sum_{i=1}^{n} \varphi * g_{i} + \sum_{j\neq 0} \varphi * \delta_{bj} * \sum_{i=1}^{n} g_{i+j},$$

thus

$$||f_{m,n} * g||_p \le ||\sum_{i=1}^n \varphi * g_i||_p + ||\sum_{j \ne 0} \varphi * \delta_{b^j} * \sum_{i=1}^n g_{i+j}||_p.$$

But

$$\begin{aligned} \|\sum_{i=1}^{n} \varphi * g_{i}\|_{p} &\leq \|\varphi\|_{1} \|\sum_{i=1}^{n} g_{i}\|_{p} \leq m \left(\sum_{i=1}^{n} \|g_{i}\|_{p}\right) \\ &\leq mn^{1-1/p} \left(\sum_{i=1}^{n} \|g_{i}\|_{p}^{p}\right)^{1/p} \leq mn^{1-1/p}. \end{aligned}$$

Also the functions $\phi * \delta_{bj} * \sum_{i=1}^{n} g_{i+j}$, $j \neq 0$, have pairwise disjoint supports, thus

$$\left\| \sum_{j \neq 0} \varphi * \delta_{b^{j}} * \sum_{i=1}^{n} g_{i+j} \right\|_{p}^{p} = \sum_{j \neq 0} \left\| \varphi * \left(\delta_{b^{j}} * \sum_{i=1}^{n} g_{i+j} \right) \right\|_{p}^{p},$$

and since φ and $\delta_{b,j} * \sum_{i=1}^{n} g_{i+j}$, $j \neq 0$, satisfy the assumption of Lemma 1, we have

$$\begin{split} \|\sum_{j\neq 0} \varphi * \delta_{bj} * \sum_{i=1}^{n} g_{i+j}\|_{p}^{p} &= \sum_{j\neq 0} \|\varphi\|_{p}^{p} \|\delta_{bj} * \sum_{i=1}^{n} g_{i+j}\|_{p}^{p} \\ &= m \sum_{j\neq 0} \|\sum_{i=1}^{n} g_{j+j}\|_{p}^{p} \leqslant mn^{p-1} \sum_{j\neq 0} \sum_{i=1}^{n} \|g_{i+j}\|_{p}^{p} \leqslant mn^{p}. \end{split}$$

All these together give

$$||f_{m,n} * g||_p \leq m^{1/p} n + mn^{1-1/p}.$$

Therefore

$$|||f_{m,n}|||_p = \sup_{\|g\|_p = 1} ||f_{m,n} * g||_p \le m^{1/p} n + mn^{1 - 1/p}$$

and the lemma follows.

Proof of the theorem. We start the proof with a simple observation that for non-negative functions f_1 and f_2 on G

$$|||f_1+f_2|||_p \geqslant \max\{|||f_1|||_p, |||f_2|||_p\}, \quad 1 \leqslant p \leqslant \infty$$

Thus $f_1 + f_2$ belongs to $C^p(G)$ if and only if f_1 and f_2 both are in $C^p(G)$.

Fix an exponent p and choose two sequences m_k , n_k of integers and a sequence α_k of positive numbers such that the sequence $\alpha_k m_k^{1/q} n_k$ is unbounded for every q < p but the series

$$\sum_{k=1}^{\infty} \alpha_k (m_k^{1/p} n_k + m_k n_k^{1-1/p})$$

is convergent (put for example $m_k = 2^k$, $n_k \ge 2^{kp}$ and $\alpha_k = k^{-2} m_k^{-1/p} n_k^{-1}$). Also define a function f_1 by

$$f_1 = \sum_{k=1}^{\infty} \alpha_k f_{m_k, n_k},$$

where $f_{m,n}$ are the functions from Lemma 2. Since the series $\sum_{k=1}^{\infty} \alpha_k |||f_{m_k,n_k}|||_p$ is

convergent, f_1 is in $C^p(G)$. On the other hand, since all functions $\alpha_k f_{m_k,n_k}$ are non-negative,

$$|||f_1|||_q \geqslant \sup_k \alpha_k |||f_{m_k, n_k}|||_q = \infty$$

for all q < p and so $f_1 \notin C^q(G)$.

For the exponent p', where 1/p+1/p'=1, let f_2 be a function constructed in the same way as f_1 with p' in place of p. Then $f_2^* \in C^p(G)$ but $f_2^* \notin C^q(G)$ for q > p. Consequently the function $f = f_1 + f_2^*$ has the property claimed in the theorem.

COROLLARY. Let G be a non-commutative free group and let $1 , <math>p \neq 2$. There exists a non-negative function f on G such that the operator $g \rightarrow f * g$ is bounded on $l^p(G)$ but the operator $g \rightarrow g * f$ is unbounded.

Proof. The operator $g \to g * f$ is bounded on $l^p(G)$ if and only if $f^* \in C^p(G)$ which is equivalent to $f \in C^{p'}(G)$, where 1/p + 1/p' = 1.

References

- F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand, 1969.
- [2] C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82.
- [3] N. Lohoué, Estimations L^p des coefficients de représentation et opérateurs de convolution, Adv. in Math. 38 (1980), 178-221.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WROCŁAW Pl. Grunwaldzki 2/4, Pl-50-384 Wrocław

Received January 3, 1983

(1855)

Analytic vectors and generation of one-parameter groups

by

JAN RUSINEK (Warszawa)

Abstract. We give a Hille-Yosida type condition for an operator to generate a oneparameter strongly continuous group on a Banach space, in terms of analytic vectors of the operator.

Introduction. Let E be a Banach space, and A a linear operator on E with domain D(A). An element x in $\bigcap_{n=1} D(A^n)$ is called an *analytic vector for* A if for some t > 0

$$\sum_{n=1}^{\infty} \frac{t^n}{n!} ||A^n x|| < +\infty.$$

By a standard spectral projection argument one easily proves that the self-adjoint operator on a Hilbert space has a dense set of analytic vectors. Conversely, a result of Nelson [4], Lemma 5.1, states that the symmetric operator on a Hilbert space, with a dense set of analytic vectors, is essentially self-adjoint.

The main objective of the present paper is to establish Banach space counterparts to the above assertions. Our starting point is the observation that the skew-adjoint operators coincide with the generators of one-parameter strongly continuous unitary groups (Stone's theorem). We accordingly shift attention from self-adjoint operators to generators of one-parameter strongly continuous groups.

The generalization of the first assertion is routine. Indeed, given a Banach space E, if A generates a one-parameter strongly continuous group G on E, then for every $x \in E$

$$\sqrt{k/\pi} \int_{R} \exp(-kt^2) G(t) x dt \qquad (k > 0)$$

is an analytic vector for A which tends to x as $k \to +\infty$; accordingly, A has a dense set of analytic vectors.

The generalization of Nelson's result is much more involved. It takes the form of the following