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convergent, f; is in C?(G). On the other hand, since all functions o, f,, n 8T
non-negative,

i fillly = sup %l fommllly =

for all ¢ < p and so f; ¢ C(G).

For the exponent p/, where 1/p+1/p'=1, let f, be a function con-
structed' in the same way as f; with p’ in place of p. Then f%e C?(G) but
f3¢C?(G) for g > p. Consequently the function f=f; + /% has the property
claimed in the theorem.

CoroLLARY. Let G be a non-commutative free group and let 1 <p
< o0, p# 2. There exists a non-negative function f on G such that the
operator g —f*g is bounded on [P(G) but the operator g — g*f is unbounded.

Proof. The operator g —g=*f is bounded on I7(G) if and only if
f*eC?(G) which is equivalent to feC”(G), where 1/p+1/p = 1.
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Analytic vectors and generation of one-parameter groups
by
JAN RUSINEK (Warszawa)

Abstract. We give a Hille-Yosida type condition for an operator to generale a one-
parameter strongly continuous group on a Banach space, in terms of analytic vectors of the

- operator.

Introduction. Let E be a Banach space, and A a linear- operator on E
with domain D(A). An element x in () D(A" is called an analytic vector for

n=1
A if for some t >0
o tn
¥ = |lA"x| < +o00.
n

n=1

By a standard spectral projection argument one easily proves that the
self-adjoint operator on a Hilbert space has a dense set of analytic vectors.
Conversely, a result of Nelson [4], Lemma 5.1, states that the symmetric
operator on a Hilbert space, with a dense set of analytic vectors, is essentially
self-adjoint.

The main objective of the present paper is to establish Banach space
counterparts to the above assertions. Our starting point is the observation
that the skew-adjoint operators coincide with the generators of one-
parameter strongly continuous unitary groups (Stone’s theorem). We ac-
cordingly shift - attention from self-adjoint operators to generators of one-
parameter strongly continuous groups.

The generalization of the first assertion is routine. Indeed, given a
Banach space E, if A generates a one-parameter strongly continuous group G
on E, then for every xeE

Jkim [ exp(—kt?)G(t)xdt - (k> 0)
R

is an analytic vector for A which tends to x as k — +co; accordingly, A has
a dense set of analytic vectors.
The generalization of Nelson’s result is much more involved. It takes

the form of the following
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TuroreMm 1. Let E be a Banach space and A an operator on E. Suppose
that

(i) the ser </ (A) of analytic vectors for A is dense in E;

(ii) there exist @, M >0 such that for all AeR with Al > w, all meN,
and all xe s/ (4)

A=A x| = M~ (A — )" fixll.

Then the restriction of A to </ (A) is closable and its closure generates a one-
parameter strongly continuous group G on E such that
(%) IG @I < Mexp(w]|d).

Incidentally, the above theorem generalizes a certain unproved result of
[1], Theorem 3.1.22.

1. Prerequisites. In the sequel, we make use of the following important

TueoreM (de Leeuw [3]). Let G be a one-parameter strongly continuous
semi-group on a Banach space E, with generator A. Let D be a G-invariant
linear subspace of D(A), dense in E. Then the closure of the restriction of A to
D coincides with A.

We also need the following lemma, which is of interest in its own,

LemMma. Let A be a densely defined operator on a Banach space E.
Suppose there exist a constant b >0 and a sequence A, of positive numbers
diverging to infinity such that

(L.1) (14~ A x| = b, x|
for all xeD(A). Then A is closable.

Proof. Let (x,) be a sequence in D(A) tending to zero with lim Ax,

= x. We shall show that x = 0. e
By (1.1), we have for all yeD(A4) and all k, neN

by +Aexll < |14+ A xp) = A (V + A x)-
Letting n tend to infinity, we get

bA Iyl < |4y + 2 (x =yl
and further
vl < &7 (A AV +llx—yl).
Hence

Il < b~ lx—yll,
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and so
Ixl < @+ lIx— ).

Since y can be chosen arbitrarily close to x, it follows that x = 0. The proof
is complete.

2. Proof of Theorem 1. Without loss of generality, we may assume that

D(A) = </ (A). The closability assertion is an immediate consequence of (ii)
and the lemma.

For each neN, let D, be the completion of «/(A) under the norm
n
Y Al xeo(4).
=0

By a standard argument, one can identify D, with a subspace of D(4") en-
dowed with the norm

n
lIxll,= ¥ II4xll, xeD,.
i=1

In view of (ii), we have for all xeD, and all AeR with |1 > ®
2.1 A=Ay x| 2 M~ (14— w)"|[x]].

o0
Let D, = (\ D,. For each r >0, let .

n=1

O L
of={xeDy: ¥ =5 lA"x|| < oo for 0 <t <r}.
n=1 "
For each xe./, and each teR with |tf| <r, put

a0 n
22 G)x=Y = Ax,
. a=0
the sum being taken in the norm topology of E.
First we check that if xe.«/, and |f| <r then

2.3) G()x = iim (1+%>nx.

n- oL

In fact, we have for any neN
th‘ n n W t k
(1‘+ -—r;—> x= k.zo(k) (n) A x.

Since for each keZ,, lim n""(Z) = 1/k!, and for any neN n™* (:> < 1/k!,
; , o , ‘ ,

the result now follows: from Lebesgue’s: dominated convergence theorem.
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In a like manner we prove that if xe«, and |1} <r/2 then

A\ tA\"

We claim that for all xes, and all teR with 1] <r/2

(2.5) G () xl) < M exp(w |t lIx]].

Indeed, given neN, xe«/,, and reR with |f| <r/2 we have by (2.1)

" A\ tAY tA\"
Mt (1— 5”—'-"—) (1+ ﬁ) x s”(l— —-) (1+ —-) x|
n n n n
In view of (2.3) and (24), the claim now follows upon letting n tend to
infinity. . ‘
Next, we show that if [f| <r/2 then ./, is G(t)-invariant and for all
xe.of/, and all s, teR with |s|, [t| <r/2, we have

(2.6) G(s) G(t)x = G(s+1)x.

Indeed, it is easily seen that .7, is an invariant space for all powers of A.
Thus for x .o/, the series in (2.2) converges in each norm || ||,,. Consequently
G(t)xeD,,. Since A" is a continuous operator from D,, to E, we have for
xes/,, keN, and reR-with || <r

.7 AG()x =G A x.

If | <r/2 and 0 <u<r, then by (2.5) and (27)

[

@ k k Q uk .
T SIAGE N = ¥ 160 A X < Mexp(olt) Y. 7 14
K=o K! ¥=o k! k=0 K: )

which proves the invariance assertion. Moreover, if |s| <7/2, then

> bl 2 M &
k?‘;o kit II/T‘*fx||=p§0 k-;:p ki ”A”xllsp}z:o;E“Apx”’

and by (2.7) we can write
o ok - o ok @ 4l "

G(s) G(r)x =k§=:0 7 G A" x = k}g:o il lgo 7 Aty

o Sle ‘

APx = G(s+0)x.

p=0 k+i=p k! ”

For each r > 0, let E, be the closure of <, in E. Given teR with }f| <r/2,
extend G(t) by continuity to a bounded operator from E,. into itself, still
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denoted by G(1), so that (2.5) and (2.6) continue to hold. Given teR, select
neN so that [t}/n <r/2 and set

G =G (5)
n

A routine verification yields that the right-hand side does not depend on n.
Moreover, the operators G(f) (reR) form a locally equicontinuous one-
parameter group G on E,. Taking into account that for all x€sf, the
function (—r, r)at = G(f)x€E, is continuous, we easily deduce that G is
strongly continuous. A step by stes application of the global G(t)-invariance

~of «, for reR with || <r/2 yields the global G-invariance of A, .

Let A4, denote the generator of G restricted to E,. By de Leeuw’s
theorem, we have

(28) A=Al

By the Hille-Yosida theorem [2], Theorem 12.3.2, there exist w,, M, >0
such that for all AeR with |4 > w,

(29) (4,~2)D(4,) = E,
and for all meN and all yeE,

(2.10) (4, = D)™™ ¥l < M, (121 =)~ ™Iyl

By (2.1), for all meN, all AeR with |1 > @, and all ye(4,— 1) .o,

(2.11) (A —2™™ yll < M (14~ )™yl
Since, by (2.8}(2.10), (4,~2) o, is dense in E, for all AeR with |4 > ,, it,
follows that (2.11) holds for yeE, if |4 > @, = max(w,, ®). Thus, by the
Hille-Yosida theorem, the group G(r) as a group acting in E, satisfies (x).
The fact that @, #  is not essential, as can easily be seen on inspection of
the proof of the Hille-Yosida theorem (cf. the remark following the proof of
Theorem 12.3.1 in [2]). i
Notice that, given reR, G(t) on E,(r > 0) fit together to form a bounded
operator on |/ E, being dense in E. Apparently, as t runs over R, G (1) form
r>0

a strongly continuous one-parameter group G on E satisfying (x). Since each

&, (r > 0) is G-invariant, so is |J &,. Furthermore, a straighforward verifi-
r>0

cation shows that A4 coincides with the generator of G on D(4). In virtue of
de Lecuw’s theorem, A generates G. .
The proof is complete.

3. Corollaries. As a first corollary to Theorem 1 we have
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TrroREM 2. Suppose that the assumptions of Theorem 1 are fulfilled and,
moreover, ) .

(i) there is a sequence (&) with A, — +c0 or Ay — — o0 such that for all
xeD(A4)

(ke = A il 2 M~ (4]~ o) lIx]]-

Then A is closable and its closure generates a one-parameter strongly con-
tinuous group G on E satisfying (*). :

Proof. The closability of A results immediately from the lemma.

Let A denote the closure of the restriction of 4 to o/ (A). By Theorem 1,
A generates a strongly continuous one-parameter group G on E, fatisfying
(#). By the Hille-Yosida theorem, if 4, > o, then (4, —A) maps D(4) in one-
to-one manner onto E. By (i), A4, —A is an injection on D(A) that coincides
with 4,—A4 on D(A). Thus A = A, which ends the proof.

Our second corollary to Theorem 1 is

Turorem 3. Let E be a Banach space and A an operator on E. Suppose
that

(o) the set of analytic vectors of A is dense in E,

(B) for all AeR—{0} and all xeD(A)

lICA =2y x[| = A 1]

Then A has a closure generating a strongly, continuous one-parameter group of
operators. :

Notice that the above theorem immediately yields Nelson’s result, as (f)
is equivalent to the simultanous dissipativity of 4 and —4 and to the skew-
symmetry of A if E is-a Hilbert space. :
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Functional calculus and the Gelfand transformation
by
M. PUTINAR (Bucharest)

AAbs(r'act. The commutativity of Taylor’s functional calculus [8] with the Gelfand trans-
formation is proved. It is shown as a corollary that each axiomatic joint spectrum in the sense
of Zelazko_[lO] which is contained in Taylor's joint spectrum satisfies a spectral mapping
property with respect to Taylor’s analytic functional calculus.

1. Introduction. Let X be a complex Banach space and let us denote by -
C"(X) the set of all commutative n-tuples of linear bounded operators on
X,nz=1. An axiomatic joint spectrum [10] is an assignment o from each
C"(X) into the closed subsets of C", respectively, which satisfies the following
axioms: . ‘ )

(i) o(a) is the usual spectrum in the case of a single linear operator
aeL(X) = C'(X).

(i) o has the projection property, ie., for each aeC""'(X) one has
7o (a) = o(n(a)), denoting by = the natural projection onto the first n
coordinates.

(iii) o has the spectral mapping property with respect to the polynomial
maps, that is, for each polynomial p in n indeterminates and for each
aeC"(X), the equality p(c(a)) =a(p(a) holds true.

A direct improvement of [7] and [10] shows that to such an axiomatic
joint spectrum o is associated a closed subset ¢(A) in the maximal spectrum
M(A) of a commutative, unital Banach subalgebra 4 of L(X), such that ¢(A)
is minimal with respect to the property (a) below:

(a) The equality @(o(A)) =0o(a) holds for every asC"(X) and n > 1.

We have denoted above by b the Gelfand transformation of be 4. Then
one proves that the set o(A) is functorial in 4, in the following sense:

(b) If A =B < L(X) are two algebras as above, then i*o(B) = o(A),
denoting by i: A — B the inclusion map.

The set o(A) defined above is sufficiently large in M (A) because of
axiom (i). More exactly:

(c) If A is a maximal abelian Banach subalgebra of L(X) and if aeA,
then d(o(A)) = a(M(A)).
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