

convergent, f_1 is in $C^p(G)$. On the other hand, since all functions $\alpha_k f_{m_k,n_k}$ are non-negative,

$$|||f_1|||_q \geqslant \sup_k \alpha_k |||f_{m_k, n_k}|||_q = \infty$$

for all q < p and so $f_1 \notin C^q(G)$.

For the exponent p', where 1/p+1/p'=1, let f_2 be a function constructed in the same way as f_1 with p' in place of p. Then $f_2^* \in C^p(G)$ but $f_2^* \notin C^q(G)$ for q > p. Consequently the function $f = f_1 + f_2^*$ has the property claimed in the theorem.

COROLLARY. Let G be a non-commutative free group and let $1 , <math>p \neq 2$. There exists a non-negative function f on G such that the operator $g \rightarrow f * g$ is bounded on $l^p(G)$ but the operator $g \rightarrow g * f$ is unbounded.

Proof. The operator $g \to g * f$ is bounded on $l^p(G)$ if and only if $f^* \in C^p(G)$ which is equivalent to $f \in C^{p'}(G)$, where 1/p + 1/p' = 1.

References

- F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand, 1969.
- [2] C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82.
- [3] N. Lohoué, Estimations L^p des coefficients de représentation et opérateurs de convolution, Adv. in Math. 38 (1980), 178-221.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WROCŁAW Pl. Grunwaldzki 2/4, Pl-50-384 Wrocław

Received January 3, 1983

(1855)

Analytic vectors and generation of one-parameter groups

by

JAN RUSINEK (Warszawa)

Abstract. We give a Hille-Yosida type condition for an operator to generate a oneparameter strongly continuous group on a Banach space, in terms of analytic vectors of the operator.

Introduction. Let E be a Banach space, and A a linear operator on E with domain D(A). An element x in $\bigcap_{n=1} D(A^n)$ is called an *analytic vector for* A if for some t > 0

$$\sum_{n=1}^{\infty} \frac{t^n}{n!} ||A^n x|| < +\infty.$$

By a standard spectral projection argument one easily proves that the self-adjoint operator on a Hilbert space has a dense set of analytic vectors. Conversely, a result of Nelson [4], Lemma 5.1, states that the symmetric operator on a Hilbert space, with a dense set of analytic vectors, is essentially self-adjoint.

The main objective of the present paper is to establish Banach space counterparts to the above assertions. Our starting point is the observation that the skew-adjoint operators coincide with the generators of one-parameter strongly continuous unitary groups (Stone's theorem). We accordingly shift attention from self-adjoint operators to generators of one-parameter strongly continuous groups.

The generalization of the first assertion is routine. Indeed, given a Banach space E, if A generates a one-parameter strongly continuous group G on E, then for every $x \in E$

$$\sqrt{k/\pi} \int_{R} \exp(-kt^2) G(t) x dt \qquad (k > 0)$$

is an analytic vector for A which tends to x as $k \to +\infty$; accordingly, A has a dense set of analytic vectors.

The generalization of Nelson's result is much more involved. It takes the form of the following

THEOREM 1. Let E be a Banach space and A an operator on E. Suppose that

- (i) the set $\mathcal{A}(A)$ of analytic vectors for A is dense in E;
- (ii) there exist ω , M > 0 such that for all $\lambda \in R$ with $|\lambda| > \omega$, all $m \in N$, and all $x \in \mathcal{A}(A)$

$$||(\lambda - A)^m x|| \geqslant M^{-1} (|\lambda| - \omega)^m ||x||$$

Then the restriction of A to $\mathcal{A}(A)$ is closable and its closure generates a one-parameter strongly continuous group G on E such that

$$||G(t)|| \leq M \exp(\omega |t|).$$

Incidentally, the above theorem generalizes a certain unproved result of [1], Theorem 3.1.22.

1. Prerequisites. In the sequel, we make use of the following important

Theorem (de Leeuw [3]). Let G be a one-parameter strongly continuous semi-group on a Banach space E, with generator A. Let D be a G-invariant linear subspace of D(A), dense in E. Then the closure of the restriction of A to D coincides with A.

We also need the following lemma, which is of interest in its own.

Lemma. Let A be a densely defined operator on a Banach space E. Suppose there exist a constant b>0 and a sequence λ_k of positive numbers diverging to infinity such that

$$(1.1) ||(A - \lambda_k) x|| \ge b\lambda_k ||x||$$

for all $x \in D(A)$. Then A is closable.

Proof. Let (x_n) be a sequence in D(A) tending to zero with $\lim_{n\to\infty} Ax_n = x$. We shall show that x = 0.

By (1.1), we have for all $y \in D(A)$ and all $k, n \in N$

$$|b\lambda_{k}||v + \lambda_{k}|x_{n}|| \leq ||A(v + \lambda_{k}|x_{n}) - \lambda_{k}(v + \lambda_{k}|x_{n})||$$

Letting n tend to infinity, we get

$$b\lambda_k ||y|| \le ||Ay + \lambda_k (x - y)||$$

and further

$$||y|| \le b^{-1} (\lambda_{\nu}^{-1} ||Ay|| + ||x - y||).$$

Hence

$$||y|| \le b^{-1} ||x - y||,$$

and so

$$||x|| \le (1+b^{-1})||x-y||.$$

Since y can be chosen arbitrarily close to x, it follows that x = 0. The proof is complete.

2. Proof of Theorem 1. Without loss of generality, we may assume that $D(A) = \mathcal{A}(A)$. The closability assertion is an immediate consequence of (ii) and the lemma.

For each $n \in \mathbb{N}$, let D_n be the completion of $\mathcal{A}(A)$ under the norm

$$\sum_{i=0}^{n} ||A^{i}x||, \quad x \in \mathscr{A}(A).$$

By a standard argument, one can identify D_n with a subspace of $D(\overline{A}^n)$ endowed with the norm

$$||x||_n = \sum_{i=1}^n ||\bar{A}^i x||, \quad x \in D_n.$$

In view of (ii), we have for all $x \in D_n$ and all $\lambda \in R$ with $|\lambda| > \omega$

$$(2.1) ||(\widetilde{A} - \lambda)^n x|| \geqslant M^{-1} (|\lambda| - \omega)^n ||x||.$$

Let $D_{\infty} = \bigcap_{n=1}^{\infty} D_n$. For each r > 0, let

$$\mathcal{A}_r = \left\{ x \in D_{\infty} : \sum_{n=1}^{\infty} \frac{t^n}{n!} ||\bar{A}^n x|| < \infty \text{ for } 0 < t < r \right\}.$$

For each $x \in \mathcal{A}$, and each $t \in R$ with |t| < r, put

$$G(t) x = \sum_{n=0}^{\infty} \frac{t^n}{n!} \overline{A}^n x,$$

the sum being taken in the norm topology of E. First we check that if $x \in \mathscr{A}$, and |t| < r then

(2.3)
$$G(t)x = \lim_{n \to \infty} \left(1 + \frac{t\overline{A}}{n}\right)^n x.$$

In fact, we have for any $n \in N$

$$\left(1+\frac{t\bar{A}}{n}\right)^n x = \sum_{k=0}^n \binom{n}{k} \left(\frac{t}{n}\right)^k \bar{A}^k x.$$

Since for each $k \in \mathbb{Z}_+$, $\lim_{n \to \infty} n^{-k} \binom{n}{k} = 1/k!$, and for any $n \in \mathbb{N}$ $n^{-k} \binom{n}{k} < 1/k!$, the result now follows from Lebesgue's dominated convergence theorem.

In a like manner we prove that if $x \in \mathcal{A}_r$, and |t| < r/2 then

(2.4)
$$\lim_{n \to \infty} \left(1 - \frac{t\overline{A}}{n} \right)^n \left(1 + \frac{t\overline{A}}{n} \right)^n x = x.$$

We claim that for all $x \in \mathcal{A}_r$ and all $t \in R$ with |t| < r/2

(2.5)
$$||G(t)x|| \leq M \exp(\omega |t|) ||x||.$$

Indeed, given $n \in \mathbb{N}$, $x \in \mathcal{A}_r$, and $t \in \mathbb{R}$ with |t| < r/2 we have by (2.1)

$$M^{-1}\left(1-\frac{\omega|t|}{n}\right)^{n}\left\|\left(1+\frac{t\overline{A}}{n}\right)^{n}x\right\| \leq \left\|\left(1-\frac{t\overline{A}}{n}\right)^{n}\left(1+\frac{t\overline{A}}{n}\right)^{n}x\right\|.$$

In view of (2.3) and (2.4), the claim now follows upon letting n tend to infinity.

Next, we show that if |t| < r/2 then \mathscr{A}_r is G(t)-invariant and for all $x \in \mathscr{A}_r$ and all $s, t \in R$ with |s|, |t| < r/2, we have

(2.6)
$$G(s) G(t) x = G(s+t) x$$
.

Indeed, it is easily seen that \mathscr{A}_r is an invariant space for all powers of \vec{A} . Thus for $x \in \mathscr{A}_r$, the series in (2.2) converges in each norm $\|\cdot\|_m$. Consequently $G(t)x \in D_\infty$. Since \vec{A}^m is a continuous operator from D_m to E, we have for $x \in \mathscr{A}_r$, $k \in \mathbb{N}$, and $t \in \mathbb{R}$ with |t| < r

(2.7)
$$\bar{A}^k G(t) x = G(t) \bar{A}^k x.$$

If |t| < r/2 and 0 < u < r, then by (2.5) and (2.7)

$$\sum_{k=0}^{\infty} \frac{u^{k}}{k!} \| \bar{A}^{k} G(t) x \| = \sum_{k=0}^{\infty} \frac{u^{k}}{k!} \| G(t) \bar{A}^{k} x \| \le M \exp(\omega |t|) \sum_{k=0}^{\infty} \frac{u^{k}}{k!} \| \bar{A}^{k} x \|,$$

which proves the invariance assertion. Moreover, if |s| < r/2, then

$$\sum_{k,l=0}^{\infty} \frac{|s|^k |t|^l}{k! \, l!} \, ||\bar{A}^{k+l} x|| = \sum_{p=0}^{\infty} \sum_{k+l=p} \frac{|s|^k |t|^l}{k! \, l!} \, ||\bar{A}^p x|| \leq \sum_{p=0}^{\infty} \frac{r^p}{p!} \, ||\bar{A}^p x||,$$

and by (2.7) we can write

$$G(s) G(t) x = \sum_{k=0}^{\infty} \frac{s^k}{k!} G(t) \bar{A}^k x = \sum_{k=0}^{\infty} \frac{s^k}{k!} \sum_{l=0}^{\infty} \frac{t^l}{l!} \bar{A}^{k+l} x$$
$$= \sum_{p=0}^{\infty} \sum_{k+l=p} \frac{s^k t^l}{k! \ l!} \bar{A}^p x = G(s+t) x.$$

For each r > 0, let E_r be the closure of \mathscr{A}_r in E. Given $t \in R$ with |t| < r/2, extend G(t) by continuity to a bounded operator from E_r into itself, still

denoted by G(t), so that (2.5) and (2.6) continue to hold. Given $t \in R$, select $n \in N$ so that |t|/n < r/2 and set

$$G(t) = G\left(\frac{t}{n}\right)^n.$$

A routine verification yields that the right-hand side does not depend on n. Moreover, the operators G(t) $(t \in R)$ form a locally equicontinuous one-parameter group G on E_r . Taking into account that for all $x \in \mathscr{A}_r$ the function $(-r, r) \ni t \to G(t) \, x \in E_r$ is continuous, we easily deduce that G is strongly continuous. A step by step application of the global G(t)-invariance of \mathscr{A}_r for $t \in R$ with |t| < r/2 yields the global G-invariance of \mathscr{A}_r .

Let A_r denote the generator of G restricted to E_r . By de Leeuw's theorem, we have

$$A_{\star} = \overline{A|_{\star} \mathscr{A}_{\star}}$$

By the Hille-Yosida theorem [2], Theorem 12.3.2, there exist ω_r , $M_r > 0$ such that for all $\lambda \in R$ with $|\lambda| > \omega_r$

$$(2.9) (A_r - \lambda) D(A_r) = E_r$$

and for all $m \in N$ and all $y \in E_r$

$$(2.10) ||(A_r - \lambda)^{-m} y|| \leq M_r (|\lambda| - \omega_r)^{-m} ||y||.$$

By (2.1), for all $m \in N$, all $\lambda \in R$ with $|\lambda| > \omega$, and all $\nu \in (A, -\lambda)$ \mathscr{A} .

$$||(A_r - \lambda)^{-m} y|| \le M (|\lambda| - \omega)^{-m} ||y||.$$

Since, by (2.8)–(2.10), $(A_r - \lambda) \mathcal{A}_r$ is dense in E_r for all $\lambda \in R$ with $|\lambda| > \omega_r$, it follows that (2.11) holds for $y \in E_r$ if $|\lambda| > \widetilde{\omega}_r = \max(\omega_r, \omega)$. Thus, by the Hille-Yosida theorem, the group G(t) as a group acting in E_r satisfies (*). The fact that $\widetilde{\omega}_r \neq \omega$ is not essential, as can easily be seen on inspection of the proof of the Hille-Yosida theorem (cf. the remark following the proof of Theorem 12.3.1 in [2]).

Notice that, given $t \in R$, G(t) on $E_r(r > 0)$ fit together to form a bounded operator on $\bigcup_{r>0} E_r$ being dense in E. Apparently, as t runs over R, G(t) form a strongly continuous one-parameter group G on E satisfying (*). Since each $\mathscr{A}_r(r > 0)$ is G-invariant, so is $\bigcup_{r>0} \mathscr{A}_r$. Furthermore, a straighforward verification shows that \overline{A} coincides with the generator of G on $D(\overline{A})$. In virtue of de Leeuw's theorem, \overline{A} generates G.

The proof is complete.

3. Corollaries. As a first corollary to Theorem 1 we have

THEOREM 2. Suppose that the assumptions of Theorem 1 are fulfilled and, moreover.

(ii') there is a sequence (λ_k) with $\lambda_k \to +\infty$ or $\lambda_k \to -\infty$ such that for all $x \in D(A)$

$$||(\lambda_k - A)x|| \geqslant M^{-1}(|\lambda_k| - \omega)||x||.$$

Then A is closable and its closure generates a one-parameter strongly continuous group G on E satisfying (*).

Proof. The closability of A results immediately from the lemma.

Let \widetilde{A} denote the closure of the restriction of A to $\mathscr{A}(A)$. By Theorem 1, \widetilde{A} generates a strongly continuous one-parameter group G on E, satisfying (*). By the Hille-Yosida theorem, if $\lambda_k > \omega$, then $(\lambda_k - \widetilde{A})$ maps $D(\widetilde{A})$ in one-to-one manner onto E. By (ii'), $\lambda_k - \widetilde{A}$ is an injection on $D(\widetilde{A})$ that coincides with $\lambda_k - \widetilde{A}$ on $D(\widetilde{A})$. Thus $\widetilde{A} = \widetilde{A}$, which ends the proof.

Our second corollary to Theorem 1 is

THEOREM 3. Let E be a Banach space and A an operator on E. Suppose that

- (a) the set of analytic vectors of A is dense in E,
- (B) for all $\lambda \in R \{0\}$ and all $x \in D(A)$

$$||(A-\lambda)x|| \ge |\lambda| \, ||x||.$$

Then A has a closure generating a strongly continuous one-parameter group of operators.

Notice that the above theorem immediately yields Nelson's result, as (β) is equivalent to the simultaneous dissipativity of A and A and to the skew-symmetry of A if E is a Hilbert space.

References

- O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, vol. I, New York-Heidelberg-Berlin 1979.
- [2] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Providence, R. I. 1957.
- [3] K. de Leeuw, On the adjoint semi-groups and some problems in the theory of approximation, Math. Z. 73 (1960), 219-234.
- [4] E. Nelson, Analytic vectors, Ann. of Math. 81 (1959), 572-614.

DEPARTMENT OF MATHEMATICS WARSAW UNIVERSITY 00-901 Warsaw, P.K.iN. 9 fl.

Received January 7, 1983
Revised version February 17, 1983

(1859)

Functional calculus and the Gelfand transformation

b

M. PUTINAR (Bucharest)

Abstract. The commutativity of Taylor's functional calculus [8] with the Gelfand transformation is proved. It is shown as a corollary that each axiomatic joint spectrum in the sense of Zelazko [10] which is contained in Taylor's joint spectrum satisfies a spectral mapping property with respect to Taylor's analytic functional calculus.

- 1. Introduction. Let X be a complex Banach space and let us denote by $C^n(X)$ the set of all commutative n-tuples of linear bounded operators on X, $n \ge 1$. An axiomatic joint spectrum [10] is an assignment σ from each $C^n(X)$ into the closed subsets of C^n , respectively, which satisfies the following axioms:
- (i) $\sigma(a)$ is the usual spectrum in the case of a single linear operator $a \in L(X) = C^1(X)$.
- (ii) σ has the projection property, i.e., for each $a \in C^{n+1}(X)$ one has $\pi \sigma(a) = \sigma(\pi(a))$, denoting by π the natural projection onto the first n coordinates.
- (iii) σ has the spectral mapping property with respect to the polynomial maps, that is, for each polynomial p in n indeterminates and for each $a \in C^n(X)$, the equality $p(\sigma(a)) = \sigma(p(a))$ holds true.

A direct improvement of [7] and [10] shows that to such an axiomatic joint spectrum σ is associated a closed subset $\sigma(A)$ in the maximal spectrum M(A) of a commutative, unital Banach subalgebra A of L(X), such that $\sigma(A)$ is minimal with respect to the property (a) below:

(a) The equality $\hat{a}(\sigma(A)) = \sigma(a)$ holds for every $a \in C^n(X)$ and $n \ge 1$.

We have denoted above by \hat{b} the Gelfand transformation of $b \in A$. Then one proves that the set $\sigma(A)$ is functorial in A, in the following sense:

(b) If $A \subset B \subset L(X)$ are two algebras as above, then $i^*\sigma(B) = \sigma(A)$, denoting by $i: A \to B$ the inclusion map.

The set $\sigma(A)$ defined above is sufficiently large in M(A) because of axiom (i). More exactly:

(c) If A is a maximal abelian Banach subalgebra of L(X) and if $a \in A$, then $\hat{a}(\sigma(A)) = \hat{a}(M(A))$.