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Closed subgroups of nuclear spaces are weakly closed
by
WOIJCIECH BANASZCZYK (L6d3)

Abstract. A’ proof is given that a closed additive subgroup of a huclear space is weakly
closed, This generalizes the result obtained in [1].

It has been proved in [1] that if K is a discrete additive subgroup of a
nuclear space E, then the quotient group E/K admits sufficiently many
continuous characters, which means precisely that K is weakly closed in E. It
appears, however, that it suffices to assume K to be closed. This result
admits two equivalent formulations.

THEOREM A. A closed additive subgroup of a nuclear space is weakly
closed.

TueoreM B. If K is a closed additive subgroup of a nuclear space E, rhen
the quotient group E/K admits sufficiently many continuous characters.

We shall prove Theorem A. For the equivalence of A and B see Lemma
8 below. These theorems provide another illustration of the fact that nuclear
spaces are more closely related to finite dimensional spaces than normed
spaces are, since, as it has been proved in [2], they do not hold in any
infinite dimensional normed space (see also Corollary 3 below). In fact, these
theorems characterize nuclear spaces; more precisely, if they hold in a B¥-
space E, then E is nuclear. The proof will be given elsewhere.

Let A be a subset of a topological vector space. E. The symbols 4, A%,
span 4 and intA4 will denote respectively the closure, the weak closure, the
linear span and the interior of 4. If E is a metric space, then diam A will
denote the diameter of 4, and d(u, 4) the distance of a point ueE to 4. By
gp A we shall denote the additive subgroup of E generated by A. Speaking of
subgroups of vector spaces we shall omit the word “additive”.

If E is a unitary space, then the scalar product of vectors u, we E will be
denoted by (u, w). By an ellipsoid in E we shall always mean an ellipsoid
which is closed and convex. If T is a linear operator acting between normed
spaces, then 4, (T), n=1,2,..., will denote the nth Kolmogorov number
of T. i

We shall obtain Theorem A as an easy consequence of the following
proposition.
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Treorem C. Let H,, H, be unitary spaces, and let T Hy —H, be a
linear operator such that

fnd;(r) <.

n=r

Then for each subset A = H, we have
T(4") < gp T(4).

We shall begin with some lemmas. Let E be an n-dimensional real
unitary space, and let D be an n-dimensional ellipsoid in E. Let ueE\ [0,
and let L be the set of all those straight lines / in £ parallel to u for which
InD is a segment with length > 1. Let N be the orthogonal complement
of u in E. Then the set

D,=UJ(UnN)
lel
is an (n—1)-dimensional ellipsoid in N. If D is small, then D}, can reduce to
one point or can be empty. Obviously, Dy, is contained in the orthogonal
projection of D onto N. In the described situation we shall say that D, is
a reduced projection of D.

When the ellipsoid D is degenerate, ie. when it is empty or reduces to
one point, then by a reduced projection of D we shall mean the empty set.

‘Now, let M be an (n—1)-dimensional affine subspace in E such that the
distance of M to the centre of D is equal to 1/2. Then the set D; =D M is
an (n— 1)-dimensional ellipsoid in M. If D is small, then D) can reduce to one
point or can be empty. In this situation we shall say that D} is_a reduced
section of D. By a reduced section of a degenerate ellipsoid we shall mean
the empty set.

There is a kind of duality between reduced sections and projections.

Lemma 1. Let E be an n-dimensional real unitdry space and let D be an n-
dimensional ellipsoid in E (degenerate or not). Then to each Keduced projection
of D there corresponds an isometric reduced section of D.

Proof. We may assume that E = R" and that

D={(x,...,x)eR" x¥ud+.. +xPut<1}

for some py, ..., p, > 0. Let € =(&,, ..., &) be an arbitrary vector belonging
to the boundary of D, and Jet D), be the reduced projection of D determined
by ¢ Let then

M= {re, s x) € R™ Xy Ex i+ o+ X, &ty = O,

and let M be one of the two (n— 1)-dimensional affine subspaces parallel to
M’ such that 4(0, M) =1/2. Then DN M is a reduced section of D, and
direct computations show that D~ M and Dj; are isometric. w '
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Lemma 2. Let D be an n-dimensional ellipsoid with principal semiaxes
Aty s Ay, and let P be any n-dimensional rectangular parallelepiped circum-
scribed about D. Then

diam P = 2(4}+ ... +12)V2.

The proof is standard.

LEMMA 3. Let E be an n-dimensional real unitary space, and let D be an
n-dimensional ellipsoid in E with principal semiaxes u; < ... < p, such that
pr*+ ... +u,? <4 Let D, ..., D, be subsets of E such that D, = D and D;
is a reduced projection of Dy, for each k=1, ...,n—~1. Then for each
k=1,...,n=1, D, is a non-degenerate k-dimensional ellipsoid, and if
My S ... Sy are its principal semiaxes, then

b 2 [1=/4 3 w1, 1<i<k<n—1.
k=1

Proof. We may assume that the centre of D is zero. We may assume
also, owing to ‘Lemma 1, that D, is a reduced section of D,,, for -k
=1, ..., n—1. Then there exist affine subspaces M, < ... = M,_ in E such
that dimM, =k and D, =M,n D, for k=1,...,n—1. Let B be the
closed unit ball in E and let T be a linear operator in E such that T(D) = B.
We can choose an orthonormal basis e, ..., e, in E such that

T(M,) ={uecE: (u,e)=vy, for i>k}, k=1,...,n—-1,

where y,, ..., y, are some constants.
For each k=1, ..., n let o, be the centre of D,, and let

Ly={ueE: (U, ¢4)=Vs1}, k=1,...,n=1.

According to the definition of a reduced section, for each k=1, ..., n—1 we
have d(0y+;, M,) =1/2, whence M, N (0x4 1+ B/2) % (. Therefore

T(M) N (Toge +T(BR)# @, k=1,...,n—1. ’
But the vector To,., is parallel to L., and T(M,) < L,, which implies that
1) LnTB/2)#@, k=1,...,n-1.

Let P be the (h-—l)-dimensi,onal rectangular parallelepiped determined
by the conditions (u,e,) =0 and |(u, e)l <|ypl for k=2,..., n. Its one-
dimensional edges are equal respectively to 2|y,l, ..., 2|y,l, therefore

diam P = 2(y3+ ... +yH)1/2.
Now let P’ be the n-dimensional rectangular parallelepiped circumscribed

about the ellipsoid T(B/2), with (n— 1)-dimensional faces orthogonal respectively

3 — tvwudia Mathematica, T. LXXX
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u7t for k=1, ..., n. The principal semiaxes of T(B/2)
/1,,/2 therefore by Lemma 2 we have

Y.

t0 e, ..., &, Let 4y =
are- cqual respectively to 4,/2, .

diam P’ = (A} +
Now (1) implies that P < P', whence diam P < diam P, ie.
(2) pi4 RS UHA+ .+ 2D,

We have T(D,) =B and T(D) = T(Dys)nT(M)) for k=1, ..., n—1.
Therefore T(D,) is a k-dimensional ball for k=1, n — let r, be

its radius. We have r,=1 and, as is easily seen, r,? =rd, —yEs, for
k=1,..., n—1, therefore

=1yt FD) 21034 49D, k=1,..,n-1
Hence by (2) we obtain
®) R+ +2D), k=1,..,n-1

. For each k=1,...,n—1 let N, be the k-dimensional linear subspace
parallel to T(M,), and let By = BN N,. Then T(Dy) = To,+r, By, and

Dy =04 +r (T 1B N T H(NY) = 0, +7 (D T™Y(NY)

for k=1, ...,n—1. Let py < ... < yjg be the principal semiaxes of the
ellipsoid DN T (N, k=1, ...,n~1. We have y; > y; fori=1, ... k —
this is a simple geometrical fact. To complete the proof it is enough now to
observe that for each k =1, ..., n—1 the principal semiaxes of D, are equal
to the corresponding principal semiaxes of D T™'(N,) multiplied by r,
and use (3). =

A subgroup K of a normed space is called 1-discrete, if |jul| =
uek, u#0.

Lemma 4. Let E be an n-dimensional real unitary space, and let D be an n-
dimensional ellipsoid in E with centre a and principal semiaxes py, ...
that u7%+ ... +pu; 2 < 1. Let K be a subgroup of E such that K nintD = Q.
Then there exists an orthogonal projection P: E —E such that P(K) is
L-discrete, and d(Pa, P(K)) > 1/2.

Proof. The condition uy2+...+u; %<1 implies that

1 for any

I =1 for k;-—l,..<,n
©) L (AT TR > 172,

Let B be the closed unit ball in E. If K is 1-discrete, then we take P = idy.

Then (4) gives D > a+ B, whence
K n(a+intB) c K nintD = Q,

, Uy SUch .

icm
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and

d(Pa, P(K)) =d(a, K) > 1> 1)2.

So let us assume that K is not 1-discrete, ie. that there is an ucK with 0
<[lull < 1. Let N be the orthogonal complement of u in'E and let P, be the
orthogonal projection onto N. Let D,_; be the reduced projection of D
determined by u. Then, as is easily seen, we have P,(K)nintD,_, = Q.
Moreover, the centre of D,_, is P,a. If P,(K) is 1-discrete, then we take P
= P,. Then (4), (5) and Lemma 3 give D,_, > P,a+B,.,/2, where B,_, is
the closed unit ball in P,(E). Hence

P,(K)~(P,a+intB,_/2) = P,(K) nintD,_, = @,
and
d(Pa, P(K)) = d(P,a, P,(K)) > 1/2.

If, on the other hand, P,(K) is not 1-discrete, then we can repeat the
abave procedure to obtain an orthogonal projection P,_; in P,(E), and
so on. Thus we shall obtain orthogonal projections P,, P,_y,..., Pyy;
and ellipsoids D, D, ..., D, such that D; is a reduced projection of D,
for i=k,...,n—1 (we define D, = D). The described process can stop only
in the following two -cases:

(@) k=2,,..,n—2 and P,y ... P,_ P,(K) is 1-discrete: Then we take
P=P.,.. P,, 1P The proof that d(Pa, P(K) 1/2 is now the same as
above for k =n—1.

(ii) k = 1; then, by (4), (5) and Lemma 3, D, is a segment w1th length
> 1 and centre P, ... P,a, so that we can take P=P,... P,.m

LemMA 5. Let E, F be n-dimensional reql unitary spaces, and let T: E — F
be an invertible linear operator. Let a&F-and let K be a subgroup of E such
that T(K) is 1-discrete and d(a, K) = 1/4. Then thére exists an feE* such
that f(K) = Z, f(a)e[1/4, 3/4]1+ Z, and

n

Ifll < 14—[’;1 k2 (dy (T) ... di(T))2]V2,

The proof can be obtained by repeating the proofs of Lemmas 3 and 4
from [1], with slightly modified constants.

LemMa 6. If ay, a,, as, ...
all equal to zero, then

is a sequence of non-negative real numbers, nor

: ©
a)"<ey a,
n=1
.

The proof can be found, for instance, in [4], chap. XVI, 4.

oo
3 (agaza; ...
n=1
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Lemma 7. Let E, F be n-dimensional real unitary spaces, and let T: E — F
be a linear operator such that

Y kdy(T) < 1.
k=1

Let acE and let K be a subgroup of E. such that d(Ta, T(K)) = 1. Then there
exists an feE* such that ||f|| <6, f(K) = Z, and f@ell/43/4]+ Z.

Proof. Let E' = E/ker T and let y: E - E' be the canonical mapping.
The operator T': E' - F determined by the condition T"% =T is invertible,
and d,(T") = d,.(T) for k =1, 2, ... As easily seen, there exist invertible linear
operators S: E'— E’ and R: E' - F such that RS =T,

(R = (kd(T)2  for  k=1,2, ..,
di (S) =(k"1dk(T))1/2 for k = 1,2,...
Let B be the closed unit ball in F and let D =R™*(B). Since
d(Ta, T(K))= 1 and T =T'y = RSy, we have
d(RSY (@), RSY (K) > 1,
ie.
[RSy (a)+int B]n RSy (K) =@ or

The principal semiaxes of D are equal respectively to (dy (R)" LI
where n' = dim E'; moreover,

[Si (a)+int D] N Sy (K) = Q.
5 (dn'(R))ula

(d (R + ... +(dy (R = k‘"; kdy(T) < 1.
=1

Therefore we can apply Lemma 4. We obtain an orthogonal projection
P: E' = F’ such that PSy(K) is I-discrete and d(PSy(a), PSy (K)) = 1/2.

Let E" = E'/ker PS, let ¢: E'— E" be the canonical mapping, and let
§': E"— P(E') be the operator for which §'¢ = PS. We have the following
commutative diagram:

icm
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Acéording to Lemma 5, there is an f’e(E")* such that ' (ey(K)) = Z,
I (@Y (a))e[1/4,3/41+ Z, and

I <1+[T (A (S) ... de(SHE],
k=1 -

where n’ = dimE". For each k=1, 2, ... we have
4, (8") = di (PS) < [|Pl| 4 (S) = dic(S).

Therefore, owing to Lemma 6, we obtain

171 < 1+[ T R0 - AP

2 (D dy(T)  d(T)\FT]?
<1-}—[1(:;1](2( 1 2 Tk ) :l

= 1+[.§1 K2 (k1) 2%(d, (T) - 2d, (T) ... ke (T))¥] 2

<1+[e* T kd(T)]* < 1+6¥* <6,
. k=1

because k!>kke™*. Thus the functional f = f’ @y satisfies the desired
conditions. =

Proof of Theorem C. We may assume that H, and H, are real. Let
us suppose the contrary, that there exists an A < H,; such that

T(A*) ¢ gp T(A). We may assume that A =gpA; then gp T(4) = T(A).
Thus there is an aeA™ such that Ta¢ T(4). Finally we may assume that

d(Ta, T(4)) > 1 and that Y kdy(T) < 1.
k=1

To obtain a contradiction, we have to show that a¢ A*, ie. that there is
an fe Hf such that f(4) = Z and f (a)¢ Z. Owing to the weak compactness
of closed balls in H¥, it suffices to show that for each finite subset J — A4
there is an feHF such that ||f]| <6, f(J) = Z and f(a)e[1/4,3/4]+Z.

So let J be an arbitrary finite subset of 4. Let M = span(J U {a}) and
let T' = T|,. Then

§ kd (T) < i ka (Ty<1.
k=1

k=1
Let K = gpJ; then

d(T'a, T'(K) = d(Ta, T(K)) > 1,

and Lemma 7 implies the existence of an f'eM* such that ||f|| <6,
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f'(K)c Z and f'(a)e[1/4,3/4]1+Z. It is enough now to extend f' to an
feHt with | fll=1I/1. =

Proof of Theorem A. Let K be a closed subgroup of a nuclear space
E. We have to show that K is weakly closed. The topology of E can be
defined by a family {p;};, of seminorms, such that for each ie! the space E;
= E/ker p; with the canonical quotient norm is a unitary space. Moreovcr
for each iel there is a jel such that p; > p; and the canonical operator

Ty E;—~E; is a Hilbert-Schmidt operator, ie. Z (d (Tp))? . For each
n=1

iel let ;: E—E; be the canonical mapping.

Let us choose now an arbitrary ae E\K. We have to show that a¢ K"
Since K is closed, there is a neighbourhood of a in E disjoint with K. Hence
for a certain iel thé point ;(a) does not belong to the closure of i;(K) in
E;. Then there is a jel such that p; > p, and the operator Tj: E; —E,

satisfies the condition
k]

S nd,(T)) <0
=1
1t suffices here to take a composition of four Hilbert-Schmidt operators. The
point y;(a) cannot belong to the weak closure of ,(K) in Ej, for, by
Theorem C, we would then have

Yi(a) = Ty (@) e Ty, (K) = i (K)
(the closure in E;), which is impossible. Hence a¢ K", w

Lemma 8. If K is a subgroup of a real topological vector space E, then the
group E/K admits sufﬁcwmly many continuous characters iff K is weakly
closed.

Proof. This is a direct consequence of the following simple observation:
if Y1 E— E/K is the canonical homomorphism, then the formula yy (u)
= exp(2nif () defines a one-to-one correspondence between continuous
characters y of E/K and functionals fe E* such that f(K) = Z.

As an easy consequence of Theorem A we can obtain the following
proposition which has been proved in [3].

CoroLLary 1. If K is a closed connected subgroup of a real nuclear space
E, then K is a linear subspace of E.

Proof. Let F =spanK. Being connected, K is easily seen to be weakly
dense in F. Then, by Theorem A, K is strongly dense in F; hence K = F. w

CoroLLARY 2. Let E, F be normed spaces and let T E—F be a linear
operator which can be represented as a composition of five nuclear operators or
nine absolutely summing operators. Then for each subset A < E we have

T(A*) < gp T(A).
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Proof. Let Tbe a composition of five nuclear operators. We have the
following factorization:

E\F /51 T 5 ] 5 % g Ts/ F
2 St \/z/ S2 \,2

where all the operators are continuous, Tj,..., Ty are nuclear, and
T=T... 7. The operators Sy, S, are thus nuclear, which implies that

2 d.(S) < for i=1,2.
Hence also
Y kd (S 8;) < o,

k=1

and it suffices now to apply Theorem C. For absolutely summing operators
the proof is analogical.

If K is a subgroup of a real topological vector spacc E, then we define
K* ={fecE*: f(K) = Z}. Thus K* is a weakly closed subgroup of E*. When
E is semi-reflexive, i.e. when the canonical imbedding a: E — E** is onto,
then clearly K** = o (K™). In particular, if K is closed and E — finite dimen-
sional, then K**=a(K). On the other hand, each infinite dimensional

‘normed space contains a discrete subgroup K with K* = {0} (see [2]). In

nuclear spaces -the situation is similar to the finite dimensional case — the
following proposition is an immediate consequence of Theorem A.

COROLLARY 3. Le* K be a closed subgroup of a semi-reflexive nuclear space
E, and let o: E — E** be the canonical mapping. Then K** = a(K).
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On the ratio maximal function for an ergodic flow
by
RYOTARO SATO (Okayama)

Abstract. In this paper an integrabikty problem is investigated for the supremum of
ergodic ratios defined by means of a conservative and ergodic measurable flow of measure
preserving transformations on a o-finite measure space. The results obtained below include, as a
special case, the continuous parameter versions of Davis’s recent results concerning the sup-
remum of ergodic averages defined Uy means of an invertible and crgodic measure preserving
transformation on a probability measure space.

1. Introduction. Let (2, &, 1) be a o-finite measure space and {T},x &
conservative and ergodic measurable flow of measure preserving transform-
ations on (2, &, ). In what follows we shall assume that y is nonatomic and
complete. As is easily seen, this is done without loss of generality.

Fix any 0 < ee L, (4) such that {edu = 1. If f e L, (4), the ratio maximal
function M, (f){w) with respect to ¢ is defined by

b b
Me(f)(w)=sbu;0>”f(7;w)dt/j'e(T,w)dt] (wef).
>0 0 0
Let £, denote the decreasing function on the interval [0, 1) which is equidis-

tributed with f/e (€ L, (edu)) with respect to the measure edu. Extending f,
to the real line R by f,(t+1) = f,(t) for teR, we define

172t
H(f) = j %fos)ds dt.
[ -t

Clearly, H,(f)=0 if and only if f/fe and —f/e are equidistributed with
respect to edp. Further it is known (cf. [8]) that if £ > O then H, (f) < o0 if
and only if [flog™ (f/e)du < oo, where log* a = log(max {a, 1}) for a = 0.
This, together with Theorem 2 in [8], shows that if f > 0 then H,(f) < oo if
and only if [M,(f) edp < oo. However, if the nonnegativity of f is not
assumed, then, as is easily seen by a simple example, H,(f) < co does not
necessarily imply (M.(f)-edup<oco. (It will be proved below that
[M,(f)-edu < oo implies H,(f} < c0.) Therefore it would be of interest to
know what condition on the ratio maximal function with respect to e is
necessary (and sufficient) for the condition H,.(f) < co. This is the starting
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