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Geometric characteristics of semi-Fredholm operators
and their asymptotic behaviour

by
JAROSLAV ZEMANEK (Warszawa)

Abstract. In this paper we obtain asymptotic formulas for the semi-Fredholm radius of a
linear operator on a Banach space in terms of various essential minimum moduli of the
operator. In particular, the results show that the classical stability theorem of T. Kato for semi-
Fredholm operators is asymptotically sharp.

1. Introduction

Let T be a bounded linear operator on an infinite-dimensional complex
Banach space. We denote by N(T) the null space and by R(T) the range of
T The operator T is called semi-Fredholm if either dim N(T) is finite and
R(T) is closed (a @, -operator), or codimR(T) is finite (a @_-operator). We
shall always look on operators as elements of B(X), the Banach algebra of all
bounded linear operators on X.

Since the set of semi-Fredholm operators is open in B(X), we can define
d(T) to be the radius of the largest open ball centred at T and contained in
the semi-Fredholm operators (letting d(T) =0 if T is not semi-Fredholm).
This quantity was introduced in [15] and called the essential minimum
modulus because of its spectral interpretation for Hilbert space operators. The
semi-Fredholm radius s(T) is the supremum of all ¢ 0 such that the
operators T—AI are semi-Fredholm for |4 <e. Clearly, we have

) ' d(T) < s(T).

Analogously we define the @, -radius s, (T) and the & _-radius s_ (T) noting
that s(T) = max {5, (T), s— (T)}; if both s, (T} and s_(7T) are positive, then
they are equal. First formulas for these radii were conjectured in [15] and
proved-in [16]. In this paper we continue this study.
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Our main concern here will be to show how the semi-Fredholm radius
is related to the reduced minimum modulus

y(T) = inl {||Tx||: dist(x, N(T)) = 1}.

One of the classical results in the perturbation theory of semi-Fredholm
operators is the following stability theorem due to T. Kato [47], Theorem 1;
if T is a serhi-Fredholm operator and S is arbitrary with ||S)] < y(T), then
T+S is also semi-Fredholm. In other words, Kato’s theorem says that

@) 9(T) < d(T)

for every semi-Fredholm operator T.

It is well known that an operator T is semi-Fredholm if and only if
T+F is semi-Fredholm for any finite rank operator F. It follows that
d(T+F) = d(T) for any such F. Letting

Yoo (T) = sup {y(T+F): rank F < o0},
(2) then implies
3 Yo (T) < d(T).

We shall show that the Kato inequality (3) is asymptotically sharp in the
sense that

@ lim y (T = lim d (T /" = s(T)

for every semi-Fredholm operator T

We shall also compare the reduced and essential minimum moduli to
four other geometric characteristics of semi-Fredholm operators defined in
Section 2. Two of these were studied by M. Schechter [[1], without
considering their asymptotic behaviour. It turns out that these characteristics
are natural extensions of the so-called Gelfand, Kolmogorov, Bernstein and
Mityagin numbers appearing in the literature even earlier; for a good survey
of these numbers we refer to A. Pietsch [8]. After establishing appropriate
geometric inequalities (Sections 5 and 6) and stability properties (Section 3)
the proof of (4) as well as five other formulas are then obtained, in Section 8,
by using two basic tools: the formula for the sugjectivity or injectivity radius
of a linear operator [6] combined with the method of removing jumping
points in the semi-Fredholm domain (Section 7. -

Finally we note that we have obtained the second equality in (4) in [16]
by a different method, together with other related results not covered here.
The present approach, however, gives results which are even stronger than
'formulas (4), cf. Theorems 8.1 and 8.3 in this paper,
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2. The geometric characteristics

Although we are interested exclusively in operators acting on one -
Banach space (because of studying the asymptotic behaviour of their iterates)
we shall sometimes consider restrictions of an operator to certain subspaces,
or compressions to certain quotient spaces. For an operator T acting from a
Banach space X into a Banach space Y we define the minimum modulus

m(T) = inf {||Tx||: ||x]] = 1}, -
and the surjection modulus
g(T)=sup{e=0: TUy 2 eUy},

where U denotes the closed unit ball. For the adjoint operator T” acting
from Y’ to X’ we recall the following useful relations:

(5) m(T)=q(T) and g(T})=m(T);

see [9], Proposition B.3.8. Equivalent geometric interpretations of these
characteristics can be found in [6]. We note that the reduced minimum
modulus y(T) coincides with m(T) or g(T) if the operator T is bounded from
below or surjective, respectively. o

We also adopt the following notation from' [8]. If W is a closed
subspace of X we denote by Jy, the embedding map of W into X, and by Q
the canonical map of X onto the quotient space X/W. ’

Let us recall the definitions of:

Gelfand numbers: '

co(T) = inf {J|TJy||: codim W< n},
Kolmogorov numbers: .
ky(T) =inf {||Qy T||: dimV <n},
Bernstein numbers:
u, (T) = sup {m(TJy):, dim W = n},
Mityagin numbers:
v(T) = sup {g(Qy T): codim V > n}.

We note that everywhere ¥ and W denote closed subspaces, and n =1, 2, ...
Since these quantities are special cases of the s-numbers [8], we have by [5]
and [14] the following formulas valid for every T in B(X) and each fixed
n=1,2,...

lim ¢, (T™)1™ = Tim k, (™" = lim u, (T™Y™ = Tim v, (T™)“™ = |4, (T),
m m n m
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where
A (T 2 |A(T) = ... =T,

are (the absolute values of) the eigenvalues of T greater than the essential
spectral radius |T|,, counted with their algebraic multiplicities; if there
are only n (=0,1,2,..) such eigenvalues we formally define |, (T)|
=|Aps2 (T = ... =|T|,. We refer to [14] for details.

The four sequences defined above are clearly decreasing with respect to
n, and are bounded from below by the following quantities, respectively:

o(T) = inf {|| TJyl|: codim W < o},
k(T) = inf {||Qy T||: dimV < 0},
u(T) = sup {m(TJy): dimW = o0},
o(T) = sup {q(Qy T): codim V = co}.

We note that the functions ¢ and k are measures of non-compactness,
because we have ¢(T)=0 (or k(T)=0) if and only if T is a compact
operator; cf. [8], Theorem 9.3. Similarly, the function u is a measure of non-
strict-singularity [9], 1.9.2, while the function v is a measure of non-strict-
cosingularity [9], 1.10.2. Asymptotically these functions approach the essen-
tial spectral radius. The formulas

lime(T™)!" = limk (T™)!" = |T],,
m m

are due to LS. Goldenstein, I. C. Gohberg and A. S. Markus (cf. [14]).
The formula

limu(T™)!m = |T],

is given in [11], Theorem 2.17, and the remaining one

limo(T™" =T,
m .

can be proved similarly.

We also note that ¢(7T) and k(T) are exactly the greatest lower bounds
of the corresponding sequences, while u(T) and v(T) are in general less than
the corresponding infima. For if they were equal to them we would have

“o(T) =u(T) by [8], Theorem 64, and also u(T) = v(T’) by the remark in
[8], p. 213, which can be proved using the strong version of the principle of
local reflexivity.(K. D. Kiirsten, references can be found in [97]). But these
equalities cannot be true because if T is strictly singular (consingular), then
T’ does not have to be strictly cosingular (singular); examples can be found
in [7]. Having only the obvious inequalities v(T") > u(T) and u(T") = v(T) it
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is interesting to know that the asymptotic behaviour of the functions u and v
is the same as described above.

The process started with the Gelfand, Kolmogorov, Bernstein and
Mityagin numbers can naturally be continued in the following way. Let us
define

G(T) =inf {|| TTy|l: dim W = o0}’ ¢(T),
K(T) = inf {||Qy T}|: codimV = o0} < k(T),
B(T) = sup {m(TJy): codimW < oo} < u(T),
M(T) = sup{q(Qy T): dimV < 0} < o(T).

Here again V and W denote closed subspaces while the letters G, K, B, and
M indicate that the corresponding quantity was derived from the Gelfand,
Kolmogorov, Bernstein, and Mityagin numbers, respectively. As for the
s-humbers (cf. [8], Theorem 8.1) we have

(6) G(T)zB(T) and "K(T)> M(T).

The first inequality is given in [11], Theorem 2.19, and the second one can
be proved similarly (or, it immediately follows from G(7T") = B(T') by using
Theorem 4.2 (ii) and (iv) of this paper).

The characteristics G, B, and u were studied by M. Schechter [11] (the
notation used there is I', v, and 1, respectively). Most of the arguments given
there can be carried over to the characteristics K, M, and ». We only note
that the function

A(T) = sup inf ||TJy,
M NcM

which plays an important role in Schechter’s arguments and where M, N are
infinite-dimensional subspaces of X, is to be replaced by

V(T) =sup inf [[Qy T1],
w Vow .

where ¥, W represent closed subspaces of infinite codimension in X. For the
sake of completeness we note that .

. Hm A (T4 = lim 7 (T = | T,
n n

though we shall make no use of these formulas in this paper. Some of
Schechter’s results on & .. -operators augmented by their @_-counterparts will
be quoted when necessary. Obviously, we have s(T) < |T],,. We are going to
prove in Section 8 that
lim B(T"'" = lim G (T")*/" = s, (T)

n

n
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lim M (T = Lm K (T = 5 _(T)
n n

for every T in B(X).
3. Stability of the characteristics

3.1. TueoreM. Let T be an arbitrary operator and C be a compuct
operator. Then we have

() G(T+C) = G(T),

(i) K(T+C) = K(T),

(iii) B(T+C) = B(T),

(iv) M(TH+C) = M(T).

Proof. Property (i) follows from [11], Theorems 2.1 and 2.10, because
the latter implies 4(C) = 0. Property (ii) is a consequence of the correspong-
ing dual results which can be proved similarly to those in [11] with G
replaced by K, 4 by V, and ¢ by k.

Let us prove property (iv) which will be important in proving the
formulas promised at the end of the preceding section. Given & > 0 there
exists, by definition of M(T), a finite-dimensional subspace V of X such that

M(T)—¢ <q(Qy T) < M(T).

Since the operator C is compact, there exists a finite e-net in X for the set
CU, the image of the unit ball. Let W be a finite-dimensional subspace of X
containing this e-net. Then we clearly have ||Qy C|| < ¢ Finally, we let L
= V+W. Then dimL is finite and we have

M(T)—-e (CI(QV )< q(Q,T) (QL T+ C) 4110, Cll
(QL(T+C)+IIQWCH 4(Qu(T+O)+& < M(T+C)+s.
Since & > 0 was arbitrary, we arrive at M (T) € M(T+ Q). Replacing in this

inequality the operator T by T+C, and C by —C, we get M(T+C) < M(T).
This proves (iv).

Property (iii) can be proved similarly by using a lemma of E. Lacey [2],
p. 85, but it also immediately follows from (iv) and Theorem 4.2 (iii) below.
4. Quantitative characterizations of semi-Fredholm operators «

4.1. Tueorem. For every operator T the following three conditions are
equivalent:

) K(T)>0,
(iiy M(T) >0,
(i) T is a ®_-operator.

Analogous characterizations in terms of G(T) and B(T) hold for ® . -operators.

icm®
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Proof. Suppose that T is a & -operator. Then its range R(T) is a
closed subspace of finite codimension in X. Let V be a finite-dimensional
subspace in X such that X = V@®R(T). Then the operator Q) T is surjective,
and hence ¢(Qy T) > 0. This shows that (iii) implies (ii). Next, (i) implies (i)
by the second inequality in (6).

It remains to show that (i) implies (iii). Suppose that T is not a
¢ _-operator. By a theorem of A. Lebow and M. Schechter (cf. [1], Theorem
44.10) there is a compact operator C such that V = R(T4+C)™ has infinite
codimension in X. Since Qy (T4 C) =0 we conclude that K(T+C) = 0. By
Theorem 3.1 (ii) this implies K(T) =

The characterization of @, -operators can be proved similarly. It was
given in [11] with a different argument.

The well-known duality between ¥, -operators and @ _-operators ([1],
p- 8) can be given the following quantitative form.

4.2. TuroreM. The following relations hold for every operator T and its
adjoint T':

@ G(T) = K(T),

(i) K(T) = G(T"),

(iti) B(T) = M(T),

(iv) M(T) < B(T").

Proof. We choose a subspace W (or V) appearing in the definition of a

left-side characteristic, and denote by V = W+ (or W = V4 its annihilator in
X'. Considering the operators TJy and Q, T (or, Qy T and T'Jy), we

. obtain equalities between their norms or minimum and surjection moduli (by

(5)), respectively. Thus every term appearing in the definition of a left-side
characteristic is equal to some one appearing in the definition on the right.
This gives the corresponding inequalities between the characteristics. In the
case (iii) the argument can be reversed because for a finite-dimensional
subspace ¥V of X’ we have V = W with W = *V of finite codimension in X.

5. Perturbing semi-Fredholm operators

In this section we show that the four semi-Fredholm characteristics do
not exceed the essential minimum modulus d(T). By the way we give some
more stability results. The first-one completes a result of M. Schechter [11],
Theorem 2.14.

5.1. TucoreM. Let T, S be arbitrary elements of B(X). If v(S) < M(T),
then T+S is a & -operator. If u(S) < B(T), then T+S is a ®.-operator.

Prool. Suppose that T+S is not a &_-operator. By the theorem of A.
Lebow and M. Schechter [1], Theorem 4.4.10, there exists a compact
operator € such that the subspace Y = R(T+S+C)” has infinite codimen-
sion in X,
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Let & > 0 be given. As in the proof of Theorem 3.1 (iv) we find a finite-
dimensional subspace W in X such that ||Qw C|] <& Let V be an arbitrary
finite-dimensional subspace of X. Let Z = Y+ V-+W. Then Z is a closed
subspace of infinite codimension in X, and Q,(T+S+C) = 0. Hence

@y T)< q(Q, T) = ¢(Q2(S+0)) < q(Q; 8)+12, C||
< ¢(Qz ) +Qw Cll < v(S)+e,

 so by the definition of M(T) we get M(T)< v(S)+s.
arbitrary, this gives a contradiction with the assumption v(S)
The second part was proved in [11], Theorem 2.14.

52. TusoreM. Let T, S be arbitrary elements of B(X). If ¢( G(T),
then T+S is a ®.-operator. If k(Sy < K(T), then T+S ts a @ .-operamr

Proof. Suppose that T+S is not a @, -operator. By a theorem of M.
Schechter [17], Theorem 4.4.7, there is a compact operator ' such that the
nullspace Y = N(T+S-C) is infinite-dimensional. Given ¢ > 0, there is a
closed subspace W having finite codimension in X such that ||CJy|) < ¢, cf.
[2], p. 85. Let V be any closed subspace of finite codimension in X, and set
Z =YnV AW Then,dimZ is mﬁmte and (T+S+C)J, =0, hence

ISl > STl > 1 TT |~ CIll = G(T)—e.

So by the definition of ¢(S) we conclude that ¢(S) = G(T)~
was arbitrary, we get a contradiction.

The proof of the second part is similar to the preceding two arguments.

Remark. The assumptions of the preceding theorem can be replaced by
weaker ones, for instance by 4(S) < G(T) and V(S) < K(T), respectively; cf.
[11], Theorems 2.12 and 2.10. It is also enough to assume that the essential
norm of S is less than G(T) or K(T), respectively. Another stability result
can be found in [16], Theorem 4.

5.3. THEOREM. For every T in B(X) we have max {G(T), K(T)} < d(T).

Proof. If T is not semi-Fredholm, then both the sides are zero. Suppose
that T is a & -operator (®P..-operator).
G(T)> 0 (K(T)>0). Let S be any operator with ||S|| < G(T) (||S]| < K(T).
Since ¢(S) < ||S}| (k(S) < [|S})), we conclude by Theorem 5.2 that '[‘+S is a
@ . -operator (¥ ._-operator). Thus the open ball of radius max {G(T), K(T)}
centred at T is contained in the set of semi-Fredholm operators. This was to
be proved

Since & >0 was
<M(T).

s Since >0

6. Geometric inequalities
It is mentioned in [11] that B. Gramsch proved for any @, -operator T

the inequality y(T) < G(T). By virtue of the Kato property y(T) = y(T") and
Theorem 4.2 (ii) this yields y(T) < K(T) for any &_-operator T. By Theorem

By Theorem 4.1 we have’
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3.1 we then obtain y,,(T) < G(T) or y,(T) < K(T) provided that Tis a @, -
operator or a @_-operator, respectively. In particular, we have
Y (T) < max {G(T), K(T)} for any semi-Fredholm operator T. We now give
a lower estimate of y, (7).

6.1. THEOREM. For every T in B(X) we have ym(T) = max {B(T), M(T)}.

Proof. If T is not semi-Fredholm, then the assertion is true by Theorem
4.1. Supposing that T is a &, -operator, we shall show that y,(T) = B(T).
To this end we choose an ¢ with 0 < ¢ < B(T). By the definition of B(T)
there exists a closed subspace W of finite codimension in X such that

B(T) =

In particular, this implies that N(T)n W = {0}. Let V be a finite-dimen-
sional subspace such that

m(TJy) > B(T)—& > 0.

X = WRVeN(T).
Given x =w+z with w in W and z in VON(T) we define
Fx=—Tz.

Then F is a finite rank operator. Moreover, N(T+F) =
definition of the reduced minimum modulus we have

V@N(T). By the

y(T+F) = inf {||(T+ F) x||: dist(x, N(T+F)) = 1}.

Every x on the right-hand side can be written as x = w+2z with w in W and

z in V@N(T) = N(T+F). Therefore |w|| =||x—z|| = 1, and hence
I(T+ F) x|| =||Tw|| 2 m(TJy) > B(T)~e.
This proves that y(T+F) > B(T)—e. Since & can be arbitrarily small, we

conclude that y,(T) = B(T).

It remains to show that y,(T)> M(T) for any ®_-operator T. The
argument follows the preceding one. Choosing 0 < & < M(T), there is, by the
definition of M(T), a finite-dimensional subspace V in X such that

2 q(Qy T) > M(T)—& > 0.

In particular, the operator @, T is surjective, and hence X = V+R(T). We
find a finite-dimensional subspace W in X such that

T"' (V) =W@N(T)
and write
X =WpZ,

where Z is a closed subspace containing N(T). For every x = w~-z with w in
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W and z in Z we define
Fx = —Tw.
Then F is a finite rank operator and
T'(V) = N(T+F).

By the definition of y(T+F) there exists an x in X such that dist(x, N(T+F))
=1 and

(T F)+e > T+ F)x|| 2 y(T+F).

Writing x=w+z with w in W and z in Z, we obtain (T4 F)x =Tz
and [|zl| =|[x~w|| 2 1, because w is in N(T--F). Moreover, for every
yin N@QyT)= T Y (V)= N(T+F) we have w-y in N(T+F), and hence
llx—(w+yll = 1, that is, lz—y]| 2 1. So we have dist(z, N(Qy T)) 2 1 from
which we conclude that

YT+F)+e> T2 2 ¢(Qy T) > M(T)—¢.
Since & can be arbitrarily small, we obtain y,(T) = M(T). The proof is
complete. ‘
The preceding theorem is not indispensable to proving the asymptotic
formulas. We have included it here, because it provides an interesting
comparison of the reduced minimum modulus to the other semi-Fredholm

characteristics. However, the following simple lemma will be crucial in
Section 8.

6.2. LemMma. Let T be a ®.-operator with codim R(T) > 0, Then
M(T) = (codim R(T))" L y(T).

If R(T) =X then M(T) = y(T), by the definition of M(T).

. Proof. Let codimR(T)=n and & >0. By [9], Lemma B.4.10, there
exists a projection P of the space X onto R(T) such that

[P < (1L +¢)n.
Let V=(I—P)X. Then X = V@R(T) and
0 N(Qy T) = N(T).
For every y in R(T) and v in V we have y = P(y—uv); hence
) Wl < 1Pl =l

bNovxg let x in X be such that dist(x, N(T)) = I. Denoting y = Tx, we have
y (8)

Y(T) < [Tl < [|PI|-dist (T, V).

a © .
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By virtue of (7) this implies
Y1) <||Pllg(Qy T) < |1Pl|- M(T).
Thus we arrive at
M(T) 2 (1+&) )~ p(T).
Since ¢ > 0 was arbitrary, the lemma follows.

Remark. If X is a Hilbert space, then the projection P in the preceding
proof exists with ||[P|| = 1. So in this situation we get, in fact, M(T) = y(T).
Consequently, by Theorem 3.1(iv) and Theorem 6.1, we obtain M(T)
=9,(T) for any @_-operator on a Hilbert space. (Similarly, B(T) = y(T)
for &, -operators, cf. Corollary 6.3 below.) Moreover, by [15] and [3],
Proposition 6.10(i), we have y,(T) = d(T) for any semi-Fredholm operator T

on a Hilbert space. So in this case the asymptotic formulas for the semi-
Fredholm radius can be derived in an easier way from [16].

6.3. CoroLLARY. Let T be a &, -operator with dim N(T) > 0. Then
B(T) > (dim N(T)" 1 3(T).

If N(T) = {0}, then B(T) = p(T), by the definition of B(T).
Proof. This is a consequence of Lemma 6.2, Theorem 4.2(iii), [1],
Proposition 1.2.7, and the Kato property y(T) = y(T").

7. Removing jumping points

For every T in B(X), let r(T) denote the surjectivity radius, and b(T)
the injectivity radius of the operator T Thus r(T) is the supremum of all
e > 0 such that ¢(T—AI) >0 for || <¢ and b(T) is the supremum of all
¢ = 0 such that m(T—Al) > 0 for |4 < . If the operator T is not surjective or
bounded from below we define r(T) =0 or b(T) = 0, respectively.

7.1. TueoreM. Let T be a surjective operator. Then
s(T) =sup r(T+F),
F

where the supremum is taken over all finite rank operators.

Proof. Let D denote the open disk of radius s(T) centred at zero. For
every A in D we know that T—AI is a ¢_-operator. If R(T—Al) =X we call
A a surjectivity point of the operator T, while if codim R(T—AI) >0 we say
that A is a jumping point of T Of course, we have r(T)< s(T).

If there are no jumping points in D we have s(T)=r(T) and there
is nothing to prove (we note that s(T+F) = s(T) for any finite rank ope-
rator F).

In general, it is well known that the set of jumping points has no limit

3 - Studia Mathematica 80.3
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.point in D, cf. [4], Theorems 3 and 5. So we can label these points in such
a way that

) € gl < .o <s(T),

and in this notation we have r(T) = |4,].
We shall show a construction of a finite rank operator F such that

R(T+F-il)=X

holds for A = A, and also for all 4 in D for which we already had R(T-1I)
= X. In other words, the finite rank perturbation F removes the first
jumping point and retains all the surjectivity points of the operator T in D,
Applying such a construction finitely many times, we see that r(T+ F) can be
made arbitrarily close to s(T) which will prove the theorem.

The construction is based on a reduction theorem of T. Kato [4],
Theorem 4. We shall apply it to the operator T—A, I. By that theorem the
space X decomposes into the direct sum of two closed subspaces X, and X,
which are (T—A,I)-invariant, hence T-invariant, and have the following
properties (we quote only those relevant to our problem). The space X, is
finite-dimensional (and T— 4, I is nilpotent on it). If Tj is the restriction of T
to X, considered as an operator from X, into itself, then

% codim R(Ty—Al) is constant in a neighbourhood of 4,

(codimension with respect to Xj).

We note that for any A which is a surjectivity point of T we have
necessarily both (T—AI) X| = X, and (T—Al) X, = X,. The latter property is
of importance. In particular, it implies that Ty— Al is surjective on X, for A
in a deleted neighbourhood of A;. So by (9) we get

(10) (Ty—2, ) X = Xo.

Now, let 4, be any complex number with |u,| > ||T||+s(T). We define
the finite rank operator F to be zero on X, and u, I on X,. Then, for every
A with |A] <s(T) we have

(T+F—AD X, = X,

because the spectrum of the restriction of T—AI to the finite-dimensional
subspace X is contained in the disk of radius ||T—Al|| < ||T||+s$(T) < |y so
that the operator T+F—Al is certainly invertible on X, .

Since F is zero on X,, we also have

(T+F =) Xo = X,

for every surjectivity point A of the operator T, and also for A = 4, by (10).
So the operator T+F is as desired.

Similarly one can prove the following
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7.2. THEOREM. Ler T be an operator bounded from below. Then
5(T) =supb(T+F),
F
where the supremum is taken over all finite rank operators.

8. The asymptotic formulas

In this section we prove all the formulas promised in Sections 1 and 2.
8.1. THEOREM. For every T in B(X) we have

(11) lim M(T")" = lim K (T"" = s_(T),
“and .
(12) lim B(T"'" = lim G (T""" = s, (T).

Proof. If T is not semi-Fredholm, then everything is zero. Let us
therefore suppose that T'is a ®_-operator and prove (11) with s_(T) = s(T),
of course. By (6), Theorem 5.3, and (1) we have

M(T) < K(T) <d(T) < s(T).

We shall apply these inequalities to the powers of T but before we note that
s(T") =s(T)" for n=1,2,... This can easily be checked by using the
factorization

T~ = (T—2)(T" ...+ A"

and the division property of &_-operators [1], Corollary 1.3.5. (Another
verification reducing the problem to the analogous property of the sur-
jectivity radius [6] can be found in [16].) So it follows that

Hm M (T < s(T),
and it remains to show that
(13) lim M(T™Y" > s(T).

Suppose first that ind T <0 which is the more sophisticated case. By
[13], Theorem 3.9, there is a finite rank operator ¥ such that the operator
S = T4V is bounded from below. To this operator § we apply Theorem 7.2.
Given ¢ > 0, there exists a finite rank operator F such that

‘ s(S)Z b(S+F) > s(S)—e.
Let A =S8+F. Since s(S) = s(T), we can write
s(T) = b(A) >s(T)—e.
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For the injectivity radius b(A4) we have the formula
B(A) = lim y (4"

n
from [6], Theorem 3. By Lemma 6.2 of this paper we have
‘ M (A" 2 (codim R(A") ' y(A4").

Intuitively, codim R (4"), being always finite, cannot increase (oo quickly as n
tends to infinity. More precisely, by [12], Lemma 3.3, we have

codim R(T") < n-codim R(T)

from which we conclude that

lim (codim R(4") "= 1.

n

Noting that M(A") = M(T") by Theorem 3.1(iv), we arrive at

lim M(T"" = b(A4) > §(T)—~¢.
Since ¢ > 0 was arbitrary, this implies (13) in the case when ind T < 0.

If indT >0, then by [13], Theorem 3.10, there exislts 'a finite rank
operator V such that the operator T+ V is surjective. Now we apply the
same argument as before based on Theorem 7.1, the trivial part of Lemma
6.2, and [6], Theorem 1. Thus we have proved (11).

Formulas (12) follow now from ([1) applled to the adjoint operator and
by using Theorem 4.2(iii).

‘8.2, TueoreM. For every semi-Fredholm operator T on a Banach space we
have

lim poo (T V" = lim d (T")"/" = §(T).

Proof. This is a consequence,of Theorems 6.1 and 8.1. Another proof
follows directly from the theorems of Section 7 and the formulas obtained in
[6], cf. Theorem 8.3 below.

Let T be a bounded linear operator on a Banach space; We know that
T is semi-Fredholm if and only if there is a finite rank operator F such that

the operator T+F is either surjective or bounded from below. More pre-
cisely, writing

qw(T)=51;pq(T+F) and - m,(T) = supm(T+F),
; ¥

where F varies over the finite rank operators, we have gu(T) >0
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(m,(T) > 0) if and only if ind T3> 0 (ind T < 0). Let

g(’T) = max {qw(T)ﬁ mw(n}

Clearly, we have g(T) < p,(T), and g(T)> 0 if and only if T is semi-
Fredholm. The method of removing jumping points (Section 7) combined
with the formulas from [6] still gives the following

8.3. TuroreM. For every T in B(X) we have
limg(T"" = s(T).

Finally we note that the existence of the limit in Theorem 8.3 has been
observed by V. Rakogevi¢ [10] though without determining its meaning.
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Nilpotent Lie groups and summability of eigenfunction
expansions of Schridinger operators *

by
ANDRZEJ HULANICKI (Wroctaw) and JOE W. JENKINS (Albany, N. Y.)

Abstract. Let 4 be an operator densely defined on I? (X), where X is a measure space,
which is essentially self-adjoint on its domain and non-negative. Let

Af= [MEQ) S
[}
be the spectral expansion of 4. We study conditions on functions K on R* such that
lm [K(HAEQ f =f ae.
t=0 o

for functions felI?(X), 1 < p < oo, for operators A which are of the form = (L), where

LT
(=17 x5,

™M=

L=

J

[]

1

Xy, ..., X, are generators of the Lie algebra of a nilpotent Lie group G and = is a
representation of G induced by a unitary character of a normal connected subgroup of G. As a
corollary we obtain the following. Let

k n; 20 2n
A=Y (-098"ax T +V,
j=0 .

where the potential ¥ is a sum of squares of real polynomials on R*. Then there exists an N
such that :

lim T(l——l}’i dE(Nf=f ae,

10 0

fel (RY,
where E is the spectral measure of 4 on I? (RY).

Let A be an operator densely defined on I? (X), where X is a measure
space, which is essentially self-adjoint on its domain and non-negative. Let

Af = [ MEG)f

be the spectral expansion of A.
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