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Nilpotent Lie groups and summability of eigenfunction
expansions of Schridinger operators *

by
ANDRZEJ HULANICKI (Wroctaw) and JOE W. JENKINS (Albany, N. Y.)

Abstract. Let 4 be an operator densely defined on I? (X), where X is a measure space,
which is essentially self-adjoint on its domain and non-negative. Let

Af= [MEQ) S
[}
be the spectral expansion of 4. We study conditions on functions K on R* such that
lm [K(HAEQ f =f ae.
t=0 o

for functions felI?(X), 1 < p < oo, for operators A which are of the form = (L), where

LT
(=17 x5,

™M=

L=

J

[]

1

Xy, ..., X, are generators of the Lie algebra of a nilpotent Lie group G and = is a
representation of G induced by a unitary character of a normal connected subgroup of G. As a
corollary we obtain the following. Let

k n; 20 2n
A=Y (-098"ax T +V,
j=0 .

where the potential ¥ is a sum of squares of real polynomials on R*. Then there exists an N
such that :

lim T(l——l}’i dE(Nf=f ae,

10 0

fel (RY,
where E is the spectral measure of 4 on I? (RY).

Let A be an operator densely defined on I? (X), where X is a measure
space, which is essentially self-adjoint on its domain and non-negative. Let

Af = [ MEG)f

be the spectral expansion of A.

* This research was funded in part by National Sciences Foundation Grant No. 810078.
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A bounded continuous function K on R* such that K(0) =1 is called
an I? (a.e) summability kernel for A if

ﬁmfxumwumf=f in  I’(X) (ae).

t—0 0

Among the best known summability kernels arc the Riesz kernels K (1)
=(1-A)% and the Abel kernel K(1) = ¢

In [7] the authors studied IF and a.e. summability kernels for the
sublaplacian on a stratified nilpotent group G and nilmanifolds G/I', where I’
is a discrete co-compact subgroup of G. These methods produced theorems
on Riesz and Abel I’ and a.e. summability for Hermite expansions for f in
(R, 1 <p<oo,cl [7), and similar for Laguerre expansions, cf. [3].

In the present paper we study L and ae. summability kernels for
operators of the form m(L) on IP(G/H), where L is an operator on an
arbitrary nilpotent Lie group of the form

k
L=Y (-1)x",
i=1

where X, ..., X, are generators of the Lie algebra of G and = is a
representation of G induced by a unitary character of a normal connected
subgroup H of G.

Following an idea of W. Cupata [2], we obtain the following:

Let

k
A=Y (=1 *ox]+ v,
i=1

where the potential ¥ is a sum of squares of real polynomials on R*. Then
there exists an « such that the Riesz kernel (1—A) and the Abel kernel
e™* are I” and a.e. summability kernels for A for all functions [ in LP(RY),
1< p<oo.

L Preliminaries. Let G be a homogenous group, of. [4], with dilations
{8}:>0 and a homogeneous norm |x|. For the Lie algebra g of G we write

5
g=@y W,
J=1
where
X=rX for XeV, and ,0<d <.. <d,
Let

Q=d;+... +d,.

icm
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A left-invariant differential operator L on G is called a Rockland
operator, cf. [4], if

SL=tL

and, for every irreducible non-trivial unitary representation = of G, n(L) is
injective on C*®-vectors.

It is easy to verify, cf. [4], that if X,, ..., X, generaie g as a Lie algebra
and each of X/'s is homogeneous of degree d;, ie, X Vji, then

k
L= Y (-)"x™,
j=1

where 2n,d; = a, is a Rockland operator since for every unitary non-trivial
representation n we have (n(L)&, &) >0 for every non-zero- C®-vector ¢.

Let L be a fixed positive Rockland operator on G. In virtue of [5], L is
hypoelliptic and as such it is essentially self-adjoint on C®(G) in I*(G). Let

Lf = [ME®) ], [eC(G),
0

be the spectfal expansion of L. For a bounded continuous function K
on R* let

Kf= TK(l)dE(l)f, fel?(G).
0

Consider the commutative C*-algebra
B={K: KeCo(R")}

and let m be a unitary representation of G. Since G is amenable, for every k
in I}(G) and

n(k) = [ k(x)m(x)dx,
G
the map
k- n(k)

defines a *-representation n of B, and so there is a spectral measure P on
R* with the values in B(H,) such that

o

n(K)E = [ K(A)dP(A¢E,  EeH,,
0
cf. eg. [8].
In other words, if Kf = f xk for some ke L' (G), then
(L1 n(K) = (k).
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In [6] the following theorem is proved.
TueoreM 1.1 [6]. There is an N such that if Ke CN(R") and

& .
(1.2) supl+A¥ == K@) <0, j=0,...,N,
170 di
then
(1.3) Kf = f*k,
where ke L' (G) and |k(x) < C(1+]x])™™ for an m > Q.
Since
O, L=1t“L
for
K, (A) =K ("4,
we have
(14) (K)f =fxky, where bk (x)=1t"2k(,.x).
A topological space X equipped with a continuous function p(x, y),
called a distance function, which satisfies .

e(x, y)=¢, x) 20,
(1.5) elx,y)=0 i x=y,

o(x, ) < y(e(x, ¥+e(y, 2)) for a constant y,
is called a space of homogenous type if every ball

B,(x) ={y: e(x, y) <r}
of radius » contains no more than a fixed number of disjoint balls of radius
r/2, of. [1].
Suppose there is a measure u on X such that
(1.6) there is a constant C such that
#(B.(3) € Cu(B,2(x)) for all r >0 and x, yeX.

Then X is a space of homogenous type and the Hardy-Littlewood maximal
function

m* f(x) = sulgu(Br )™t 1S Wlduy)
r> Bytx)
is of weak type (1,1), f. [1].

2. Theorems. Let G be a homogenous group and let H be a closed
normal connected subgroup of G not necessarily stable under the dilations.
The exponential map exp maps the corresponding Lie algebras g and b h
being an ideal in ¢, onto G and H respectively.
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Let
Gax »xeHxeG/H
be the canonical map of G onto G/H. Since H is normal, we have
(exp Xy = exp(X +h) = exp X,
where
gaXx X =X+heg/h.
For every i=1, ..., s we define

Vo= {XeV: X+Yehfora Yin 3 V},
Ji>i
Vi*={XeV: X+Yehfora Yin } V}.

j<i

Let W° and W;® be linear complements of ¥;° and ¥ in V;, respectively. Let

and

i=1 i=1
Thus we have
(2.1) K°Or° = g = k*Dh>.
Moreover, ’
(22 limé,h=h" -and lim S,k =h>.
=0 . I

It follows by an easy induction that also
(23) K’®h=g=k>®h
We define a distance function on G/H by
o(x, y)=inf {{xy~'z: ze H}.
It is easy to see that p satisfies (1.5). Let
B,(%) = {j: o(% J) <r)
and denote
B, =B,@).
. If*|Algy denotes the Haar measure of 4 in G/H, we have
|B, (Rl = Blom, %eG/H.
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Let
b={Xeg: |X|<r}.

LeMMA 2.1, For every a, B >0 there exist constants a, b, ¢ such that

(24) b b, "k*®b, "Hc<b, foralr<a
and
(25) b, < by " KO@b, "H b, for all rzf.

Proof. Since
(2.6) X +Y] < d(X]+]Y])

for a constant d, it suffices to prove.only the first inclusions in (2.4) and (2.5).
To prove (24) it suffices to show that if [X+ Y| <r, Xek™, Yeh, then
|X] < ar for all r <a, since then |Y] <d(a-+1)r.
For 0 <o <r<a, (24) holds trivially. Thus suppose that there exist
X,ek®, Y,eh such that |X,+Y)|=r,—0 and [X,|=t,=a,r, with
a, — . Then

6,21 Xo+5,, 1 >0 and 61 X = 1.

Passing to a subsequence, if necessary, J,_, X, -~ X ek” and |X] = 1, whence

o1 B —X. Since r, — 0 implies t, ~0 and tr* = 00, we obtain a contra-
diction to (2.1) and (2.2).

The proof of (2.5) is similar.

ProrosiTiON 2.2. There exists a constant C such that

27 |1§r|r;/n <C ]Br/z|c;/u-

Consequently, G/H with the distance function ¢ is a space of homogeneous type
and the Hardy-Littlewood maximal function

m* f (%) =sup|Blgh | IS (Idy
r>0 B (%
is of weak type (1,1).
Proof. Let
B =k°nb and BT =k*nb,

Since both k° and k™ are stable under dilations, for every & > O there exists a
constant ¢ such that

(2.8) b3l,0 = clbfl,0  for all r >0,
and
(2.9) b, 0 = €1b], for all r > 0.

e ©
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Let b, = logl§;. By (2.3) there are linear 1-1 mappings
TO: g/h =25k, T g/h 22 g

and, by Lemma 2.1, there exist constants ¢, C > 0 such that
BT h cbd forallrz1,

(2.10) K
bY cT*b, = bE for all r<2.

This in virtue of (2.8) and (29) completes the proof of Proposition 2.2.
ProposiTION 2.3. There exists a constant C such that for r >0

sup|x™"'B, "\ Hlu|Blou < C|BJc,
xeG
where B, = {xeG: |x| <r}.
Proof. Let r < 1. In virtue of (2.3), xH = exp X - H, where X ek™. Since

H is normal, expX-H = [exp[X+Y]: Yeh}. By Lemma 2.1, | X+Y|<r
implies |X] < ar for all r < 1. Hence

CXp[—-'X] Br < By(l +ayr

and the conclusion follows from (2.5) and (2.10).
For r = 1 the proof is similar,

ProrosimioN 2.4. Let ke L} (G) be such that for an m > Q
k() < X+~

If k, is defined as in (1.4), then there is a constant C such that for feI' (G/H)
we have

NS ek (9 < Cm* (3 for all t>0.

Proof. Let e,, be the characteristic function of the set
B, \By, i nz0,

B, if n=—1.
We have
1+ k) =Tk 01 o)
S Y fep k) S
ne= -1 G
=S [ feuOmkRdnfE) D
e~ 1 GIH I
<o 5 10| fe, (LS, R RIS (55) 5
n=-1  GHH
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¢ T e S e ohdnls D) 45

n—~l

Se Y 721429 "suply ! Bypay, nHl [ 1S (RP)dY.
n=-1 yeG By,

Hence, by Proposition 2.3,

1f xk, (%) < Z e H2m 2t Yy QstlplBrf Lrondy

n=-1 (%)

< Cm* f(%).

COROLLARY 2.5. If for a function k in I} (G) we have [k(x)| < ¢(1+{x])"
for an m > Q, then the operator K* defined on C,(G/H) by

K* (%) -—sumJ*k ()

is of weak type (1,1).

Now let G be an arbitrary nilpotent Lie group and let = be a
representation of G induced from a unitary character of a normal connected
subgroup H of G. Then the operators m,, xe G, act on functions on G/H
according to the formula

TE,/UI) =a(x, }.}),(}.}i)w
where the scalar function a is such that |a(x, y)| =1 (and 7, 7, = 7).

Let X, ..., X, be elements in the Lie algebra of G which generate it.

Let
k
=¥ (-1)Vx™.

THEOREM 2.6. (L) is a positive self-adjoint operator on I?(G/H) and there
exists an N such that if Ke CY(R"), K(0) =1 and K satisfies (1.2), then K is
an L? and a.e. summability kernel for w(L) and all f in L#(G/H), 1 < p < .

Proof. Let G be the nilpotent free group of the same nilpotency class as
G and let Xy, ..., X, be the free generators of the Lie algebra g of G, If we
compose 7 with the homomorphism o of G onto G sending X; onto X, we
obtain a representation 7’ of G which is induced by a unitary character of
the normal connected subgroup o~*(H) = H of G. We define dilation &,
t >0, of G by putting

S X;=0"x, j=1,.,k
Then

k
=Y (=)Vx"
i=1

is-a Rockland operator on G, 8, L =tL, and '(L) = n(L).
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By Theorem 1.1, there exists an N such that if Ke C¥(R*), K K(©0)=1and -
K satisfies (1.2), then there is a k in I! (G) with |k(x)| < c(1+]|x))~"™ for an
m > Q such that

?K (tAAEAY f =n' (k) f,
0

where E is the spectral measure of #'(L). But since {k,},_ is an approximate
identity in L' (G), ='(k)f tends to f in the L” norm for f in L? (G/H),
1< p< o and uniformly for f in C,(G/H).
On the other hand,
w' (k) S () = [k (D a(x, §) f(3)dx,
G

B

whence
(" (k) S O < 1S |l ()
and, consequently, by Corollary 2.5, the operator =*
T f () = Suglﬂ(k,)f ol
>

is of weak type (1,1) and Theorem 2.6 follows.

Perhaps the most interesting application of Theorem 2.6 is one based on
an idea of W. Cupata [2].

A function p on a milpotent Lie group G is called a polynomial if poexp
is a polynomial on the real vector space, the Lie algebra of G. Let X,, ..., X,
be generators of the Lie algebra of G and let

k
Z —1"1X2"1+Zp,,
Jj=1 i=1

where p,, ..., p, are polynomials on G.

Tueorem 2.7 (W. Cupala [2]). The Lie algebra g generated by the
operators Xy, ..., X, and Vi,....V, Vf=ipf j=1,...5 on C(G)
is nilpotent and finite-dimensional,

Let G =expy.

TueorEM 2.8 (W. Cupala [2]). The representation of g as operators
on CX(G) is the differential of a representation m of G which is induced by
a unitary character of a normal connected subgroup of G.

CoROLLARY 29. L is an essentially self-adjoint positive operator on 7 (G)
and there exists an N such that if KeCV(R*), K(0) =1 and K satisfies
(1.2), then K is an LP and a.e. summability kernel for L and all functions f in
L7 (G), 1<p<oo.

ExampLE. Consider the operator

L=(—1y +p(x)

dlk
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where p is a positive polynomial on R and k > 0. Let ¢q, ¢y, ... be the
eigenfunctions of L with eigenvalues Ao, Ay, ... By Corollary 2.9 there exists
an x such that for every fel (R)

lim Y (=i (fs @) ey(x)=[(x) ac.

n-roo /'lj<n

In more dimensions our method gives a similar result only for the
operators L with the potentials which are sums of squares of polynomials,
since in several variables not every positive polynomial is a sum of squares of
polynomials.

References

[11 R. Coifman and G. Weiss, Analyse hurmonique non-commutative sur certaing espaces
homogenes, Lecture Notes in Math, 242, Springer-Verlag, 1971

[2] W. Cupala, Certain Schrédinger operators as images of sublaplacians on nilpotent Lie groups
(to appear). °

[3] J. Dtugosz, Almost everywhere convergence of Riesz means of Luaguerre expansions (10
appear).

(4] G. Folland and E. M. Stein, Hardy spaces on homogenous groups, Princeton University
Press, 1982,

[5] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques  homogénes
invariants @ gauche sur un groupe de Lie gradué, Comm. Partial Difl. Equations 4 (8)
(1978), 899--958. .

[6] A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia
Math, 78 (1984), 253-266.

[7] — and Joe W.Jenkins, Almost everywhere summability on nilmunifolds, Trans. Amer. Math,
Soc. 278 (1983), 703--715.

[8] M. A. Naimark, Normed rings, Moscow 1968,

INSTYTUT MATEMATYK] UNIWERSYTETU WROCLAWSKIEGO
INSTITUTE OF MATHEMATICS, WROCLAW UNIVERSITY
Plac Grunwaldzki, Wroctaw, Poland

and

DEPARTMENT OF MATHEMATICS
STATE UNIVERSITY OF NEW YORK
Albany, New York 12222, USA. '

Recelved October 5, 1983 (1924)

icm

STUDIA MATHEMATICA, T. LXXX. (1984)

Some classes of commuting n-tuples of operators
by
MUNEO CHO and MAKOTO TAKAGUCHI (Hirosaki)

Abstract. In this paper we study the inclusion relations among some classes of operator-
families and the topological properties of these classes,

1. Introduction. Throughout this paper, H will be a complex Hilbert
space with the scalar product ( , ) and the norm |||, and all operators on H
will be assumed to be linear and bounded. For an operator T on H, let o(T)
denote its spectrum, r(T) its spectral radius, W(T) its numerical range and
w(T) its numerical radius.

In case of a single operator, the properties of a normal operator are well
known because it has spectral resolution. Thus many authors have discussed
some classes of operators which are close to being normal in some sense. It
is well known that there exists an inclusion relation among these classes. We

spectraloid
normaloid convexoid

transloid (G,)
P

hyponormal spectroid .

subnormal
quasinormat

normal

shall indicate it by the diagram above (e. g. see [10]). Here, T is called
normaloid il ||T|| = w(T), and transloid iff T—AI is normaloid for each
leC. T is called convexoid iff W(T) =coa(T). (X denotes the closure of the
set X < C and coX its convex hull) T is called spectraloid iff w(T) = r(T).
T belongs to (Gy) iff |(T=AD"Y|| = 1/d(A, a(T)) for each ie C—a(T), where
d(1, X) denotes the distance between 4 and the set X < C. And T is called
spectroid iff o(T) is a spectral set for T in the sense of von Neumann.

4 ~ Studia Muthematica 80.3
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